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Abstract - We investigate the spatial fluctuations of a neutron population close to criticality: the interplay
between random births and deaths leads to a spontaneous clustering of the diffusing individuals. By resorting
to a statistical mechanics approach, we determine the behaviour of the average neutron neutron density, the
pair correlation function and other relevant physical observables. When the individuals are left free to evolve,
their ultimate fate is the so-called critical catastrophe, i.e., extinction. When a global constraint is imposed on
the total number of individuals, the impact of clustering on diffusion depends on the competition between the
time required for a neutron to explore the whole reactor, and the time over which the population has undergone
a full generational renewal. In order to illustrate these results, exact formulas and scaling functions are derived
for a simple model of nuclear reactor and are compared to Monte Carlo simulations.

I. INTRODUCTION

Self-sustaining chains of neutrons in multiplying assem-
blies form a prototypical example of a system operating at the
critical point [1, 2]. At criticality, which means when births
by fission are exactly compensated by losses by capture and
leakage, the competition between the fluctuations stemming
from birth-death events and those stemming from random
displacements subtly affects the spatial distribution of the par-
ticles in such systems. This is particularly important during
reactor start-up using weak sources: although the population
may eventually rise to a level where fluctuations are negligi-
ble, yet their effect might persist for long times due to the
impact on the initial conditions [2]. The analysis of this statis-
tical behaviour can be carried out by developing the evolution
equations for the first few moments of the neutron population,
whose foundations were established by Pál and Bell [3, 4],
based on earlier pioneering contributions by Kolmogorov and
co-workers [5]. For a thorough review, see, e.g., [1, 2].

The physical mechanisms underlying the complex nature
of the Pál-Bell equations can be probed by Monte Carlo simu-
lation [6, 7]. In particular, it has been recently shown that at
and close to the critical point a collection of neutrons, although
spatially uniform at the initial time, may eventually display a
highly non-Poisson patchiness, as shown in Fig. 1.

The emergence of such neutron clustering due to the com-
petition between fission, capture and diffusion has been first
investigated in [6], based on a formal analogy with the be-
haviour of ecological communities [8, 9, 10, 11, 12], and later
extended to take into account finite-size effects [13], popu-
lation control [14] and the impact of delayed neutrons [15].
In this work we will revisit the basic findings about neutron
clustering and single out the key ingredients that govern the
spatial fluctuations.

II. A SIMPLE MODEL OF A MULTIPLYING SYSTEM

In order to illustrate the features of neutron clustering,
we will introduce a simplified model of a multiplying system
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Fig. 1. Monte Carlo simulation of neutrons in a two-
dimensional box with reflecting boundaries. At t = 0, the
spatial particle distribution is uniform. In case a), particles
obey regular Brownian motion: the spatial distribution stays
uniform. In case b), particles obey a binary branching Brown-
ian motion with equal birth and death rates: particles sponta-
neously form random clusters. Eventually, the entire popula-
tion goes to extinction.

that yet retains all the key physical ingredients. Neutrons will
be represented as a collection of particles undergoing random
diffusion, reproduction and capture within a homogeneous
d-dimensional box of finite volume V = Ld, L being the
linear size. To simplify the matter, the box will have perfectly
reflecting boundaries. The stochastic paths of neutrons are
known to follow position and velocity dependent exponential
flights [2]. For our model, we approximate these paths by
d-dimensional branching Brownian motions with a constant
diffusion coefficient D [5]. The diffusing walkers undergo
capture at rate γ and reproduction at rate β. In this latter case,
the neutron disappears and is replaced by a random number k
of descendants, distributed according to a law pk with average
ν1 =

∑
k kpk. We are assuming here that all fission neutrons

are prompt, so as to keep notation to a minimum: the effects
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of precursors will be included later.
At the critical point, we must have γ = β(ν1 − 1), i.e.,

losses compensate births. In this regime, the Galton-Watson
theory [5] shows that the ensemble-averaged extinction time
E[tE] of the whole population is infinite 1. However, the vari-
ance of total number N(t) of particles in the system grows
linearly in time, i.e., σ2

t [N] = E[N2(t)] − E2[N(t)] ∝ βN0t,
whereas the average E[N(t)] = N0 stays constant [5]. This
implies that the typical fluctuations of the whole population
size, say σt[N], will become comparable to the average value
N0 over a characteristic time τE ∼ N0/β: then, a single fluc-
tuation is capable of killing the entire population [5]. In the
context of reactor physics, the extinction of the fission chains
at criticality goes under the name of critical catastrophe [2].

In the following, we will show how the interplay between
fluctuations on the particle number and diffusion locally affects
the spatial distribution of neutrons within the box.

III. THE PHYSICAL OBSERVABLES

Let us denote by n(x, t) the instantaneous density of neu-
trons located at x at time t. The evolution equations for the
statistical moments of n(x, t) can be derived by resorting to
the Pál-Bell equations [1], which can be regarded as a par-
ticular case of the more general Feynman-Kac path-integral
approach [13]. Both strategies are based on the the reciprocity
property of random walks [16, 1, 2]: the idea is to write down
the equations governing the probability generating functions
for n(x, t), from which the average particle density and the
correlations can be obtained by simple derivation (some hints
are provided in the Appendix).

