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Abstract A Monte Carlo code called Marduk has been developed for the purpose of analyzing the 

stochastic behavior of neutron and precursor populations in nuclear systems having a weak or no external 

source during the initial phase of a transient due to a positive reactivity insertion. Its primary purpose is to 

determine the size-distribution of the neutron population, but it may also be used to determine quantities 

such as the probabilities of initiation and extinction. The code employs a lumped-parameter (point kinetics) 

model, and allows for a piece-wise linear, discontinuous variation in reactivity. It has the option of 

switching from a stochastic to a deterministic solution method once the population has become sufficiently 

large that its evolution has become essentially deterministic. The code uses a parallel algorithm with over 

90% parallel efficiency when using several thousand processors. 

 

I. INTRODUCTION 
 

The dynamic behavior of neutron populations in 

nuclear systems having a weak or no external source and 

producing negligible power is dominated by stochastic 

effects [1]. Solution of the usual reactor kinetics equations 

only provides the mean behavior of the populations, and 

does not address the distribution of possible behaviors. 

Marduk is a Monte Carlo code for analyzing the stochastic 

behavior of neutron and precursor populations in such 

nuclear systems. Its primary purpose is to determine the 

size-distribution of the population during the initial phase of 

a positive reactivity insertion transient, but it may also be 

used to determine quantities such as the probabilities of 

initiation (POI) and extinction (POE) [2]. The code employs 

a lumped-parameter (point kinetics) model, and allows for a 

piece-wise linear, discontinuous variation in reactivity. It 

optionally treats prompt and delayed neutrons as distinct 

populations, and it allows for an arbitrary number of 

delayed neutron precursor families. Since it is meant to be 

used for systems producing negligible power, there is no 

treatment of thermal feedback. 

The study of the probability distribution of neutrons and 

precursors for subcritical and supercritical multiplying 

systems began in the earliest days of the nuclear era [3]. 

Early analytical methods were later superseded by 

deterministic codes for obtaining approximate numerical 

results [4]. Recently, Monte Carlo codes have been 

described that simulate prompt neutron and gamma ray 

production from fission chains for the purpose of producing 

counting distributions [5] and for modeling fast pulses in 

nuclear systems [6]. While a Monte Carlo algorithm for 

simulating stochastic neutron populations including space, 

energy, and direction dependence has been successfully 

implemented [7], such a method is far too computationally 

expensive for performing the large number of realizations 

required to get accurate neutron and precursor distributions. 

The next section discusses the underlying theory that 

gives rise to the algorithm used by Marduk. The details of 

the algorithm are presented in Sec. III. Section IV illustrates 

some of Marduk’s capabilities by providing examples of is 

solutions for various types of problems. Parallel efficiency 

is discussed in Sec. V. Section VI contains some concluding 

remarks. An Appendix shows how the stochastic method 

including distinct prompt and delayed neutron populations 

is consistent with the usual point kinetics formulation. 

 

II. THEORETICAL DEVELOPMENT 
 

To generate a distribution of neutron populations, 

Marduk runs multiple realizations of a transient—each 

using a different pseudorandom number sequence. The 

theoretical basis for the algorithm used to simulate a single 

realization is the forward master equation [8,9,10]: 
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where ( ),P tX is the probability that at time t a system is in 

a state specified by the vector X, ( ),W t′ →X X  is the 

transition probability per unit time at time t that a system in 

state ′X  transitions to state X, ( ) ( ), ,W t W t
′

′= →∑
X

X X X  

is the probability per unit time at time t that a system in state 

X transitions to any other state. At 0t =  the state is 
0

X . 

Defining ( ) ( ) ( ), , ,t W t P tΨ ≡X X X  as the probability per 

unit time at time t that the system will be undergoing a 

transition from state X to some other state, Eq. (1) may be 

used to obtain the integral equation 
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is the conditional probability that a system in state X at time 

t′  will transition out of that state per unit time at time t, and 
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is the probability that a system transitioning out of state ′X  

at time t will transition into state X. Using a Neumann 

expansion, i.e. 
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where the index j denotes the number of transitions 

occurring prior to time t, we have 
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Equation (6) suggests the following Monte Carlo algorithm: 

 

1. Sample the time 
1t  to the first transition (event) 

from ( )00T t→ X . 

2. Sample the next state, 
1X , from ( )0 1

,C t→X X . 

