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Abstract - To support molten salt reactor commercialization, tools for calculating molten salt reactor fuel
composition and reactivity changes during operation are being developed. Leveraging the capabilities of
the SCALE code system, a one-dimensional delayed neutron precursor drift model has been implemented in
the TRITON/NEWT transport module. With the fuel loop length, core height, fluid velocity, and core axial
power shape, this model calculates the concentration of each delayed neutron precursor group within the one-
dimensional loop. The model uses correction factors generated from these axially dependent concentrations
to calculate the flow-adjusted parameters for the fission spectrum (χf) and the total number of neutrons per
fission (ν̄f) for the transport solver and cross section collapse. The SCALE implementation performs well
in comparisons to analytic solutions of the one-dimensional model. This capability is demonstrated in an
application to a TRITON/NEWT model of a unit cell of the Molten Salt Breeder Reactor. Results show nearly
40% of the total delayed neutrons are emitted outside of the core. A large fraction of the delayed neutrons drift
to downstream low-power (in-core) regions, largely augmenting the delayed neutron source in these regions.
The small axial region adjacent to the core outlet experiences a delayed neutron source that is over six times
what is produced locally from fissions (as would be assumed for a no-drift transport calculation). For this
application, differences between the no-drift solution and using the flow-adjusted parameters is up to 1%–2%
in keff and some collapsed two-group constants.

I. INTRODUCTION

Oak Ridge National Laboratory (ORNL) has recently un-
dertaken work to advance the technology readiness level of a
software package capable of calculating molten salt reactor
(MSR) fuel composition and reactivity changes during oper-
ation. This work will prepare a prototype MSR neutronics
tool that can be further applied to specific MSR designs, in-
cluding those being developed by several private companies
(e.g., Transatomic Power, Terrestrial Energy, FLiBe Energy).
The recent $1.3B in private investment in advanced reactor
technology detailed in a Third Way report [1] includes several
of these leading liquid-fueled MSR concepts; this provides
a growing need for an MSR neutronics and fuel cycle tool
(along with additional MSR transient and heat transfer analy-
sis tools). Increased interest in advanced reactors resulted in
White House meetings on the topic and ORNL partnerships
on two funding opportunities (up to $40M) [2].

Though products from universities or internally devel-
oped tools provide partial capabilities for liquid fueled MSR
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analysis, there is currently no established tool for neutronics
and fuel cycle design and evaluation of liquid-fueled MSRs.
Significant work in fast and thermal MSR analysis has yielded
workable tools that aim to solve these issues [3, 4, 5, 6, 7, 8, 9].
Recent work at ORNL developing software with these capa-
bilities has established proven methods and concepts. Initial
development of these methods used external Perl scripts to en-
able the analysis of a liquid-fueled system with a solid-fueled
reactor analysis tool [10]. This method grew into a generic
Python script known as ChemTriton, which relied on the same
methodology but provided more flexibility to analyze realis-
tic scenarios in MSR operations [11, 12]. Separate efforts at
ORNL are focused on developing tools for MSR whole core
analysis with transport, depletion, and thermal hydraulics [13].

For neutronic and fuel cycle analysis, the two most im-
portant factors are depletion with continuous removals and
delayed neutron precursor flow. Any tool attempting to prop-
erly model neutron transport and depletion in a fluid-fueled
system must account for both of these phenomena. Implemen-
tation of these tools into SCALE [14] stands to benefit a larger
number of analysis tools, as some tools use ORIGEN [15]
for depletion calculations. This includes benefits to Shift [16]
and other tools that use ORIGEN through its API. The discus-
sion in this paper focuses on the implementation of a delayed
neutron precursor drift model in SCALE.
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II. TRANSPORT WITH DELAYED NEUTRON PRE-
CURSOR DRIFT

SCALE uses both deterministic (TRITON/NEWT [17])
and Monte Carlo (TRITON/KENO [18]) methods to provide
flux or reaction rate information for depletion calculations.
This information is passed to ORIGEN through coupling mod-
ules. Currently there is no delayed precursor drift model.
While accounting for moving fuel in Monte Carlo and deter-
ministic tools may be notably different, the implementation
is based on the additional term in the neutron transport and
precursor equations [19],
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where
ψ is the angular flux,
C j is the precursor concentration,
j denotes the precursor group,
r, E, Ω̂, t describes the position-energy-direction-time

phase space,
v is the neutron speed,
Σ is the total macroscopic cross section,
Σs is the scattering cross section from E′, Ω̂′ to E, Ω̂,
χp is the prompt fission emission spectrum,
β is the total delayed neutron fraction,
ν̄ is the average neutrons released per fission,
Σ f is the fission cross section,
χ j is the delayed neutron emission spectrum,
λ j is the delayed precursor decay constant,
S is the isotropic external source,
β j is the group delayed neutron fraction, and
u is the vector describing the precursor flow.