Let us denote by Gt(x; x0) the Green’s function satisfying
the backward equation

∂

∂t
Gt(x; x0) = L†x0

Gt(x; x0), (2)

where
L†x0

= D∇2
x0

+ β(ν1 − 1) − γ, (3)

with the boundary conditions of the problem at hand and
the initial condition G0(x; x0) = δ(x − x0). Intuitively, the
Green function physically represents the average number of
particles appearing at x at time t for a single particle started
at x0 at t = 0, or equivalently the average number of particles
originally present at x0 at t = 0 for a single particle detected
at x at time t, by the reciprocity theorem [16]. The average
neutron density ψt(x) at a point x can be expressed as

ψt(x) = E[n(x, t)] = N
∫

dx0q(x0)Gt(x; x0), (4)

where N is the number of individuals composing the initial
neutron population, and q is the spatial probability distribution

1The probability density f (tE) does not depend on the spatial distribution
of the particles, because of mass-preserving boundaries [8]. For the case of
critical binary branching, e.g., it can be computed exactly and reads

f (tE) =
N
βt2E

(βtE)N+1

(1 + βtE)N+1 , (1)

which yields E[tE] =
∫

tE f (tE)dtE → ∞.

function of each neutron at time t = 0 (assuming indepen-
dence) [13]. For a critical reactor, β(ν1 − 1) = γ and we
thus have L†x0

= D∇2
x0

. In order to simplify the forthcoming
discussion, it is convenient to require that the initial spatial
distribution in the box is uniform, namely, q = 1/V . This
corresponds to taking the population at equilibrium compat-
ibly with the assigned mass-preserving boundary conditions
at t = 0. Then, from Eq. (4) we would therefore have a flat
average density ψt(x) = N/V = ψ0 at any time, insensitive to
local fluctuations.

The analysis of the spatial inhomogeneities shown in
Fig. 1 can be carried out by resorting to the two-point correla-
tion function ht(x, y) = E[n(x, t)n(y, t)], which is proportional
to the joint probability density for particle pairs simultane-
ously occupying positions x and y [1, 2]. The correlation
length can be extracted from the shape of the function h: if h
is almost flat in space, then the correlations will have the same
relevance at any spatial site; on the contrary, spatial clustering
will be mirrored in a peak at x ' y, i.e., an increased probabil-
ity of finding particles lying at short distances [13, 14]. The
overall intensity of the correlations is simply provided by the
amplitude of h.

The function ht(x, y) can be generally written as ht = hid
t +

h̃t, where hid
t is the contribution from independent trajectories,

and h̃t is the contribution of the trajectories correlated via a
fission event. For the former, we have

hid
t (x, y) = cNψt(x)ψt(y) + ψt(x)δ(x − y), (5)

including self-correlations, where cN = (N − 1)/N ' 1 for
large N � 1 [13]. For the latter, we have

h̃t(x, y) =
∫ t

0 dt′
∫

dx′P2(x′, t′)Gt−t′ (x; x′)Gt−t′ (y; x′), (6)
where P2(x, t) = βν2ψt(x) is the average rate of appearance
of particle pairs at position x and time t, the coefficient ν2 =∑

k k(k − 1) pk being the mean number of pairs created at each
fission [13]. For an exactly critical system, assuming again
q = 1/V , we have P2(x, t) = βν2ψ0, and the pair correlation
function thus yields

ht(x, y) = hid
t (x, y) + βν2ψ0

∫ t

0
dt′G2t′ (x; y), (7)

where we have used the Markov property of the Green’s func-
tions, namely,∫

dx′Gt(x; x′)Gt(y; x′) = G2t(x; y). (8)

Actually, it is customary to introduce the (dimensionless) nor-
malized and centered pair correlation function g [12], namely,

gt(x, y) =
ht(x, y) − hid

t (x, y)
ψt(x)ψt(y)

. (9)

When particles trajectories are very weakly correlated,
ht(x, y) ∼ hid

t (x, y) and thus gt ∼ 0: we will therefore have
Poisson fluctuations. When gt ∼ 1, the typical local fluctua-
tions will be comparable to the average local density ψt. From
Eqs. (7) and (9), for an exactly critical system we have

gt(x, y) =
βν2

ψ0

∫ t

0
dt′G2t′ (x; y). (10)

The amplitude of gt decreases with increasing particle density
ψ0 and with decreasing fission rate β, as expected on physical
grounds.
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IV. INCLUDING DELAYED NEUTRONS

The coupled stochastic evolution of neutrons and pre-
cursors can be modelled as a multi-type Galton-Watson re-
production process [2, 5]: the parent neutron disappears and
is replaced by a random number kp of prompt neutrons, be-
having as the parent particle, and a random number kd of
precursors, with joint probability pkp,kd [1, 2]. We will de-
note by λ the rate at which a precursor decays to a delayed
neutron. When delayed neutrons are considered, the system
is critical if β(νp + νd − 1) = γ, where νp =

∑
kp,kd

kp pkp,kd is
the average number of prompt neutrons emitted per fission,
and νd =

∑
kp,kd

kd pkp,kd is the average number of precursors
created per fission.

Similarly as done for prompt neutrons alone, we will
assume that the neutron and precursor populations are at equi-
librium within the box at t = 0. The analysis of the statistical
moments of the neutron population in the presence of precur-
sors can be again carried out by resorting to the backward
approach based on probability generating functions. However,
the multi-type branching process will give rise to a system of
two coupled equations to be solved simultaneously (see the
Appendix), and the resulting expressions for the moments are
particularly cumbersome in their general form. Some simplifi-
cations can nonetheless be obtained by observing that the rate
βνd at which precursors are created and the rate λ at which pre-
cursors are converted to delayed neutrons are actually strongly
separated. Setting ϑ = λ/(βνd), for typical nuclear systems we
have ϑ ' 10−3 [1, 2]. This leads to the possibility of introduc-
ing singular perturbation techniques, which are amenable to
easily understandable results [17].

