
M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

Marduk: A Monte Carlo Code for Analyzing Stochastic Neutron Population Dynamics

Thomas M. Sutton,1 Andrew D. LaCharite,1 and Anil K. Prinja2

1Naval Nuclear Laboratory, Schenectady, New York, USA, thomas.sutton@unnpp.gov, andrew.lacharite@unnpp.gov
2Department of Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico, USA, prinja@unm.edu

Abstract A Monte Carlo code called Marduk has been developed for the purpose of analyzing the

stochastic behavior of neutron and precursor populations in nuclear systems having a weak or no external

source during the initial phase of a transient due to a positive reactivity insertion. Its primary purpose is to

determine the size-distribution of the neutron population, but it may also be used to determine quantities

such as the probabilities of initiation and extinction. The code employs a lumped-parameter (point kinetics)

model, and allows for a piece-wise linear, discontinuous variation in reactivity. It has the option of

switching from a stochastic to a deterministic solution method once the population has become sufficiently

large that its evolution has become essentially deterministic. The code uses a parallel algorithm with over

90% parallel efficiency when using several thousand processors.

I. INTRODUCTION

The dynamic behavior of neutron populations in

nuclear systems having a weak or no external source and

producing negligible power is dominated by stochastic

effects [1]. Solution of the usual reactor kinetics equations

only provides the mean behavior of the populations, and

does not address the distribution of possible behaviors.

Marduk is a Monte Carlo code for analyzing the stochastic

behavior of neutron and precursor populations in such

nuclear systems. Its primary purpose is to determine the

size-distribution of the population during the initial phase of

a positive reactivity insertion transient, but it may also be

used to determine quantities such as the probabilities of

initiation (POI) and extinction (POE) [2]. The code employs

a lumped-parameter (point kinetics) model, and allows for a

piece-wise linear, discontinuous variation in reactivity. It

optionally treats prompt and delayed neutrons as distinct

populations, and it allows for an arbitrary number of

delayed neutron precursor families. Since it is meant to be

used for systems producing negligible power, there is no

treatment of thermal feedback.

The study of the probability distribution of neutrons and

precursors for subcritical and supercritical multiplying

systems began in the earliest days of the nuclear era [3].

Early analytical methods were later superseded by

deterministic codes for obtaining approximate numerical

results [4]. Recently, Monte Carlo codes have been

described that simulate prompt neutron and gamma ray

production from fission chains for the purpose of producing

counting distributions [5] and for modeling fast pulses in

nuclear systems [6]. While a Monte Carlo algorithm for

simulating stochastic neutron populations including space,

energy, and direction dependence has been successfully

implemented [7], such a method is far too computationally

expensive for performing the large number of realizations

required to get accurate neutron and precursor distributions.

The next section discusses the underlying theory that

gives rise to the algorithm used by Marduk. The details of

the algorithm are presented in Sec. III. Section IV illustrates

some of Marduk’s capabilities by providing examples of is

solutions for various types of problems. Parallel efficiency

is discussed in Sec. V. Section VI contains some concluding

remarks. An Appendix shows how the stochastic method

including distinct prompt and delayed neutron populations

is consistent with the usual point kinetics formulation.

II. THEORETICAL DEVELOPMENT

To generate a distribution of neutron populations,

Marduk runs multiple realizations of a transient—each

using a different pseudorandom number sequence. The

theoretical basis for the algorithm used to simulate a single

realization is the forward master equation [8,9,10]:

()
() ()

,
, , ,

dP t
W t P t

dt ′

′ ′= →∑
X

X
X X X (1)

where (),P tX is the probability that at time t a system is in

a state specified by the vector X, (),W t′ →X X is the

transition probability per unit time at time t that a system in

state ′X transitions to state X, () (), ,W t W t
′

′= →∑
X

X X X

is the probability per unit time at time t that a system in state

X transitions to any other state. At 0t = the state is
0

X .