3. Sample the time 
2t  of the second event from 

( )1 1T t t→ X . 

4. Continue alternating between sampling the 

outcomes of events from C and times of the events 

from T until some specified stopping criterion is 

met. 

 

III. ALGORITHM 

 

At the highest level, the Marduk algorithm consists of 

an outer loop over a user-specified number of realizations. 

Each realization uses the same lumped-parameters and the 

same initial condition, but a different initial seed for the 

pseudorandom number generator. After all realizations have 

been performed, the results of all the realizations are 

analyzed to determine the distribution of the population size 

or other quantities of interest. In the next subsection, the 

details of the algorithm used to perform each realization are 

discussed. 

 

 

 

1. Algorithm for Each Realization 

 

For the lumped-parameter model, the state is given by 

the column vector ( )2 1
col , , , ,

I
n n m m≡X … , where 

1n  is 

the number of prompt neutrons, 
2n  is the number of delayed 

neutrons, and 
i

m  is the number of delayed neutron 

precursors in family i. Prompt and delayed neutrons may be 

treated separately so that any difference in the likelihood 

that each type will cause a fission may be accounted for. 

Table I gives the parameters for the lumped-parameter 

model. These are supplied as input and are assumed to be 

time-independent. 

 

Table I. Input for Lumped-Parameter Model  

quantity symbol 

neutron generation time Λ 

mean rate of source events S 

probability of producing 
max0, ,ν ν= …  prompt 

neutrons in a fission event 
pν  

delayed neutron fraction β  

effective delayed neutron fraction effβ  

delayed neutron precursor abundance for family 

1, ,i I= …   i
a  

delayed neutron precursor decay constant for 

family 1, ,i I= …  D,iλ  

 

The average number of prompt neutrons per fission and the 

average number of all neutrons (prompt and effective 

delayed) per fission are, respectively, 
max

p

0v

p
ν

νν ν
=

=∑  and 

( )p eff1ν ν β= − , where maxν  is the maximum fission 

multiplicity. The delayed neutron fraction for family i is 

i i
aβ β= . Finally, the ratio of the importance of delayed 

neutrons to that of prompt neutrons is 
effγ β β= . 

Table II lists the types of events, their probabilities per 

unit time, and how each changes the state. In that table, the 

per-neutron rate of prompt-neutron-induced fission is 

F 1λ ν= Λ , and the per-neutron rates of removal by means 

other than fission for prompt and delayed neutrons are, 

respectively, ( )C,1 1 1kλ ν= − Λ  and ( )C,2 1 kλ γ ν= − Λ . 

Note that the effective multiplication factor, k, may be time-

dependent. 

 

 

 

 

 

 

 

 

 



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, 

Jeju, Korea, April 16-20, 2017, on USB (2017) 

Table II. Types of Events 

event 
probability per 

unit time 

effect on state 

1n  2n

 
i

m  

source emission S +1   

removal of a 

prompt neutron 

(non-fission) 
C,1 1nλ  −1   

removal of a 

delayed neutron 

(non-fission) 
C,2 2nλ   −1  

fission by 

prompt neutron 

producing 0 

precursors 

( )F 1
1 p nνλ βν−  +ν − 1   

fission by 

prompt neutron 

producing a 

precursor 

F 1i
p nνλ β ν  +ν − 1  +1 

fission by 

delayed neutron 

producing 0 

precursors 

( )F 2
1 p nνγλ βν−

 
+ν −1  

fission by 

prompt neutron 

producing a 

precursor 

F 2i
p nνγλ β ν  +ν −1 +1 

precursor decay  
D, i i

mλ   +1 −1 

 

For both operations, we need the total transition 

probability per unit time as a function of time. 

Mathematically, this is given by the summation of the 

quantities in the second column of Table II (including 

summations over ν and i, where appropriate). For 

computational efficiency, Marduk takes advantage of 

significant simplification that arises in the summation over 

the terms in the second through seventh rows of the table, 

computing the transition probability per unit time using 

 

            ( ) ( )( )1 2

D,, 1 i i

i

n n
W t t m Sρ λ

+
= − + +

Λ
∑X .          (7) 

 

Note that in the above expression we have eliminated k in 

favor of reactivity using ( )1k kρ = − . The time-

dependence of this quantity is treated by defining reactivity 

intervals. Within an interval reactivity is either constant or 

linearly-varying. To sample the time to the next event, τ, we 

need the cumulative distribution function (CDF) 

corresponding to the probability distribution function given 

by Eq. (3). Denoting the current value of the total transition 

probability per unit time by 
0W  and its derivative by W ′ , 

we have ( ) 0
,W t t W W t′+ ∆ = + ∆X . Using this functional 

dependence in Eq. (3) yields the required CDF. Letting ξ 

denote a pseudorandom number distributed uniformly 

between 0 and 1, the following sampling scheme is 

obtained: 

 

0
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; 0

1 2 ln 1 ; 0.