In particular, it is possible to show that for the average
neutron density we have [15]

ψt(x) ' ψp
ϑt(x), (11)

where ψp
ϑt(x) is the average neutron density for a reactor that

were to be run based on prompt neutrons alone (i.e., Eq. (4)).
This means that in the presence of precursors the time evo-
lution of ψ is slowed down by a factor ϑ. This behaviour is
coherent with the classical findings in reactor control theory.

As for the normalized pair correlation function, for a
critical system the precursors induce a stronger effect [15],
namely,

gt(x, y) ' ϑgp
ϑt(x, y) (12)

where gp
t is the correlation function for a reactor that were to

be run based on prompt neutrons alone (i.e., Eq. (10)). Precur-
sors are therefore extremely effective in quenching the spatial
clustering of the neutrons: the spatial correlation function of
the neutron population has a much slower evolution in time
(t → ϑt), and its amplitude is further rescaled by a factor ϑ.
A rigorous derivation can be found in [15]. Equations (11)
and (12) allow transposing the results obtained for ψp and gp

t
to the case of systems run with both neutrons and precursors.

V. THE THERMODYNAMIC LIMIT

The so-called thermodynamic limit is attained by consid-
ering a large number N → ∞ of particles in a large volume

V → ∞ [12, 13]. Suppose that the individuals are uniformly
distributed in V at time t = 0, and impose that the limit average
particle density ψ0 = N/V is finite. At criticality, the Green’s
function for a d-dimensional infinite system without delayed
neutrons is the Gaussian density

Gt(x; x0) =
e−

r2
4Dt

(4πDt)d/2 , (13)

which spatially depends only on the relative particle distance
r = |x − x0|. The average particle density is stationary, namely,
ψt(x) = ψ0 when starting from a flat initial condition q = 1/V .
As for the pair correlation function, from Eq. (10) we get

gt(r) =
βν2

8πd/2Dψ0
r2−dΓd/2−1

(
r2

8Dt

)
, (14)

where Γa(z) =
∫ ∞

z e−uua−1du is the incomplete Gamma func-
tion [12]. The asymptotic time behaviour of Eq. (14) strongly
depends on the dimension d: it is known that gt(r) ∼

√
t for

d = 1, gt(r) ∼ log(t) for d = 2, and gt(r) ∼ gd(r) for d > 2,

gd(r) =
βν2Γ

(
d
2 − 1

)
8πd/2Dψ0

r2−d (15)

being an asymptotic stationary spatial shape [12, 13]. This
means that in low dimension d ≤ 2 a critical multiplying
system will eventually display clustering (gt diverges), irre-
spective of the average particle density ψ0. For d ≥ 3, the am-
plitude of gd(r) can be reduced by acting on ψ0, and clustering
can be thus quenched. The dimension-dependent behaviour
of gt(r) is basically a consequence of Polya’s theorem, which
states that random walks in unconstrained domains with d > 2
are transient, i.e., very effective (conversely, particles come
back to their starting point almost surely for d ≤ 2).

VI. CONFINED GEOMETRIES

We will now focus on particles evolving in a finite-size
d-dimensional box of linear size L. For the sake of simplicity,
we will neglect delayed neutrons. By evoking the separation
of variables, Gt(x; x0) can be expanded in terms of a discrete
sum of eigenfunctions ϕk of the operator L†x0

[13], in the form

Gt(x; x0) =
∑

k

ϕk(x)ϕ†k(x0)eαkt, (16)

where αk are the associated eigenvalues. The functions ϕ†k(x0)
can be explicitly derived from the completeness condition∑

k

ϕk(x)ϕ†k(x0) = δ(x − x0), (17)

and imposing normalization. By applying Neumann boundary
conditions, for the d-dimensional box we have

ϕk(x) =

d∏
i=1

cos
(
πki

xi

L

)
(18)
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Fig. 2. The normalized and centered pair correlation function
gt(x, y) for an initial collection of N = 102 branching Brow-
nian motions with diffusion coefficient D = 10−2 and birth
rate β = 1/2 in a one-dimensional box of size L = 2. We
take y = 0 and plot gt(x, y = 0) at times t = 1 (blue triangles),
t = 10 (magenta squares) and t = 40 (grey circles). Symbols
correspond to Monte Carlo simulations with 105 realizations,
solid lines to exact solutions (Eq. (10)).

and

αk = −D
d∑

i=1

π2k2
i

L2 + β(ν1 − 1) − γ, (19)

so that the fundamental eigenstate is spatially flat, and the
associated fundamental eigenvalue is α0 = β(ν1 − 1) − γ.

For an exactly critical system, α0 = 0. From Eq. 6, by
resorting to the eigenfunction expansion and singling out the
fundamental mode we get

h̃t(x, y) = ψ2
0
βν2

N
t +Ht(x, y), (20)

where

Ht(x, y) = βν2ψ0

∑
k,0

1 − e−2|αk |t

2|αk|
ϕk(x)ϕ†k(y) (21)

is a bounded function for large t [13].
Analysis of Eq. (20) shows that the spatial fluctuations

are ruled by two distinct time scales: a mixing time τD =
1/|α1| ∝ L2/D and an extinction time τE = N/(βν2) [13]. The
quantity τD physically represents the time over which a particle
has explored the finite viable volume V by diffusion. The
emergence of the time scale τD is a distinct feature of confined
geometries (in the thermodynamic limit, τD → ∞). Because
of a finite τD, the shape of the correlation function only weakly
depends on dimension d. The quantity τE represents the time
over which the fluctuations due to births and deaths lead to the
extinction of the whole population. When the concentration
ψ0 = N/V of individuals in the population is large (and the
system is spatially bounded), it is reasonable to assume that
τE > τD.