The first term of Eq. 1 is the time-dependent variation
of the flux, normally omitted in the steady-state formulation.
The next six terms describe neutron interactions with material:
leakage from the phase space, collisions, in-scatter, prompt
fission, delayed fission, and external source. For simplicity,
this formulation uses precursor density equations to describe
delayed neutron emission. For each group j, Eq. 2 describes
the time-dependent variation of the precursor density with
three terms: precursor movement, precursor loss because of
decay, and precursor source from fission.

Delayed neutron emission occurs as a result of typically
less than 1% of fissions. When a heavy nucleus fissions, it
splits into two or more fission products and neutrons. A small
percentage of these fissions release a product known as a
delayed neutron precursor. Delayed neutron precursors are

radioactive, and upon decaying, release a neutron known as
a delayed neutron. The release time of a delayed neutron de-
pends on the half-life of the delayed neutron precursor. The
energy of a delayed neutron is often much less than a prompt
fission neutron and depends on the excited state of the delayed
neutron precursor [20]. For 235U, nuclear data sheets cate-
gorize the approximately 40 delayed neutron precursors into
J = 6 groups according to their half-lives [21]. Each group
has its own characteristic energy distribution, decay constant,
and emission probability (Table I).

The delayed neutron emission spectrum and prompt fis-
sion emission spectrum are not equal. In addition, ν̄ is energy-
and material-dependent and is defined as

ν̄(r, E) = ν̄p(r, E) + ν̄d(r, E), (3)

where ν̄p and ν̄d are the number of prompt and delayed neu-
trons emitted per fission event, respectively. In some formu-
lations, this notation (Eq. 3) is preferred because (1) it uses
a more basic quantity, ν̄d, and (2) measurements show that
ν̄d at typical energies in power reactors is independent of en-
ergy [20]. Thus, the energy variation in ν̄ is nearly entirely
attributable to ν̄p.

Many formulations (Eqs. 1 and 2) use β to define the
energy-dependent fraction of delayed neutrons emitted,

β =
ν̄d

ν̄
, (4)

and unnormalized β j to define the fraction of these delayed
neutrons in each precursor group,

β j = α jβ, (5)

where α j is the energy-independent normalized group emis-
sion probability (Table I). These quantities are not to be con-
fused with βeff, which is an energy- and space-dependent quan-
tity.

In a solid fuel reactor (e.g., a light water reactor), the fis-
sion product–delayed neutron precursors are located very near
the fission site of their birth. The distance between the fission
site and the precursor location is negligible; most transport
codes effectively ignore this distance to simplify calculations.
For a liquid fuel reactor, these precursors move with the flow-
ing fuel material before decaying and releasing a delayed
neutron. In some cases, the precursor may flow outside of the
core and decay within the fuel loop. This effectively reduces
the number of delayed neutrons emitted in the core. Longer-
lived precursors may flow through the fuel loop and reenter the
core before decaying. The effect on keff of this precursor drift

TABLE I. Six Group Delayed Neutron Data for 235U
j λ j [s−1] normalized β j (α j)
1 0.0125 0.0320
2 0.0318 0.1664
3 0.109 0.1613
4 0.317 0.4596
5 1.35 0.1335
6 8.64 0.0472
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is on the order of a few hundred pcm and must be appropri-
ately characterized to properly calculate the delayed neutron
source.

Characteristics of the fuel flow depend on the fuel loop
dimensions, core dimensions and geometry, and mass flow
rates. The main interest of this effort is to obtain the steady-
state distribution of precursors in the core as a function of
position; this is necessary to properly quantify the effect that
the precursor drift has on the SCALE neutronic solution. TRI-
TON/NEWT is limited to two-dimensional geometries, while
TRITON/KENO is capable of simulating three-dimensional
noninfinite geometries.

1. Transport Solutions

The TRITON/NEWT transport tool (as well as many other
transport tools) are designed for steady state analysis, focusing
on the solution of the transport equation [17],

Ω̂ · ∇ψ + Σ(r, E)ψ(r, E, Ω̂) = Q(r, E, Ω̂), (6)

where Q is the source at r, E, Ω̂, and

Q(r, E, Ω̂) = S (r, E, Ω̂) + F(r, E, Ω̂) + S ext(r, E). (7)

The three terms in Q are the scattering source (S ), fission
source (F), and external/fixed source (S ext), where

S (r, E, Ω̂) =

"
Σs(r; E′, Ω̂′ → E, Ω̂)ψ′dE′dΩ′, and (8)

F(r, E, Ω̂) =

"
χ(r, E)

4π
ν̄(r, E′)Σ f (r, E′)ψ′dE′dΩ′, (9)

and χ is the normalized combined fission-delayed neutron
emission spectrum.