Defining () () (), , ,t W t P tΨ ≡X X X as the probability per

unit time at time t that the system will be undergoing a

transition from state X to some other state, Eq. (1) may be

used to obtain the integral equation

() ()

() () ()

0

0

, 0

, , ,
t

t T t

dt T t t C t t
′

Ψ = →

′ ′ ′ ′ ′ ′+ → → Ψ∑∫
X

X X

X X X X
 (2)

where

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

 () ()
(),

,

t

t
dt W t

T t t W t e ′
′′ ′′−∫′ → ≡

X

X X (3)

is the conditional probability that a system in state X at time

t′ will transition out of that state per unit time at time t, and

 ()
()

()
,

,
,

W t
C t

W t

′ ′→
′ ′→ ≡

′ ′

X X
X X

X
. (4)

is the probability that a system transitioning out of state ′X

at time t will transition into state X. Using a Neumann

expansion, i.e.

() ()
0

, ,j

j

t t
∞

=

Ψ = Ψ∑X X , (5)

where the index j denotes the number of transitions

occurring prior to time t, we have

() ()

() () () ()

0 0

1
0

, 0

, , ,
t

j j

t T t

t dt T t t C t t−
′

Ψ = →

′ ′ ′ ′ ′ ′Ψ = → → Ψ∑∫
X

X X

X X X X X
. (6)

Equation (6) suggests the following Monte Carlo algorithm:

1. Sample the time
1t to the first transition (event)

from ()00T t→ X .

2. Sample the next state,
1X , from ()0 1

,C t→X X .

3. Sample the time
2t of the second event from

()1 1T t t→ X .

4. Continue alternating between sampling the

outcomes of events from C and times of the events

from T until some specified stopping criterion is

met.

III. ALGORITHM

At the highest level, the Marduk algorithm consists of

an outer loop over a user-specified number of realizations.

Each realization uses the same lumped-parameters and the

same initial condition, but a different initial seed for the

pseudorandom number generator. After all realizations have

been performed, the results of all the realizations are

analyzed to determine the distribution of the population size

or other quantities of interest. In the next subsection, the

details of the algorithm used to perform each realization are

discussed.

1. Algorithm for Each Realization

For the lumped-parameter model, the state is given by

the column vector ()2 1
col , , , ,

I
n n m m≡X … , where

1n is

the number of prompt neutrons,
2n is the number of delayed

neutrons, and
i

m is the number of delayed neutron

precursors in family i. Prompt and delayed neutrons may be

treated separately so that any difference in the likelihood

that each type will cause a fission may be accounted for.

Table I gives the parameters for the lumped-parameter

model. These are supplied as input and are assumed to be

time-independent.

Table I. Input for Lumped-Parameter Model

quantity symbol

neutron generation time Λ

mean rate of source events S

probability of producing
max0, ,ν ν= … prompt

neutrons in a fission event
pν

delayed neutron fraction β

effective delayed neutron fraction effβ

delayed neutron precursor abundance for family

1, ,i I= … i
a

delayed neutron precursor decay constant for

family 1, ,i I= … D,iλ

The average number of prompt neutrons per fission and the

average number of all neutrons (prompt and effective

delayed) per fission are, respectively,
max

p

0v

p
ν

νν ν
=

=∑ and

()p eff1ν ν β= − , where maxν is the maximum fission

multiplicity. The delayed neutron fraction for family i is

i i
aβ β= . Finally, the ratio of the importance of delayed

neutrons to that of prompt neutrons is
effγ β β= .

Table II lists the types of events, their probabilities per

unit time, and how each changes the state. In that table, the

per-neutron rate of prompt-neutron-induced fission is

F 1λ ν= Λ , and the per-neutron rates of removal by means

other than fission for prompt and delayed neutrons are,

respectively, ()C,1 1 1kλ ν= − Λ and ()C,2 1 kλ γ ν= − Λ .