The shape of the rescaled gt(x, y) depends on the interplay
of τD and τE [13], as illustrated in Fig. 2. Immediately after
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Fig. 3. The normalized and centered pair correlation function
gc

t (x, y) for an initial collection of N = 102 branching Brown-
ian motions with diffusion coefficient D = 10−2 and birth rate
β = 1/2 in a one-dimensional box of size L = 2. We take y = 0
and plot gc

t (x, y = 0) at times t = 1 (blue triangles), t = 10
(magenta squares) and t = 40 (grey circles). Symbols corre-
spond to Monte Carlo simulations with 105 realizations, solid
lines to exact solutions (Eq. (30)). At later times, gc

t (x, y = 0)
converges to an asymptotic shape, displayed as a black dashed
curve (Eq. (31)).

the initial time, gt(x, y) displays a peak at short distances x ' y,
which mirrors the effects of local fluctuations responsible for
spatial clustering. The amplitude of the peak is proportional
to the dimensionless ratio ξ = βν2L2/(ND) ∝ τD/τE , which
precisely reflects the competition between migration and re-
production: the amplitude is smaller for larger D and smaller
β (for fixed L and N), and vice-versa. The width of the peak,
which is related to the correlation length of the system, is
governed by diffusion, and is a growing function of D. For
times shorter than the mixing time τD, the amplitude of the
peak grows due to births and deaths dominating over diffusion,
whereas its width increases due to diffusion. When t � τD,
the particles have explored the entire volume, and Ht(x, y)
freezes into a tent-like shape

H∞(x, y) = lim
t→∞
Ht(x, y) = βν2ψ0

∑
k,0

ϕk(x)ϕ†k(y)
2|αk|

. (22)

The total number of neutrons in the reactor also under-
goes global fluctuations, N being finite. This progressively
lifts upwards the contributionH∞(x, y) by a spatially flat term
(associated to the fundamental mode) that diverges linearly in
time as ∼ t/τE . Finally, for times larger than the extinction
time τE , gt(x, y) > 1 everywhere. This physically means that,
no matter how dense is the population is at t = 0, neutrons
are eventually doomed to extinction within t ' τE: in this
respect, statistical equilibrium at the critical point is "a math-
ematical fiction", as argued in [18]. Including delayed neu-
trons would not qualitatively change these findings. However,
the extinction time τE ' τ

p
E/ϑ

2 would be much longer than
τ

p
E = N/(βν2) corresponding to prompt neutrons alone [15].
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VII. FLUCTUATIONS CLOSE TO CRITICALITY

Let us assume that the system is initially at equilibrium
with respect to the spatial distribution, with q = 1/V , but
criticality is not ensured, i.e., γ , β(ν1 − 1). From Eq. (4) we
have thus

ψt(x) = ψ0eα0t. (23)

The sign of the fundamental eigenvalue α0 = β(ν1 − 1) − γ
determines the asymptotic behaviour of the average particle
density: when α0 > 0 the system is super-critical and the
population diverges in time; when α0 < 0 the system is sub-
critical and the population shrinks to zero. As for the pair
correlation function, from Eq. (9) assuming again q = 1/V we
obtain

gt(x, y) =
βν2

ψ0
e−α0t

∫ t

0
dt′e−α0t′G2t′ (x; y), (24)

The ultimate fate of the pair correlation function at long times
depends on the rate α0 at which the average population is
increasing or decreasing. When α0 > 0, the pair correlation
function for long times asymptotically converges to the con-
stant

gt(x, y)→
βν2

Nα0
, (25)

which means that fluctuations will be equally distributed at
any spatial scale. The average population is exponentially
increasing at a rate α0, thus contributing to the mixing of
the individuals: for sufficiently large N one would expect
the amplitude of the pair correlation function to be g � 1,
and fluctuations to be safely neglected. However, it may still
happen that g � 1, when the number of initial particles is
N � βν2/α0, i.e., basically for small perturbations around crit-
icality, with α0 ' 0. This can be understood as a competition
between the growth time constant 1/α0 of the average popu-
lation and the extinction time τE = N/(βν2): if α0 is rather
small, strong correlations may have enough time to develop,
despite the smoothing effect induced by the appearance of an
increasing number of new particles. When α0 < 0, the pair
correlation function at long times grows unbounded exponen-
tially fast, as gt(x, y) ∼ exp(−α0t): the average population is
rapidly decreasing, which enhances the relative importance of
fluctuations due to correlations.

VIII. THE EFFECTS OF POPULATION CONTROL

Multiplying assemblies are typically subject to physical
counter-reactions, such as the Doppler effect, which enforce
control mechanisms on the neutron population [2]. The sim-
plest way to model such requirement for an exactly critical
system is to impose that the total number N of neutrons is
preserved, by correlating birth and death events [8]: at each
fission, a neutron disappears and is replaced by a random num-
ber k ≥ 1 of descendants, and k − 1 other neutrons are simul-
taneously removed from the collection in order to ensure the
conservation of total population. The quantity τR = N/(ν2β)
for a constrained system represents the time over which the
system has undergone a full population renewal, and all the
individuals descend from a single common ancestor [8].
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Fig. 4. Monte Carlo simulation of the evolution of branching
Brownian motions in a two-dimensional box with reflecting
boundaries, subject to population control. At t = 0, particles
obey a uniform spatial distribution. In case a), the ratio ξ is
close to unit and clustering phenomena dominate over diffu-
sion (however, since the total particle number is preserved, the
population can not go to extinction). In case b), the ratio ξ is
ten times smaller and spatial fluctuations are much milder.