This steady-state formulation (Eqs. 6–9) does not explic-
itly use delayed neutron parameters; instead it accounts for
delayed neutron precursors in the lumped quantities ν̄ (Eq. 3)
and χ,

χ = χp(1 − β) +

J∑
j=1

χ jβ j. (10)

Accounting for the delayed neutron precursor drift with TRI-
TON/NEWT and similar tools requires the definition and use
of the flow-adjusted parameters ν̄f and χf,

ν̄f = ν̄p + ν̄f
d, and (11)

χf = χp(1 − βf) +

J∑
j=1

χ jβ
f
j, (12)

where βf
j, β

f, and ν̄f
d are flow-adjusted parameters,

ν̄f
d(r, E) = ν̄d(r, E)

βf

β
, and (13)

βf =
ν̄f

d

ν̄
. (14)

This formulation is entirely dependent on the calculated flow-
adjusted group delayed neutron fractions (βf

j), which must
reflect the loss of neutrons outside of the core. The fraction
on the right side of Eq. 13 is dependent only on flow charac-
teristics and may be calculated before the transport calcula-
tion. The combined fission-delayed neutron emission spec-
trum (Eq. 12) is dependent on the problem-specific spectrum
and must be estimated.

2. Zero-Dimensional Drift

Zero-dimensional delayed neutron precursor drift meth-
ods simplify the problem into two conditions for delayed neu-
tron emission: (1) inside and (2) outside of the core. A sim-
plified approximation is obtained by considering the fuel loop
characteristics: mass flow rate (ṁ), the mass fraction of the
fuel salt in the active core ( fcore), and the mass of fuel in the
fuel loop (mloop). These factors define the flow-adjusted de-
layed neutron fraction of each delayed precursor group, which
may be approximated with

βf
j ≈

β j∫
e−λ jtdt

∫ ∆tcore
2

0
e−λ jtdt

+
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∫ (i+ 1
2 )∆tcore+i∆tloop

(i− 1
2 )∆tcore+i∆tloop

e−λ jtdt

 , (15)

∆tcore =
fcoremloop

ṁ
, and (16)

∆tloop =
(1 − fcore)mloop

ṁ
, (17)

where λ j is the group j delayed neutron precursor decay con-
stant, ∆tcore is the average time it takes for a molecule to pass
through the active core, and ∆tloop is the average time it takes
for a molecule to pass through the fuel loop outside the core.

This approximation simply obtains the fraction of decays
of precursor group j that occur within the active core. It is
based on the flow of the average molecule in the fuel salt and
assumes a typical cosine axial power shape (i.e., the average
neutron is born at the axial core midplane). It is possible to
include fewer terms in the summation, as the successive terms
decrease exponentially. Integration (Eq. 15) yields a simpler
equation for the flow-adjusted delayed neutron fractions,

βf
j ≈ β j

[(
1 − e−

λ j∆tcore
2

)
+

(
e
λ j∆tcore

2 − e−
λ j∆tcore

2

) ∞∑
i=1

e−λ ji(∆tcore+∆tloop)

 . (18)

This is the zero-dimensional simplified model.
More complex models are dependent on some simpli-

fied form of the neutron transport or point kinetics equations.
Consider the exact point kinetics equations describing the
amplitude p(t) and neutron precursor concentrations c j(t),

dp(t)
dt

=
ρ(t) − β̄(t)

Λ(t)
p(t) +

∑
j

λ jc j(t) + s(t), and (19)

dc j(t)
dt

= −λ jc j(t) +
β̄ j(t)
Λ(t)

p(t), for j = 1, . . . , J, (20)
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with the definitions
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for the kinetic parameters: reactivity ρ(t), group j effective
delayed neutron fractions β̄ j, and prompt neutron lifetime Λ(t).
This factorization approach does not introduce an approxima-
tion [20].

With or without delayed neutron precursor drift, after
long operation times (i.e., t → ∞) the precursor concentrations
approach equilibrium concentrations. Without delayed neutron
precursor drift, the equilibrium concentrations are described
mathematically (Eq. 20) as

λ jc j =
β̄ j

Λ
p. (28)

With delayed neutron precursor drift, the precursor con-
centration equation (Eq. 20) becomes

dc j(t)
dt

= −λ jc j(t) +
β̄ j(t)
Λ(t)

p(t)−
c j(t)
τc

+
c j(t − τe)e−λ jτe

τc
, (29)

where τc is transit time through the core and τe is the transit
time through the external loop [22, 23]. These two additional
terms describe the rate of precursors leaving the core and the
rate of reentry by precursors that left the core τL seconds ago
and have decayed to a fraction of their previous value [22].
Applying the same time conditions (i.e., t → ∞) that yielded
Eq. 28 and reworking the equation yields