W
W

W W
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W W

ξ
τ
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′   

      (8) 

 

If the sampling results in a time that lies beyond the current 

reactivity interval, time is advanced to the end of the current 

interval and a new time increment is sampled using the 

reactivity of the next interval 

This method of advancing the time distinguishes 

Marduk from some similar codes. For example, the code 

described in Ref. 6 uses a fixed time-step size chosen so that 

the probability of a neutron or precursor undergoing more 

that one event in a time step is less than some small value 

such as 410− . At each timestep, at most one event is 

sampled for each neutron and precursor. The algorithm used 

by Marduk avoids this approximation. 

The ‘brute force’ way of sampling the outcome of an 

event would be to compute the quantities in Table II, divide 

each by the total transition probability per unit time, then 

use the resulting probabilities to sample the outcome. The 

number of probabilities using this scheme is 

( )( )max
3 2 1 1I I ν+ + + + . For six delayed precursor families 

and 
max

7ν = , there would thus be 121 probabilities that 

must be computed for each event. A more efficient method 

is to employ a nested approach. From Eq. (7), it is seen that 

the transition probabilities per unit time of a source event, a 

precursor decay, or a neutron absorption event will already 

have been computed at this point in the calculation. 

Dividing each by W yields the associated probabilities, 

which are then used to sample which one of these types of 

events takes place. If a source event is sampled, then there is 

no need to compute any other probability. If the event is a 

precursor decay, then only the probabilities for each type of 

precursor need to be computed. Note that the corresponding 

transition probabilities per unit time have already been 

computed to get the second term on the right-hand-side of 

Eq. (7), so all that is required is a division of these by W. 

Again, the computation of the vast majority of the 

probabilities has been avoided. If the sampled event is an 

absorption, then the code goes to the next level and 

computes the probabilities that the absorption is a prompt 

neutron capture, a delayed neutron capture, or a fission. In 

the case that a capture event is sampled, then once again 

computation of most of the probabilities has been avoided. 

Only if a fission is sampled does the code get to the inner-

most level in the nesting in which it is determined whether 

the neutron causing the fission is prompt or delayed, 
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whether or not a precursor is produced, and the number of 

prompt neutrons produced. 

 

2. Modes of Operation 

 

Marduk supports several modes of operation so that it 

can effectively handle various types of calculations. 

 

A. Mode 1 

 

In the first and simplest mode, the stochastic calculation 

for each realization is run from the initial state to the user-

specified ending time. This mode is only practical for cases 

in which the population does not become excessively large. 

As the population increases, the mean time between events 

decreases. If the population were to become too large, the 

stochastic calculation would make very slow progress in 

terms of simulated time per unit computational time. 

 

B. Mode 2 

 

The second mode is used for positive reactivity 

insertion transients, and takes advantage of the fact that 

once the neutron population reaches a certain ‘fiducial’ level 

the subsequent time evolution is essentially deterministic. In 

this mode the stochastic calculation for a realization is run 

as a series of stages, with each stage consisting of a user-

specified number of events. Following each stage the 

effective neutron number for the realization, defined as 

eff 1 2
n n nγ≡ + , is computed and compared to a user-

supplied threshold. If the threshold has been exceeded, the 

current values of the neutron and precursor populations are 

supplied as input to a deterministic solver which then runs 

the problem to its conclusion. This allows for the solution of 

problems in which the population becomes too large for the 

practical use of a purely stochastic method. 

 

C. Mode 3 

 

The third mode of operation is for POI/POE 

calculations involving prompt neutrons only. A realization 

is stopped when either the neutron population goes 

identically to zero or exceeds a user-defined threshold. The 

fraction of realizations that stop by exceeding the threshold 

is the estimate of the POI. 