The pair correlation function hc
t (x, y) in the presence of

population control can be explicitly computed [14]. The prob-
ability for a chosen pair of particles at time t not to have had a
common ancestor is U(t) = e−

βν2
N−1 t. The correlated contribution

h̃c
t reads then

h̃c
t (x, y) =

∫ t
0dt′

∫
dx′Pc

2(x′, t′, t)Gt−t′ (x; x′)Gt−t′ (y; x′) (26)

where
Pc

2(x, t′, t) = βν2ψt′ (x)U(t − t′) (27)

is the average rate of appearance of particle pairs at position
x and time t′ when the system is observed at time t, under
the aforementioned constraint on the total population [14].
Imposing a uniform source q = 1/V therefore yields

h̃c
t (x, y) = βν2ψ0

∫ t

0
dt′U(t′)G2t′ (x; y). (28)

The correlation function can thus be written as

hc
t = cNψt(x)ψt(y)U(t) + ψt(x)δ(x − y) + h̃c

t , (29)

and we finally get hc
t = hid

t +Hc
t (x, y), where

Hc
t (x, y) = βν2ψ0

∑
k,0

1 − e−
(
2|αk |+

βν2
N

)
t

βν2
N + 2|αk|

ϕk(x)ϕ†k(y) (30)

is a bounded function for large t [14]. The diverging term in
ht has been thus suppressed by population control, which is
coherent with the findings in [2] concerning the stabilizing
effect induced by counter-reactions on neutron fluctuations.

The rescaled pair correlation function gc
t (x, y) has two

distinct regimes when population control is enforced, as il-
lustrated in Fig. 3. Immediately after the initial time, gc

t (x, y)
displays a peak at short distances x ' y, which is the signature
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of spatial clustering. The amplitude and the width of the peak
have the same behaviour as for the function gt(x, y) detailed
above. Nonetheless, since the number of particles is preserved,
the positive correlations at the center of the box imply nega-
tive correlations close to the boundaries. The amplitude of the
peak grows and its width increases for times shorter than the
mixing time τD, analogously as in the previous case. However,
global spatial fluctuations are intrinsically suppressed by N
being fixed due to population control. For times larger than
τD,Hc

t (x, y) converges to an asymptotic tent-like shape

Hc
∞(x, y) = lim

t→∞
Hc

t (x, y) = βν2ψ0

∑
k,0

ϕk(x)ϕ†k(y)
βν2
N + 2|αk|

. (31)

In this regime, the spatial fluctuations are bounded by

|hc(x, y)| ≤ hid
t

[
1 +

d
3
ξ

]
. (32)

In order for the fluctuations to be small and prevent the emer-
gence of spatial clustering, we must therefore have τD � τR,
which occurs when the typical spatial separation between par-
ticles is thoroughly explored within a single generation (see
Fig. 4). In a critical system with population control, spatial
clustering can be quenched by simply imposing that N is
sufficiently large, for arbitrary values of the other physical
parameters.

IX. SPATIAL CLUSTER DISTRIBUTIONS

The spatial shape of the particle clusters can be character-
ized in terms of several moments, namely, the square center
of mass

〈r2
com〉(t) ≡

〈∣∣∣∣∣∣∣ 1
N

∑
i

ri(t)

∣∣∣∣∣∣∣
2〉
, (33)

the mean square displacement

〈r2〉(t) ≡
1
N

∑
i

〈|ri(t)|2〉, (34)

and the mean square distance between pairs of particles

〈r2
p〉(t) ≡

1
N(N − 1)

∑
i, j

〈
|ri(t) − r j(t)|2

〉
, (35)

where ri(t) denotes the position of the i-th particle in the pop-
ulation. By construction, these three quantities are related to
each other by an elegant formula [9]:

〈r2
com〉(t) +

1
2

N − 1
N
〈r2

p〉(t) = 〈r2〉(t). (36)

The spatial moments can be formally expressed in terms of the
average particle density ψt(x) and of the correlation function
ht(x, y). In particular, for the mean square displacement we
have

〈r2〉(t) =
1
N

∫
|x|2ψt(x)dx. (37)
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Fig. 5. The average square distance between particles 〈r2
p〉(t)

for a one-dimensional model with N = 102 initial neutrons,
β = 1/2, D = 10−2, ν2 = 1 and L = 2. Blue solid curve: no
population control. At long times, 〈r2

p〉(t) asymptotically con-
verges to 〈r2

p〉id = (1/6)L2 for a spatially uniform population,
displayed as a blue dashed line. Magenta solid line: popula-
tion control. At long times, 〈r2

p〉c(t) asymptotically converges
to 〈r2

p〉
∞
c given in Eq. (41), displayed as a magenta dashed line.

For a critical system with q = 1/V , 〈r2〉(t) yields

〈r2〉(t) =
1
Ld

∫
|x|2dx =

d
12

L2. (38)

As for the mean square distance between pairs of particles,
we have

〈r2
p〉(t) =

∫
dx

∫
dy|x − y|2ht(x, y)∫

dx
∫

dyht(x, y)
. (39)

An uncorrelated population uniformly distributed in the box
would give

〈r2
p〉id =

1
L2d

∫
dx

∫
dy|x − y|2 =

d
6

L2. (40)

Deviations of 〈r2
p〉(t) from the ideal behaviour 〈r2

p〉id allow
quantifying the impact of spatial clustering [9, 14, 7]. The
behaviour of the average square distance between particles for
a critical reactor is illustrated in Fig. 5. At time t = 0, the
population is uniformly distributed and 〈r2

p〉(0) = 〈r2〉id. For
a system without population control, 〈r2

p〉(t) at first decreases
due to spatial clustering; then, for times longer than τD, global
correlations dominate: 〈r2

p〉(t) increases and asymptotically
saturates again to the ideal average square distance. This can
be understood by observing that ht becomes spatially flat for
t � τE (see Eq. (20)). When on the contrary population
control is enforced, 〈r2

p〉c(t) at first decreases due to the com-
petition between diffusion and birth-death; for times t � τD,
〈r2

p〉(t) eventually converges to an asymptotic value that can
be computed exactly based on Eqs. (30) and (39):