λ jc j =
β̄ j

Λ
p
(

τcλ j

τcλ j + 1 − e−λ jτe

)
. (30)

This is equivalent to Eq. 28 with an additional factor that
defines the fraction of delayed neutron precursors that decay
within the core. Using this factor to recalculate the flow-
adjusted delayed neutron fractions yields the zero-dimensional
model:

βf
j ≈ β j

(
τcλ j

τcλ j + 1 − e−λ jτe

)
. (31)

3. One-Dimensional Drift

One-dimensional delayed neutron precursor drift meth-
ods normally simplify the problem into an axially dependent
partial differential equation similar to Eq. 20,

∂c j(z, t)
∂t

+ v(z, t)
∂c j(z, t)
∂z

= −λ jc j(z, t) +
β̄ j(t)
Λ(t)

p(z, t), (32)

where v is the space- and time-dependent velocity of the fluid.
Applying the same time conditions that yielded Eqs. 28 and 30
(i.e., t → ∞) yields the simpler ordinary differential equation
(ODE),

v(z)
dc j(z)

dz
= −λ jc j(z) +

β̄ j

Λ
p(z). (33)

Without drift, this ODE is similar to Eq. 28,

λ jc j(z) =
β̄ j

Λ
p(z). (34)

With drift, the analytical solution to Eq. 33 is obtained with
and integrating factor,

λ jc j(z) = λ je−V(z)
∫

eV(z)Q(z)dz + Aλ je−V(z), (35)

where A is a constant and V(z) and Q(z) are

V(z) =

∫
λ j

v(z)
dz, and (36)

Q(z) =
β̄ j p(z)
Λv(z)

. (37)

This is analytically solvable for simple problems, and is nu-
merically solvable for more complex systems. In any case, it
is useful to define the entire fuel loop (i.e., 0 < z < L) with
the equations to define the appropriate boundary conditions
(Fig. 1),

c−j,core(H) = c+
j,loop(H), and (38)

c−j,loop(L) = c+
j,core(0), (39)

where H is the length of the core and c j,core and c j,loop repre-
sent the precursor concentrations in the core and in the loop.

H L

p
re

cu
rs

o
r 

co
n
ce

n
tr

at
io

n

z [cm]

p(z) = f(z)
cj,core(z)

p(z) = 0
cj,loop(z)

cj,core(H) = cj,loop(H) cj,loop(L) = cj,core(0)

Fig. 1. The one-dimensional precursor drift problem showing
boundary conditions.
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Together these two functions describe a piecewise continuous
function that arises from the piecewise power function p(z),

p(z) = f (z) for 0 < z < H, and (40)
p(z) = 0 for H < z < L, (41)

where f (z) is some arbitrary function, and it is assumed that
there is no power generated in the loop (effectively true in
most cases). In the loop, the description of the precursor
concentrations (Eq. 35) simplifies to

λ jc j,loop(z) = Bλ je−V(z), (42)

where B is a constant.
These solutions for precursor drift are incorporated into

the neutron transport solution considering (1) the precursor
concentrations at a specific location in the core or (2) the
average precursor concentrations over a given axial range. In
both considerations, the objective is to compare the solution of
the one-dimensional drift, c j,drift, to the solution without drift,
c j,v=0, to obtain the correction factor, F j, for group j,

βf
j ≈ β jF j. (43)

This axially dependent correction factor is

F j(z) =
c j,drift(z)
c j,v=0(z)

. (44)

Integrating the top and bottom of Eq. 44 yields the range-
average correction factor,

F j =

∫ z2

z1
c j,drift(z)dz∫ z2

z1
c j,v=0(z)dz

, (45)

which is the one-dimensional model. If z1 = 0 and z2 = H, the
resulting F js are core-averaged. The factor used to adjust ν̄d
on the right side of Eq. 13 is simply the sum of the product
of these group factors and the normalized group emission
probabilities,

F(z) =

J∑
j=1

F j(z)α j, and (46)

F =

J∑
j=1

F jα j. (47)

For the calculation of the correction factors, the difference
between the problem-dependent quantities β̄ (Eq. 23) and Λ
(Eq. 25) is ignored. These parameters are slightly different
when calculated from the transport solution with and without
the precursor drift model.

The current application focus for these SCALE tools is
on thermal MSRs, which incorporate some moderating struc-
ture material to the core and contains channels through which
salt flows. These types of problems are ideal candidates for
a simplified one-dimensional precursor drift model, which
ignores the profile of the fluid velocity within the flow channel
or structure and quickly delivers solutions for the precursor
concentration within the fuel loop. For these problems, it
is assumed that a one-dimensional model is sufficient to ap-
proximate the effect of precursor drift. This model is likely
insufficient for the more complex fuel flows in fast spectrum
MSR cores, which are primarily made up of free flowing salt
fuel and incorporate little structure into the design.