Note that the effective multiplication factor, k, may be time-

dependent.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

Table II. Types of Events

event
probability per

unit time

effect on state

1n 2n

i

m

source emission S +1

removal of a

prompt neutron

(non-fission)
C,1 1nλ −1

removal of a

delayed neutron

(non-fission)
C,2 2nλ −1

fission by

prompt neutron

producing 0

precursors

()F 1
1 p nνλ βν− +ν − 1

fission by

prompt neutron

producing a

precursor

F 1i
p nνλ β ν +ν − 1 +1

fission by

delayed neutron

producing 0

precursors

()F 2
1 p nνγλ βν−

+ν −1

fission by

prompt neutron

producing a

precursor

F 2i
p nνγλ β ν +ν −1 +1

precursor decay
D, i i

mλ +1 −1

For both operations, we need the total transition

probability per unit time as a function of time.

Mathematically, this is given by the summation of the

quantities in the second column of Table II (including

summations over ν and i, where appropriate). For

computational efficiency, Marduk takes advantage of

significant simplification that arises in the summation over

the terms in the second through seventh rows of the table,

computing the transition probability per unit time using

 () ()()1 2

D,, 1 i i

i

n n
W t t m Sρ λ

+
= − + +

Λ
∑X . (7)

Note that in the above expression we have eliminated k in

favor of reactivity using ()1k kρ = − . The time-

dependence of this quantity is treated by defining reactivity

intervals. Within an interval reactivity is either constant or

linearly-varying. To sample the time to the next event, τ, we

need the cumulative distribution function (CDF)

corresponding to the probability distribution function given

by Eq. (3). Denoting the current value of the total transition

probability per unit time by
0W and its derivative by W ′ ,

we have () 0
,W t t W W t′+ ∆ = + ∆X . Using this functional

dependence in Eq. (3) yields the required CDF. Letting ξ

denote a pseudorandom number distributed uniformly

between 0 and 1, the following sampling scheme is

obtained:

0

0

2

0

ln
; 0

1 2 ln 1 ; 0.

W
W

W W
W

W W

ξ
τ

τ ξ

′← − =

 ′
′← − − ≠ 

′   

 (8)

If the sampling results in a time that lies beyond the current

reactivity interval, time is advanced to the end of the current

interval and a new time increment is sampled using the

reactivity of the next interval

This method of advancing the time distinguishes

Marduk from some similar codes. For example, the code

described in Ref. 6 uses a fixed time-step size chosen so that

the probability of a neutron or precursor undergoing more

that one event in a time step is less than some small value

such as 410− . At each timestep, at most one event is

sampled for each neutron and precursor. The algorithm used

by Marduk avoids this approximation.

The ‘brute force’ way of sampling the outcome of an

event would be to compute the quantities in Table II, divide

each by the total transition probability per unit time, then

use the resulting probabilities to sample the outcome. The

number of probabilities using this scheme is

()()max
3 2 1 1I I ν+ + + + . For six delayed precursor families

and
max

7ν = , there would thus be 121 probabilities that

must be computed for each event. A more efficient method

is to employ a nested approach. From Eq. (7), it is seen that

the transition probabilities per unit time of a source event, a

precursor decay, or a neutron absorption event will already

have been computed at this point in the calculation.

Dividing each by W yields the associated probabilities,

which are then used to sample which one of these types of

events takes place. If a source event is sampled, then there is

no need to compute any other probability. If the event is a

precursor decay, then only the probabilities for each type of

precursor need to be computed. Note that the corresponding

transition probabilities per unit time have already been

computed to get the second term on the right-hand-side of

Eq. (7), so all that is required is a division of these by W.

Again, the computation of the vast majority of the

probabilities has been avoided. If the sampled event is an

absorption, then the code goes to the next level and

computes the probabilities that the absorption is a prompt

neutron capture, a delayed neutron capture, or a fission. In

the case that a capture event is sampled, then once again

computation of most of the probabilities has been avoided.