〈r2
p〉
∞
c = 4d

L2

ξ

1 −
√

8
ξ

tanh

√ ξ

8


 . (41)
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Fig. 6. The effects of perturbing the initial configuration q for a
one-dimensional system with N = 102 neutrons, β = 1/2, D =

10−2, and L = 2 (τD ' 40). Population control is enforced.
At t = 0, the neutrons are uniformly distributed in the left
half-domain [−1, 0]. We display the time evolution of the pair
correlation function gc

t (x, y = 0). Monte Carlo simulations
with 105 realizations corresponding to the perturbed source
are displayed as symbols: blue squares, t = 10; red circles,
t = 40; green triangles, t = 70. Solid lines correspond to the
analytical solutions of gc

t starting from q = 1/V , taken at the
same times. For t � τD the perturbation will be reabsorbed.

When spatial correlations are weak (ξ → 0, which is obtained
for a very large number of particles N → ∞ or a vanishing
fission rate β→ 0), from Eq. (41) we have

〈r2
p〉
∞
c →

d
6

L2 = 〈r2
p〉id (42)

and we recover the ideal case corresponding to uncorrelated
trajectories. In this case, the center of mass of the population
obeys

〈r2
com〉id = 〈r2〉 −

1
2

N − 1
N
〈r2

p〉id =
1
N
〈r2〉id, (43)

which basically means that for a collection of independent
particles the mean square displacement of the center of mass
is equal to the mean square displacement of a single particle
of the collection, divided by the number of particles.

When the fission rate β > 0, we can expand Eq. (41) for a
large but finite number of particles N � 1, which yields

〈r2
p〉
∞
c ' 〈r

2
p〉id

[
1 −

ξ

20
+ · · ·

]
. (44)

This result implies in particular that 〈r2
p〉∞ will be smaller

than in the uncorrelated case because of the effects of spatial
clustering. As for the center of mass, we finally get

〈r2
com〉

∞
c = 〈r2

com〉id

[
1 +

ξ

20
+ · · ·

]
. (45)

Then, 〈r2
com〉

∞
c will be larger than that of an uncorrelated sys-

tem.

X. PERTURBING THE INITIAL CONFIGURATION

So far, we have always assumed that the reactor was ini-
tially prepared on a spatial distribution proportional to the
fundamental eigen-mode, i.e., q = 1/V , which was a conve-
nient choice in view of more easily grasping the underlying
physical mechanisms. Actually, Eq. (4) for the particle density
and Eqs. (7) and (26) for the pair correlation function will
hold true for arbitrary initial distributions q(x0). Instead of
considering the full evolution of ψt and ht starting from a given
source q(x0), it is more instructive to address the relaxation to
equilibrium starting from a perturbed configuration, for an ex-
actly critical system. Intuitively, the longest-lived perturbation
will be obtained when the spatial distribution is proportional
to the first excited eigen-mode ϕ1. Let us then assume that the
perturbed source is written as

q∗(x0) =
1
V

[
1 + εϕ1(x0)

]
, (46)

where ε is the amplitude of the perturbation, taken so that
q∗ ≥ 0. Normalization is trivially satisfied.

Let us now denote the perturbation of the average particle
density by δψt(x) = ψ∗t (x) − ψeq

t (x), where ψ∗t corresponds to
the perturbed source q∗, and ψeq

t corresponds to the equilibrium
source q = 1/V . From Eq. (4), by resorting to the eigen-mode
expansion in Eq. (16) and using orthogonality∫

dxϕk(x)ϕ†k′ (x) = δk,k′ , (47)

we get
δψt(x) = εψ0ϕ1(x)eα1t (48)

where for a critical reactor −α1 = 1/τD. This means that
the perturbation δψt is reabsorbed exponentially fast, with a
characteristic time scale equal to the mixing time τD: for times
t � τD, the average density asymptotically attains ψ∗t → ψ

eq
t .

As for the pair correlation function, let us similarly denote
δht = h∗t −heq

t . For a critical system without population control,
from Eq. (4), by resorting to the eigen-mode expansion in
Eq. (16) and using the orthogonality we get

δht(x, y) ' ψ0
[
δψt(x) + δψt(y)

] (
1 +

t
τE

)
(49)

by neglecting terms converging faster. The perturbation δht is
thus also reabsorbed exponentially fast, with a characteristic
time scale τD. The linear correction is the signature of the
diverging term induced by the critical catastrophe. For times
t � τD, the correlation function asymptotically attains h∗t →
heq

t . When population control in enforced, from Eq. (26) we
would get

δhc
t (x, y) ' ψ0

[
δψt(x) + δψt(y)

]
, (50)

up to terms converging faster. The rate of convergence is the
same as for the previous case, but the linear correction has
disappeared. This behaviour is illustrated in Fig. 6 for a critical
one-dimensional reactor.
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XI. COARSE-GRAINING AND ENTROPY

So far, we have assessed the behaviour of the average par-
ticle density and of the pair correlation function by assuming
that these quantities can be measured at any point x within the
box. However, some coarse-graining procedure is introduced
by the measurement techniques, which are typically performed
over a finite-size detector volume [11, 12]. Suppose then that
the d-dimensional box is partitioned into a regular Cartesian
grid having M meshes, and denote by ki the number of individ-
uals found within a given mesh of index i = 1, · · · ,M. In the
absence of branching (β = 0), the particle trajectories are inde-
pendent: starting from a source q = 1/V with N individuals,
we would have