III. IMPLEMENTATION AND TESTING

Implementation of the precursor drift model in TRI-
TON/NEWT requires two major developments: (1) a mech-
anism for correcting the delayed neutron fractions and en-
ergy spectra, and (2) an ODE solver to obtain the precursor
concentrations as a function of dimension (Eq. 33). Several
changes are necessary to achieve the former. Currently, TRI-
TON/NEWT reads in the total average number of neutrons
emitted per fission (ν̄, MT = 452) from ENDF-6–formatted
data and generates a combined (prompt and delayed) fission
emission spectrum (χ̄, MT = 1,018) from ENDF-6–formatted
data. Before the full transport calculation, these quantities are
calculated for each mixture (i.e., unique material composition)
in the problem, where

ν̄g =

∑M
i Niσ f igν̄ig∑M

i Niσ f ig
, and (48)

χ̄g =

M∑
i

χ̄igNi

G∑
g′
ν̄ig′σ f ig′φig′

 , (49)

where
ν̄g is the total average number of neutrons emitted per

fission for the mixture in group g,
M is the total number of nuclides,
Ni is the atom density of nuclide i,
σ f ig is the microscopic fission cross section for nuclide i

and group g,
ν̄ig is the average number of neutrons emitted per fission

for nuclide i and group g,
χ̄g is the combined fission emission probability for the

mixture in group g,
χ̄ig is the combined fission emission probability for nu-

clide i in group g, and
φig is the normalized flux integral for nuclide i in group g

from the calculation.
For use in transport calculations, Eq. 49 is normalized,

and the mixture ν̄g is folded into the quantity Σ f gν̄g. The
combined quantities in Eqs. 48 and 49 may be split into their
prompt and delayed components,

ν̄g =

∑M
i Niσ f igν̄pig∑M

i Niσ f ig
+

∑M
i Niσ f igν̄dig∑M

i Niσ f ig
, and (50)

χ̄g =

M∑
i

χpigNi

G∑
g′
ν̄pig′σ f ig′φig′


+

J∑
j

 M∑
i

χd jigNi

G∑
g′
α jν̄dig′σ f ig′φig′


 , (51)

where
ν̄pig and ν̄dig denote the prompt and delayed contributions

to the total ν̄ig,
χpig denotes the prompt emission spectra for nuclide i

and group g, and χd jig denotes the group j delayed emission
spectra for nuclide i and group g.

To obtain the flow-adjusted parameters ν̄f
g and χf

g, the
delayed contribution terms in Eqs. 50 and 51 are multiplied
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by the adjustment factors (Eq. 46 or 47 and Eq. 44 or 45),

ν̄f
g =

∑M
i Niσ f igν̄pig∑M

i Niσ f ig
+ F

∑M
i Niσ f igν̄dig∑M

i Niσ f ig
, and (52)

χ̄f
g =

M∑
i

χpigNi

G∑
g′
ν̄pig′σ f ig′φig′


+

J∑
j

 M∑
i

χd jigNi

G∑
g′

F jα jν̄dig′σ f ig′φig′


 . (53)

To calculate these flow-adjusted parameters, the prompt (MT
= 456) and delayed (MT = 455) contribution to ν̄ must be read
from the cross section files. To calculate the adjustment factors
(F j), the delayed neutron (MT = 455) group decay constants
(λ j) and relative emission fractions (α j) must also be read
from the cross section files. Currently, SCALE libraries do
not contain some of this delayed neutron information. Decay
constants and relative emission fractions (λ j and α j) of a few
fissile isotopes are currently hard-coded in SCALE: 232Th,
233U, 235U, 238U, 239Pu, 240Pu, and 241Pu. Some isotopes have
a set of λ j and α j for thermal and fast fission. While the
SCALE libraries contain a χp spectra (MT = 1,056), this is
not currently shared with the working library available to
TRITON/NEWT. The χd spectra (MT = 1,055) in the SCALE
libraries is an averaged spectrum from all the delayed groups
combined (χdig); there is no information on the group-specific
χd j. Without this group-specific information, the calculation
of the flow-adjusted spectrum (Eq. 53) simplifies to

χ̄f
g =

M∑
i

χpigNi

G∑
g′
ν̄pig′σ f ig′φig′


+ F

M∑
i

χdigNi

G∑
g′
ν̄dig′σ f ig′φig′

 . (54)

A backward Euler method is implemented to solve the
ODE (Eq. 33) for each precursor group. This ODE is solved
with the backward Euler method iteratively (with different
initial conditions) until the boundary conditions are satisfied
(Eqs. 38 and 39). A numerical integration method is used
to perform the necessary integrals to determine the range-
integrated ratios (Eq. 45).