Only if a fission is sampled does the code get to the inner-

most level in the nesting in which it is determined whether

the neutron causing the fission is prompt or delayed,

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

whether or not a precursor is produced, and the number of

prompt neutrons produced.

2. Modes of Operation

Marduk supports several modes of operation so that it

can effectively handle various types of calculations.

A. Mode 1

In the first and simplest mode, the stochastic calculation

for each realization is run from the initial state to the user-

specified ending time. This mode is only practical for cases

in which the population does not become excessively large.

As the population increases, the mean time between events

decreases. If the population were to become too large, the

stochastic calculation would make very slow progress in

terms of simulated time per unit computational time.

B. Mode 2

The second mode is used for positive reactivity

insertion transients, and takes advantage of the fact that

once the neutron population reaches a certain ‘fiducial’ level

the subsequent time evolution is essentially deterministic. In

this mode the stochastic calculation for a realization is run

as a series of stages, with each stage consisting of a user-

specified number of events. Following each stage the

effective neutron number for the realization, defined as

eff 1 2
n n nγ≡ + , is computed and compared to a user-

supplied threshold. If the threshold has been exceeded, the

current values of the neutron and precursor populations are

supplied as input to a deterministic solver which then runs

the problem to its conclusion. This allows for the solution of

problems in which the population becomes too large for the

practical use of a purely stochastic method.

C. Mode 3

The third mode of operation is for POI/POE

calculations involving prompt neutrons only. A realization

is stopped when either the neutron population goes

identically to zero or exceeds a user-defined threshold. The

fraction of realizations that stop by exceeding the threshold

is the estimate of the POI.

3. Deterministic Solver

Marduk includes a deterministic solver that uses a

fourth-order Runge-Kutta-Fehlberg method due to Kaps and

Rentrop [11,12]. The equations solved are the usual point

kinetics equations, and the quantities solved for are the

expected values (denoted by angular brackets) of the

effective number of neutrons and the effective number of

precursors in each family, i.e.,
eff 1 2

n n nγ≡ + and

, 1, ,
i i

c m i Iγ≡ = Κ . See the Appendix for more

details on the relationship between the quantities solved for

in the stochastic and deterministic calculations.

The deterministic solver is used in operational mode 2

to extend the stochastic solution to the end of the problem

after the user-supplied effective neutron number threshold

has been exceeded. It is also used to compute the

denominator in calculations involving the ratio of the

effective neutron number to its expected value. In either

case, the fraction of the total computational time used by the

deterministic solver is generally negligible.

4. Parallelization

The parallel algorithm uses one dedicated master

process and N server processes that communicate using

MPI. All communication is between the master process and

the server processes—the server processes do not

communicate with each other. At the beginning of the

calculation, the master process assigns the first N

realizations to the server processes. For the remainder of the

calculation, when the master process receives a result from

one of the server processes, it stores that result and assigns

that process another realization. It continues to do this until

all of the realizations have been completed. At that point the

master process computes the desired output quantities from

the results of the realizations. Parallel efficiency is

discussed in Sec. V.

IV. EXAMPLE PROBLEMS AND RESULTS

1. Critical on (n,2n) Problem

 The first problem is meant to provide confidence of

Marduk’s correctness, as the problem considered is one that

can be solved analytically. The problem is an artificial one

with only two possible reactions—capture and (n,2n)—that

occur with equal probability. Delayed neutrons are

neglected, and there is no fixed source. Since on the average

one neutron is produced per neutron lost, the system is

critical. Assuming one neutron present at 0t = , the

probability of having n neutrons present at some later time t

is

 ()
()

()

1

1

; 0
2

4
; 0

2

nn

n

t
n

t
q t

t
n

t

−

+


= +

= 
 >
 +

ℓ

ℓ

ℓ

ℓ

, (9)

where k= Λℓ is the neutron lifetime. One million

realizations were produced using operational mode 1, and

the fraction having 0,1,2,3n = neutrons was computed for

, 2 , ,6t = ℓ ℓ … ℓ . These are plotted in Fig. 1 (points) along

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

with the corresponding probabilities given by Eq. (9) (lines).