 

3. Deterministic Solver 
 

Marduk includes a deterministic solver that uses a 

fourth-order Runge-Kutta-Fehlberg method due to Kaps and 

Rentrop [11,12]. The equations solved are the usual point 

kinetics equations, and the quantities solved for are the 

expected values (denoted by angular brackets) of the 

effective number of neutrons and the effective number of 

precursors in each family, i.e., 
eff 1 2

n n nγ≡ +  and 

, 1, ,
i i

c m i Iγ≡ = Κ . See the Appendix for more 

details on the relationship between the quantities solved for 

in the stochastic and deterministic calculations. 

The deterministic solver is used in operational mode 2 

to extend the stochastic solution to the end of the problem 

after the user-supplied effective neutron number threshold 

has been exceeded. It is also used to compute the 

denominator in calculations involving the ratio of the 

effective neutron number to its expected value. In either 

case, the fraction of the total computational time used by the 

deterministic solver is generally negligible. 

 

4. Parallelization 

 

The parallel algorithm uses one dedicated master 

process and N server processes that communicate using 

MPI. All communication is between the master process and 

the server processes—the server processes do not 

communicate with each other. At the beginning of the 

calculation, the master process assigns the first N 

realizations to the server processes. For the remainder of the 

calculation, when the master process receives a result from 

one of the server processes, it stores that result and assigns 

that process another realization. It continues to do this until 

all of the realizations have been completed. At that point the 

master process computes the desired output quantities from 

the results of the realizations. Parallel efficiency is 

discussed in Sec. V. 

 

IV. EXAMPLE PROBLEMS AND RESULTS 
 

1. Critical on (n,2n) Problem 

 

 The first problem is meant to provide confidence of 

Marduk’s correctness, as the problem considered is one that 

can be solved analytically.  The problem is an artificial one 

with only two possible reactions—capture and (n,2n)—that 

occur with equal probability. Delayed neutrons are 

neglected, and there is no fixed source. Since on the average 

one neutron is produced per neutron lost, the system is 

critical. Assuming one neutron present at 0t = , the 

probability of having n neutrons present at some later time t 

is 

 

         ( )
( )

( )

1

1

; 0
2

4
; 0

2

nn

n

t
n

t
q t

t
n

t

−

+


= +

= 
 >
 +

ℓ

ℓ

ℓ

ℓ

,                     (9) 

 

where k= Λℓ   is the neutron lifetime. One million 

realizations were produced using operational mode 1, and 

the fraction having 0,1,2,3n =  neutrons was computed for 

, 2 , ,6t = ℓ ℓ … ℓ . These are plotted in Fig. 1 (points) along 
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with the corresponding probabilities given by Eq. (9) (lines). 

Figure 2 shows the probability of having a non-zero number 

of neutrons versus time out to 1024ℓ . As before, the 

analytic solution (line) is given along with the result 

obtained using Marduk (points). Both figures show 

excellent agreement between theory and simulation. 

 

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

 
t (in units of ℓ  ) 

Fig. 1. Marduk and analytic values of ( )nq t  for 1 30, , ,2n =  

and 6t ≤ ℓ . 
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Fig. 2. Marduk and analytic values of ( )01 q t− . 

 

2. Constant Reactivity Problem 
 

This problem includes six families of delayed neutron 

precursors and a fixed source. Initially there are no neutrons 

or precursors in the system. Reactivity is held constant at a 

value of 0.005, and the problem duration is 25 s. Table III 

provides the problem parameters. The quantity to be 

determined is the probability density function (PDF) for the 

final value of the ratio 
eff eff

r n n= . 

This problem was run for 150,000 realizations using 

operational mode 2 and a stage length of  810  events. The 

transition from the stochastic to the deterministic algorithm 

occurred following the first stage for which 5

eff
10n > . The 

calculation took approximately 8.4 hours using 401 

processors (1 master and 400 servers). Figure 3 shows a 

binned representation of the PDF for the ratio r with a bin 

width of 0.05. The minimum and maximum r values are 
35.17 10−×  and 16.64, and the average is 1.00084. 

 

Table III. Parameters for Constant Reactivity Problem 

quantity value(s) 

Λ (s) 10−4 

S (s−1) 1000 

; 0, , 7pν ν = …  
0.0317,  0.172,  0.3363, 0.3038, 

0.1268, 0.0266, 0.0026, 0.0002 

β  0.0065 

eff
β  0.0068 

, 1, , 6
i

a i = …  
0.033,  0.219,  0.196, 0.395, 

0.115, 0.042 

D, , 1, ,6i iλ = …  (s−1) 
0.0124, 0.0305, 0.111, 0.301, 

1.14,  3.01 

 

 

 
r 

Fig. 3. Distribution of r for the constant reactivity problem. 