〈ki〉 =

∫
Vi

dxψt(x) =
N
M

(51)

and

σ2[ki] =

∫
Vi

dx
∫

Vi

dyhid
t (x, y) − 〈ki〉

2 =
N(M − 1)

M2 , (52)

for any index i, where we have used V/Vi = M. When M � 1,
σ2[ki] ' N/M: independently diffusing particles lead to Pois-
son fluctuations, as expected. The variance-to-mean ratio
Yi = σ2[ki]/〈ki〉 = 1 would not depend on the number of
meshes used for coarse-graining [1, 2]. These results could
have been equivalently obtained by remarking that at equilib-
rium the probability of finding k independently diffusing parti-
cles within any given mesh would be given by the Maxwell-
Boltzmann distribution 2, namely,

PMB(k|N,M) =

(
N
k

)
(M − 1)N−k

MN , (53)

whence the average number of particles per cell

〈k〉 =
∑

k

kPMB(k|N,M) =
N
M
, (54)

and the variance

σ2[k] =
∑

k

k2PMB(k|N,M) − 〈k〉2 =
N(M − 1)

M2 . (55)

In the presence of clustering (β > 0), the result for the
average number of particles would be left unchanged, whereas
for the variance there would be position-dependent corrections
due to spatial correlations [1, 2]. For the case of an exactly
critical reactor without population control, we have

σ2[ki] =
M − 1

M
〈ki〉 + 〈ki〉

2 βν2

N
t +

∫
Vi

dx
∫

Vi

dyHt(x, y),

whence an asymptotic variance-to-mean ratio

Yi =
M − 1

M
+ 〈ki〉

βν2

N
t +

∫
Vi

dx
∫

Vi
dyH∞(x, y)

〈ki〉
(56)

2In the limit of large N and M, with finite µ = N/M, PMB can be approxi-
mated by a Poisson distribution with parameter µ.
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Fig. 7. The variance-to-mean ratio Yc
i when population control

is enforced: N = 102 particles evolve in a one-dimensional
domain with size L = 2 and are observed at time t = 70,
starting from q = 1/V . The physical parameters are β = 1/2
and D = 0.01, and τD ' 40. Symbols represent Monte Carlo
simulations with 105 realizations: blue squares for M = 20
meshes, red circles for M = 40 meshes, and green triangles
for M = 100 meshes. Solid lines: exact formula (58). Dashed
line: the limit case of pure diffusion, Yi = 1.

for long times t � τD. Since H∞(x, y) is bounded, the
variance-to-mean ratio will eventually diverge linearly in time
and will be rather insensitive to the index i. When population
control is enforced, we obtain

σ2
c[ki] =

M − 1
M
〈ki〉 +

∫
Vi

dx
∫

Vi

dyHc
t (x, y), (57)

whence a bounded asymptotic variance-to-mean ratio

Yc
i =

M − 1
M

+

∫
Vi

dx
∫

Vi
dyHc

∞(x, y)

〈ki〉
(58)

with a non-trivial spatial structure, depending on the position
of the mesh Vi within the box [11, 12]. Because of reflec-
tive boundary conditions, Yi will be higher for meshes close
to the boundaries, and lower for meshes close to the cen-
ter of the box [13]. These findings are in agreement with
the results discussed in [19] concerning the impact of reflec-
tive boundaries on correlations. Simple arguments show that∫

Vi
dx

∫
Vi

dyHc
∞(x, y) ∼ 1/M2, which implies that the correc-

tions to Yc
i due to correlations scale as∫

Vi
dx

∫
Vi

dyHc
∞(x, y)

〈ki〉
∼

1
M

(59)

with respect to the number of meshes. A numerical example
for a one-dimensional critical system is illustrated in Fig. 7.

In this context, a relevant question concerns the number of
empty cells in the mesh. For a box with reflective boundaries
partitioned into M meshes, in the absence of clustering it can
be shown that the probability R(s|N,M) of having exactly s
empty cells for N diffusing particles asymptotically yields

Rid(s|N,M) =

(
M
s

)
S2(N,M − s)

(M − s)!
MN , (60)
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Fig. 8. The probability R(s|N,M) of having s empty cells in the
mesh, when population control is enforced: N = 102 particles
evolve in a one-dimensional domain with size L = 2 and are
observed at time t = 70, starting from q = 1/V . The physical
parameters D = 0.01 and τD ' 40. The number of meshes
is M = 50. Symbols represent Monte Carlo simulations with
104 realizations: blue squares for β = 5 × 10−3 and red circles
for β = 1/2. The dashed line is the distribution Rid(s|N,M)
corresponding to pure diffusion, as given by Eq. (60).

where S2(n, i) = 1
i!
∑i

j=0(−1) j
(

i
j

)
(i − j)n are the Stirling num-

bers of the second kind. This result stems from the particles
obeying a Maxwell-Boltzmann distribution for times t � τD
when β = 0. In the limit of large N and M, with finite
ζ = Me−N/M (which basically means that the number of parti-
cles must be larger than the number of meshes, i.e., N � M),
the exact distribution in Eq. (60) can be approximated by a
Poisson distribution of parameter ζ. In the presence of fission-
induced spatial correlations in a critical reactor, we expect s to
increase with respect to the case of pure diffusion, because of
clustering. Without population control, the number of empty
cells will eventually saturate to s → M for times t � τE ,
so that the asymptotic distribution will be trivial. When pop-
ulation control is enforced, the distribution R(s|N,M) will
convergence to some asymptotic shape at times t � τD, with
〈s〉 larger than 〈s〉id ' ζ obtained for diffusion. Monte Carlo
simulations are displayed in Fig. 8 for a one-dimensional criti-
cal multiplying system.