For the simplest one-dimensional problem (Eqs. 35
and 42), the velocity and power are constants, resulting in
the following analytical solutions:

λ jc j,core = λ j

(Q
V

+ Ae−Vz
)
, (55)

λ jc j,loop = Bλ je−Vz, (56)

Vz =
λ j

v
z, (57)

Q =
β̄ j p
Λv

, (58)

A =
Q
V

(
eVH − eVL

eVL − 1

)
, and (59)

B =
Q
V

(
eVH − 1
1 − e−VL

)
. (60)

The correction factors using these solutions are

F j(z) = 1 + e−Vz
(

eVH − eVL

eVL − 1

)
, and (61)

F j = 1 +

(
eVH − eVL

) (
1 − e−VH

)
VH

(
eVL − 1

) , (62)

where F j is averaged over the core. A more complex one-
dimensional problem (Eqs. 35 and 42) uses constant velocity
and a sinusoidal power shape,

p(z) =
π

2H
sin

πz
H
. (63)

The analytic solution without precursor drift (Eq. 34) is

λ jc j(z) = U sin
πz
H
, and (64)

U =
β̄ jπ

2ΛH
. (65)

The analytic solution with precursor drift (Eqs. 35 and 42) is

λ jc j,core = VUG
(
V

H
π

sin
π

H
z − cos

π

H
z
)

+ Aλ je−Vz, (66)

λ jc j,loop = Bλ je−Vz, (67)

A =
VUG
λ j

(
eVL + eVH

eVL − 1

)
, (68)

B =
VUG
λ j

(
eVH +

eVL + eVH

eVL − 1

)
, and (69)

G =

π
H

V2 +
(
π
H

)2 . (70)

The correction factors using these solutions are

F j(z) =
VG

sin π
H z

[
V

H
π

sin
π

H
z

− cos
π

H
z + e−Vz

(
eVL + eVH

eVL − 1

)]
, and (71)

F j =
VGπ
2H

2V
(H
π

)2

+

(
eVL + eVH

) (
1 − e−VH

)
V

(
eVL − 1

)  , (72)

where F j is averaged over the core.
Comparing these analytical solutions with numerical so-

lutions from SCALE modules provides confidence in the so-
lutions to more complex power and velocity profiles. The
delayed neutron data (Table I) and flow loop information
(Table II) is held constant for these test problems. Compar-
isons of the analytic zero-dimensional and core-averaged one-
dimensional models highlights trends and deficiencies in some
of the models (Table III). The zero-dimensional simplified
model is more accurate for groups with smaller decay con-
stants and performs poorly for the faster decaying precursor
groups. The zero-dimensional model performs more consis-
tently across the precursor groups, but it is unable to capture
the effect on precursor concentration from axial power profiles.
For the one-dimensional model, the factors are averaged over
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the height of the core; the zero-dimensional models are unable
to generate factors over smaller portions of the core (e.g., the
bottom half of the core). As a result of these shortcomings,
only the one-dimensional model is implemented in SCALE.

The axial distribution of precursors in the core-loop sys-
tem is highly dependent on the decay constant and the power
shape (Fig. 2). As the fuel flows, precursors generated in high
power regions drift toward lower power regions and into the
coolant loop. Precursors in groups with larger decay constants
decay quickly; the axial distribution of these precursors is very
similar to the no-drift solution. Precursors in groups with the
smallest decay constants have relatively constant axial distribu-
tions. The region over the last several centimeters of the core
(310 < z < 340 cm) has relatively low power, but it has a high
precursor concentration as recently born precursors drift into
the region. Conversely, the region over the first several cen-
timeters of the core (0 < z < 30 cm) has a relatively low power

TABLE II. Flow Information for the Test Problems
Parameter Value
H 340.0 cm
L 629.6 cm
v 47.72 cm/s

TABLE III. Analytic Correction Factors (F) Using Different
Models

j
0-D 0-D Core-averaged 1-D
Simp. p(z) = C p(z) ∼ sin(z)

1 0.5404 0.5493 0.5403 0.5403
2 0.5426 0.5635 0.5417 0.5421
3 0.6011 0.6480 0.5788 0.5885
4 0.8170 0.7772 0.7236 0.7660
5 0.9919 0.9059 0.8961 0.9518
6 1.0000 0.9840 0.9838 0.9987
total 0.7597 0.7405 0.6994 0.7287
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Fig. 2. Normalized solutions of the precursor concentration in
the one-dimensional system for the six precursor groups with
a sinusoidal power shape. Decay constants are in units of s−1.

and a low precursor concentration because many precursors
decay within the loop before reentering the core.