 

To illustrate operational mode 3, Fig. 4 shows the 
eff

n  

trajectories corresponding to the realizations with the 

smallest and largest final values of r. The solid black line is 

the deterministic point kinetics solution for the entire 

transient. The red circles are the stochastic values for the 

realization corresponding to the smallest final value of r. 

Following the 15th stage, the effective neutron number 

exceeded 105, and the code transitioned to the deterministic 

algorithm (red line). The blue circles and line are the same 

quantities for the realization corresponding to the largest 

final value of r. For this realization the stochastic-to-

deterministic transition took place following stage 16. 

Figure 5 provides enlarged views of the transitions from 

the stochastic to deterministic solutions. To show that the 

assumption of deterministic behavior beyond the transition 

point is valid, additional calculations were performed that 

extend the stochastic solution to effective neutron numbers 

of 55 10× . The results of these calculations are indicated by 

the open circles superimposed on the deterministic 

solutions. As can be seen, the deterministic solutions are in 

good agreement with the extended stochastic solutions. 
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Fig. 4. Transition from stochastic to deterministic solutions 

for realizations with largest (blue) and smallest (red) values 

of r. The circles are the stochastic values at the stage ends, 

and the lines are the deterministic continuations. The black 

line is the deterministic solution for the entire transient. 
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Fig. 5. Detail of the transition from stochastic to 

deterministic solutions for the realizations with the largest 

(top, blue) and smallest (bottom, red) values of r. The 

closed circles are the stochastic values and the line is the 

deterministic continuation from the calculation that 

produced Figs 3 and 4. The open circles are values from 

additional stochastic stages obtained by separate 

calculations. 

 

 

 

 

3. Ramp Reactivity Insertion Problem 
 

This problem demonstrates Marduk’s ability to handle 

linear time-dependent reactivity insertions. There are 

initially no neutrons or precursors in the system. The 

complete set of problem parameters is given in Table IV. 

Reactivity increases at a constant rate from an initial value 

of −0.01 to 0.0065 over the course of 16.5 s. Marduk was 

run for 100 realizations using operational mode 1. Figure 6 

shows the effective neutron population averaged over the 

realizations (points) as well as the deterministic point 

kinetics solution (line) versus time. As can be seen, there is 

good agreement. 

 

Table IV. Parameters for Ramp Reactivity Problem 

quantity value(s) 

Λ (s) 51.5 10−×   

S (s−1) 8800 

; 0, , 5pν ν = …  
0.027,  0.158,  0.339, 0.305, 

0.133, 0.038 

β  0.0065 

eff
β  0.0068 

, 1, , 6
i

a i = …  
0.033,  0.219,  0.196, 0.395, 

0.115, 0.042 

D, , 1, ,6i iλ = …  (s−1) 
0.0124, 0.0305, 0.111, 0.301, 

1.14,  3.01 

 

 

5 10 15

0.01

1

100

10
4

 
time (s) 

Fig. 6. Average neutron population for the ramp reactivity 

insertion problem. Points are averages over 100 stochastic 

realizations. The line is the deterministic solution. 

 

4. Probability of Initiation Problem 

 

This problem demonstrates Marduk’s ability to 

determine the POI. The problem consists of a prompt-

supercritical system with no external source, and neglects 

delayed neutrons. At 0t =  there is one neutron present. For 

long times there are two possible outcomes: the neutron 

population goes to zero or becomes exponentially 
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increasing. The fraction of times the latter outcome occurs is 

the POI.  

The POI may be determined analytically [2] as 
0

1 x− , 

where 
0

x  is the root of   

 

              ( )g x c x xν
ν

ν

≡ −∑                    (10) 

 

lying on the interval (0,1), and cν  is the probability that an 

event in which the interacting neutron is lost produces ν  

neutrons as a result. These probabilities are related to the 

fission multiplicities by 

 

              

( )0 01 1

; 0

k
c p

k
c pν ν

ν

ν
ν

= − −

= >

.                   (11) 

 

Exact values of the POI were calculated for four values of k 

using the multiplicity distribution given in Table V. For 

each k value, Marduk was run in operational mode 3 for one 

million realizations. Table VI shows the exact POI values, 

the Marduk values, the percent differences, and the relative 

standard deviation determined using the binomial 

distribution. In all four cases the Marduk values are in 

statistical agreement with the exact values. 