A closely related physical observable is the ensemble-
averaged Shannon entropy

〈S 〉 = −E

 M∑
i=1

ki

N
log2

(
ki

N

) , (61)

where we have assumed that the probability of occupation
of a cell of index i is estimated by ki/N, since all the cells
are equally accessible by diffusion. The entropy function 〈S 〉
is supposed to provide a measure of the phase space explo-
ration [7]. By construction, 0 ≤ 〈S 〉 ≤ log2(M), where the
upper limit would correspond to an ideal repartition of parti-
cles uniformly within the box, in the limit of large N. For a
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Fig. 9. The entropy 〈S 〉(t) as a function of time t, for M =

100 meshes: N = 102 particles evolve in a one-dimensional
domain with size L = 2, starting from q = 1/V . The physical
parameters D = 0.01 and τD ' 40. Symbols represent Monte
Carlo simulations with 104 realizations: blue squares with
population control; red circles without population control.
Black dashed line: the ideal case of pure diffusion, Eq. (62).

purely diffusive system, from Eq. (53) we would obtain

〈S 〉id = log2(N) −
M
N

N∑
k=0

PMB(k|N,M)k log2(k). (62)

When N is large, PMB(k|N,M) will be peaked around 〈k〉 =
N/M, and 〈S 〉id → log2(M). In the presence of spatial corre-
lations, the entropy function will be lower than 〈S 〉id because
of clustering, as illustrated in Fig. 9. Monte Carlo simulations
show that the behaviour of 〈S 〉c when population control is
enforced closely follows that of 〈r2

p〉c: for t � τD, 〈S 〉c will
saturate to some asymptotic value 〈S 〉∞c < 〈S 〉id. Furthermore,
we have a scaling (〈S 〉id − 〈S 〉c)/〈S 〉id ∼ M1/d [7].

XII. CONCLUSIONS

We have illustrated the physical mechanisms that are re-
sponsible for neutron clustering in multiplying systems oper-
ated at and close to the critical point. The evolution of the
spatial correlations depends crucially on whether population
control is enforced. To illustrate this point, exact formulas
have been derived for a simple model of nuclear reactor and
have been compared to Monte Carlo simulations.
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APPENDIX: THE BACKWARD EQUATIONS

Consider a single walker starting from x0 at t0 = 0. Let
n(x, t|x0) be the number of particles found in dx close to x
when the process is observed at t > t0. It is convenient to
introduce the associated two-volume probability generating



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

function
Wt(u, v|x0) = E[un(x,t|x0)vn(y,t|x0)]. (A.1)

It can be shown that Wt(u, v|x0) satisfies the backward equation
∂

∂t
Wt = D∇2

x0
Wt − (γ + β)Wt + γ + βG[Wt], (A.2)

where G[z] =
∑

k pkzk is the probability generating function
associated to pk [13], in the absence of delayed neutrons.

Delayed neutron emission can be included by resorting
to multi-type branching processes [1, 2]. The probability
generating functions Wn

t (u, v|x0) for a single neutron starting
from x0 at t0 = 0 and Wc

t (u, v|x0) for a single precursor starting
from x0 at t0 = 0 satisfy the coupled system

∂

∂t
Wn

t = D∇2
x0

Wn
t − (γ + β)Wn

t + γ + βGn[Wn
t ]Gc[Wc

t ]

∂

∂t
Wc

t = λWn
t − λWc

t , (A.3)

where Gn[z] and Gc[z] are the probability generating functions
for the number of (prompt) neutrons and precursors at fission
events, respectively.

Let us now consider a collection of N individuals initially
located at x1

0, x2
0, x3

0, · · · , xN
0 with density Q(x1

0, x
2
0, · · · , x

N
0 ) at

time t0 = 0. Assuming that particles evolve independently of
each other, the probability generating function satisfies

Wt(u, v|x1
0, x

2
0, · · · , x

N
0 ) =

N∏
k=1

Wt(u, v|xk
0). (A.4)

Suppose that the initial positions are independently and
identically distributed and obey the factorized density
Q(x1

0, x
2
0, · · · , x

N
0 ) =

∏N
k=1 q(xk

0). The corresponding proba-
bility generating function Wt(u, v|Q) satisfies then [13]

Wt(u, v|Q) =

[∫
V

dx0q(x0)Wt(u, v|x0)
]N

. (A.5)

The m-th (factorial) moments of n(x) and n(y) can be obtained
by derivation of Wt(u, v|Q) with respect to u and v, respectively.
In particular, the average particle number reads

E[n(x, t)] =
∂

∂u
Wt(u, v|Q)|u=1,v=1. (A.6)

For the two-volume correlations we take the mixed derivative,
namely,

E[n(x, t)n(y, t)] =
∂2

∂u∂v
Wt(u, v|Q)|u=1,v=1. (A.7)

In many practical applications, the initial number of particles is
itself a random quantity K, with distributionZ(K). Assuming
again independent and identically distributed coordinates xk

0,
k = 1, 2, · · · ,K, Eq. (A.5) can be then generalized as

Wt(u, v|Z) =
∑

K

Z(K)
K∏

k=1

∫
V

dxk
0q(xk

0)Wt(u, v|xk
0). (A.8)

Often, the initial configuration is a Poisson point process [1].
In this case, the Campbell’s theorem yields [1]

Wt(u, v|Z) = exp
(
N

∫
dx0 [Wt(u, v|x0) − 1] q(x0)

)
, (A.9)

where we have set N = E[K] for the average number of source
particles.
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