With a constant or sinusoidal power profile, the analyti-
cal solutions and those generated by SCALE match for both
axially dependent (Fig. 3) and core-averaged (Table IV) quanti-
ties. A constant power profile produces lower group correction
factors for the first several centimeters, particularly for the fast-
decaying precursor groups because precursors are unable to
return to the core before decaying in the loop. The larger the
decay constant of the precursor group, the lower the correction
factors at the core inlet (z = 0 cm). At core outlet (z = 340 cm),
the precursors in groups with the largest decay constants have
the highest correction factors, as slowly decaying precursors
enter the loop before decaying in the core. With a constant
power profile, the correction factor is never greater than 1.0.
A sinusoidal power profile produces more complex axial de-
pendence in the correction factors. As the power approaches
zero at the edges of the core, the correction factors increase
above 1.0 as more precursors drift into these regions than are
generated by the local fission rate. For the faster decaying pre-
cursor groups, precursors are unable to pass through the loop
before decaying, and the correction factor at the core inlet is
zero. For slower decaying precursor groups, some precursors
make it to core inlet, and the correction factors become very
large. The core outlet experiences a large increase in precursor
concentration.

IV. APPLICATION TO A UNIT CELL PROBLEM

The implementation of the one-dimensional precursor
drift model in TRITON/NEWT is tested for a simple unit cell
problem (Fig. 4) based on the Molten Salt Breeder Reactor
(Table V). Uranium and thorium tetrafluoride are dissolved in
the FLiBe carrier salt, where the uranium is isotopically pure
233U. The fuel salt composition is for a fresh (i.e., unirradiated)
condition. Delayed neutron data is available for two isotopes
in this problem: 233U and 232Th. This problem is solved using
core-averaged correction factors and factors averaged over
the last 15 cm of the core. A sinusoidal power distribution is
assumed.

The calculated core-averaged correction factors are
0.6732 and 0.6322 for 232Th and 233U, respectively. Applica-
tion of these correction factors slightly reduces the delayed
component in the χt spectrum and decreases the ν̄t slightly
(Fig. 5) with respect to the solutions without precursor drift.

TABLE IV. One-Dimensional Core-Averaged Correction Fac-
tors (F) with Different Power Profiles

j
Flat Power Sinusoidal Power

SCALE Analytic(a) SCALE Analytic(a)

1 0.5402 0.5403 (0.01) 0.5398 0.5403 (0.10)
2 0.5416 0.5417 (0.02) 0.5415 0.5421 (0.11)
3 0.5783 0.5788 (0.08) 0.5877 0.5885 (0.14)
4 0.7229 0.7236 (0.10) 0.7650 0.7660 (0.14)
5 0.8955 0.8961 (0.07) 0.9505 0.9518 (0.14)
6 0.9832 0.9838 (0.06) 0.9971 0.9987 (0.16)
tot. 0.6989 0.6994 (0.07) 0.7277 0.7287 (0.14)
(a) Relative difference (%) in parenthesis.
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Fig. 4. TRITON/NEWT unit cell.

These differences are very small and are most noticeable for
the lowest probabilities in the χt spectrum. The ν̄t changes
less than 0.7% for all energy groups.

Averaging the last 15 cm of the core produces much larger
correction factors because of the precursors drifting into the
region before entering the coolant loop: 6.5467 and 6.3874 for
232Th and 233U, respectively. Application of these correction
factors increases the delayed neutron component in the χt
spectrum and ν̄t (Fig. 6) with respect to the solutions without
precursor drift. While the change in the spectrum is more
significant than the change for the core-averaged case, it is
only noticeable for the lowest probabilities of the χt spectrum.
There is an increase of up to 11% in the ν̄t, peaking around
2–4 MeV.

Despite the large difference in the delayed contribution to
χt when accounting for precursor drift, use of the flow-adjusted
spectrum has little impact on criticality calculations (Table VI).
This delayed contribution is too small to have a significant
effect on k. Conversely, the use of the flow-adjusted ν̄t has
a very large effect on criticality calculations and accounts
for most of the change in k when using both flow-adjusted
parameters. The large increase in delayed neutron precursors

TABLE V. Unit Cell Problem Characteristics
Parameters Value
fuel temperature [K] 909
graphite temperature [K] 900
graphite density [g/cc] 1.843
fuel channel radius [cm] 2.59917
fuel channel pitch [cm] 10.16
cross section library 252-group ENDF/B-VII.1 [24]