 

Table V. Fission multiplicity distribution for the POI 

problem.  

ν pν 

0 0.0317 

1 0.1720 

2 0.3363 

3 0.3038 

4 0.1268 

5 0.0266 

6 0.0026 

7 0.0002 

 

Table VI. Probability of Initiation 

k POI 
Marduk 

value 

difference 

(%) 

standard 

deviation (%) 

1.01 0.01036 0.01035 −0.10 1.00 

1.05 0.05083 0.05085 0.04 0.43 

1.10 0.09937 0.09928 −0.09 0.30 

1.50 0.42670 0.42679 0.02 0.12 

 

V. PARALLEL EFFICIENCY 

 

To measure parallel efficiency, the constant reactivity 

problem from Sec. IV.2. was run multiple times, with the 

number of server processes ranging from 1 to 2000. For 

each calculation, the number of realizations was ten times 

the number of server processes. Table VII gives the 

execution time for each calculation, as well as the parallel 

efficiency defined as the ratio of the single-server time to 

the multi-server time. As can be seen, the parallel efficiency 

is over 90% up to 2000 server processes. The calculations 

were run on a cluster of 12-core Intel Xeon E5-2680v3 2.5 

GHz (Haswell) Processors. 

 

Table VII. Parallel Performance 

number 

of server 

processes 

number of 

realizations 

elapsed 

time 

(s) 

parallel 

efficiency 

1 10 807 1.00 

10 100 846 0.95 

100 1,000 866 0.93 

1000 10,000 885 0.91 

2000 20,000 871 0.93 

 

VI. CONCLUSION 

 

A code called Marduk has been developed to analyze 

the behavior of neutron and precursor populations in nuclear 

systems having a weak or no external source. It can treat 

prompt and delayed neutrons as distinct populations, and it 

can accommodate an arbitrary number of delayed neutron 

precursor families. It can also run prompt-neutron-only 

problems, such as determination of the POI. It can solve 

problems in which reactivity changes with time in a piece-

wise linear, discontinuous fashion. 

The code runs multiple realizations for each problem to 

obtain a distribution of outcomes from which the quantities 

of interest are obtained. Examples of such quantities are the 

distribution of the effective neutron number and the POI. 

Each realization uses a Monte Carlo method to sample the 

times between events, as well as the outcomes of the events. 

Once the population exceeds a threshold above which the 

behavior is essentially deterministic, the code has the option 

to switch to a much more computationally-efficient 

deterministic point-kinetics algorithm. The code is 

parallelized using MPI, with a single master process that 

assigns realizations to multiple server processes. Parallel 

efficiency of greater than 90% has been demonstrated using 

up to 2000 server processes. 

Results have been presented for four problems. Two of 

the problems have analytic solutions, and the Marduk values 

agree with these. For the other two problems the average of 

many realizations performed with Marduk were compared 

to numerical solutions of the point kinetics equations, and 

excellent agreement was found. 

 

APPENDIX: CONSISTENT DETERMINISTIC 

EQUATIONS 

 

Here we demonstrate that the expected value of the 

effective neutron number computed stochastically by 

Marduk is identical to the value obtained from the solution 

of the usual point kinetics equations. Following MacMillan 
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[13], we rewrite Eq. (1) explicitly in terms of the quantities 

pertinent to the problem of interest, i.e. 
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 (12) 

 

where ( )1
col , ,

I
m m≡m …  and 

i
δ  is a vector of length I 

with a 1 as the ith location and zeros elsewhere. The 

expected values of the various populations are given by 
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where the summations are over all possible values of the 

number of prompt neutrons, delayed neutrons, and delayed 

neutron precursors. Multiplying Eq. (12) through by 
1

n  and 

performing the summations yields an equation for 
1

n  in 

terms of the expected values of the other variables. 

Equations for the expected values of the other variables can 

be obtained in an analogous way. The coupled set of 

equations so obtained is 
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The equations for the expected number of prompt and 

delayed neutrons can be combined to get a single equation 

for the expected effective neutron number. Defining 

i i
c mγ≡  and 

eff ,i i
β γβ≡ , we obtain 
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which are just the usual point kinetics equations. 
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