19F 1.48999

fuel isotopic
233U 0.02397

composition [g/cc]
232Th 1.43197
7Li 0.25870
9Be 0.07416

TABLE VI. TRITON/NEWT-Calculated k Using Different
Flow-Corrected Constants

Condition Core-averaged Last 15 cm
NEWT k ∆k [pcm] NEWT k ∆k [pcm]

no drift 1.06984 — 1.06984 —
with ν̄f

t 1.06867 −117 1.08738 1,754
with χ̄f

t 1.06984 0 1.06997 13
with ν̄f

t , χ̄
f
t 1.06867 −117 1.08749 1,765

est. ∆k(a) — −116 — 1,710
(a) From Eq. 73

in the last 15 cm toward the outlet of the core cause a change
in k of over 1,500 pcm with the flow-adjusted ν̄t. For this
thermal system, fission in 233U dominates, and the effect on
the calculated k using the correction factors is estimated by

∆k = kno drift (FU-233 − 1) βU-233, (73)

where βU-233 is approximately 296 pcm [24]. The
TRITON/NEWT-calculated k eigenvalues agree fairly well
with these estimated values.
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Fig. 5. The flow-adjusted χt (left) and ν̄t (right) using the core-averaged correction factors.
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Fig. 6. The flow-adjusted χt (left) and ν̄t (right) using the correction factors averaged over the last 15 cm of the core.

Despite the large differences in calculated k when using
the drifted parameters, the TRITON/NEWT-calculated multi-
group flux solution is only slightly affected by use of the
flow-adjusted parameters (Fig. 7). The largest differences are
observed in the fast energy ranges. This is reflected in the
two-group collapsed cross sections, where the change in this
spectrum mainly affects the fast group constants in addition to
ν̄Σf (Table VII).

V. CONCLUSIONS AND FUTURE WORK

A one-dimensional delayed neutron precursor drift
method has been implemented in TRITON/NEWT. The im-
plementation has been tested using some comparisons to zero-
dimensional models and analytical solutions with simplified
power and velocity profiles. Applications to a unit cell model
of the Molten Salt Breeder Reactor examine the χ and ν̄ param-
eters, calculated keff, calculated spectrum, and collapsed two-

group constants with and without the precursor drift model.
The TRITON/NEWT-calculated flow-adjusted keff agrees well
with simple theoretical expectations. The effect on the cal-
culated quantities is examined for different elevations in the
MSR loop. The two-group cross sections perform fairly well
for this thermal system (i.e., in comparisons between the keff

and k∞), suggesting that a more complex group structure may
not be needed for nodal diffusion calculations.

Lessons learned from this implementation inform future
work. There is a minimal effect from the use of a flow-adjusted
χ spectrum to account for the augmented number of delayed
neutrons at a given location in the loop. This is because the
delayed neutron contribution to χ is only slightly more thermal
than the prompt neutron contribution and makes up a small
amount of the total contribution. The majority of the effect on
the calculation is captured with a flow-adjusted ν̄; correcting
for the number of delayed neutrons emitted at a given location
in the loop should be the main focus of future efforts.



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8
-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

fl
u
x
 p

er
 u

n
it

 l
eg

th
ar

g
y
 (

× 
1
0

-2
)

re
la

ti
v
e 

d
if

fe
re

n
ce

 (
%

)

energy (eV)

no drift
with drift

difference

Fig. 7. Normalized neutron flux in the two-dimensional unit
cell with and without precursor drift (using flow-adjusted con-
stants from correction factors averaged over the last 15 cm of
the loop).

TABLE VII. TRITON/NEWT-Calculated Two-Group Cross
Sections Using Different Flow-Corrected Constants

Constant No drift Middle 15 cm(a) Last 15 cm(a)

k(b)
eff

1.06984 1.06820 (0.15) 1.08749 (1.62)
k(c)
∞ 1.07034 1.06868 (0.16) 1.08796 (1.62)

Σtr,1 0.32781 0.32776 (0.02) 0.32839 (0.18)
Σtr,2 0.40862 0.40862 (0.00) 0.40862 (0.00)
Σa,1 × 10−3 1.66403 1.66370 (0.02) 1.66771 (0.22)
Σa,2 × 10−3 5.63859 5.63859 (0.00) 5.63859 (0.00)
(ν̄Σf)1 × 10−3 1.24340 1.24108 (0.19) 1.26791 (1.93)
(ν̄Σf)2 × 10−3 7.13632 7.12545 (0.15) 7.25026 (1.57)
Σ1,2 × 10−3 3.73485 3.73403 (0.02) 3.74442 (0.26)
(a) Absolute difference (%) in parenthesis.
(b) From NEWT transport.
(c) Using two-group cross sections.

Ongoing work includes the implementation of continuous
removals in SCALE and building a user interface to interact
with these tools. This also includes the potential implementa-
tion of the drift model into a SCALE Monte Carlo capability.
This may be performed using direct sampling of a delayed fis-
sion and precursor decay event or other approximate methods
to avoid the larger computational burden from the additional
sampling. These capabilities are currently planned for release
in SCALE 6.3.
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