Figure 2 shows the probability of having a non-zero number

of neutrons versus time out to 1024ℓ . As before, the

analytic solution (line) is given along with the result

obtained using Marduk (points). Both figures show

excellent agreement between theory and simulation.

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

t (in units of ℓ)

Fig. 1. Marduk and analytic values of ()nq t for 1 30, , ,2n =

and 6t ≤ ℓ .

1 5 10 50 100 500 1000

0.005

0.010

0.050

0.100

0.500

1

t (in units of ℓ)

Fig. 2. Marduk and analytic values of ()01 q t− .

2. Constant Reactivity Problem

This problem includes six families of delayed neutron

precursors and a fixed source. Initially there are no neutrons

or precursors in the system. Reactivity is held constant at a

value of 0.005, and the problem duration is 25 s. Table III

provides the problem parameters. The quantity to be

determined is the probability density function (PDF) for the

final value of the ratio
eff eff

r n n= .

This problem was run for 150,000 realizations using

operational mode 2 and a stage length of 810 events. The

transition from the stochastic to the deterministic algorithm

occurred following the first stage for which 5

eff
10n > . The

calculation took approximately 8.4 hours using 401

processors (1 master and 400 servers). Figure 3 shows a

binned representation of the PDF for the ratio r with a bin

width of 0.05. The minimum and maximum r values are
35.17 10−× and 16.64, and the average is 1.00084.

Table III. Parameters for Constant Reactivity Problem

quantity value(s)

Λ (s) 10−4

S (s−1) 1000

; 0, , 7pν ν = …
0.0317, 0.172, 0.3363, 0.3038,

0.1268, 0.0266, 0.0026, 0.0002

β 0.0065

eff
β 0.0068

, 1, , 6
i

a i = …
0.033, 0.219, 0.196, 0.395,

0.115, 0.042

D, , 1, ,6i iλ = … (s−1)
0.0124, 0.0305, 0.111, 0.301,

1.14, 3.01

r

Fig. 3. Distribution of r for the constant reactivity problem.

To illustrate operational mode 3, Fig. 4 shows the
eff

n

trajectories corresponding to the realizations with the

smallest and largest final values of r. The solid black line is

the deterministic point kinetics solution for the entire

transient. The red circles are the stochastic values for the

realization corresponding to the smallest final value of r.

Following the 15th stage, the effective neutron number

exceeded 105, and the code transitioned to the deterministic

algorithm (red line). The blue circles and line are the same

quantities for the realization corresponding to the largest

final value of r. For this realization the stochastic-to-

deterministic transition took place following stage 16.

Figure 5 provides enlarged views of the transitions from

the stochastic to deterministic solutions. To show that the

assumption of deterministic behavior beyond the transition

point is valid, additional calculations were performed that

extend the stochastic solution to effective neutron numbers

of 55 10× . The results of these calculations are indicated by

the open circles superimposed on the deterministic

solutions. As can be seen, the deterministic solutions are in

good agreement with the extended stochastic solutions.

p
ro

b
ab

il
it

y

p
ro

b
ab

il
it

y

p
ro

b
ab

il
it

y
 d

en
si

ty

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

0 5 10 15 20 25

e
ff

e
ct

iv
e

 n
e

u
tr

o
n

 n
u

m
b

e
r

time (s)

Fig. 4. Transition from stochastic to deterministic solutions

for realizations with largest (blue) and smallest (red) values

of r. The circles are the stochastic values at the stage ends,

and the lines are the deterministic continuations. The black

line is the deterministic solution for the entire transient.

1.0E+04

1.0E+05

1.0E+06

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

e
ff

e
ct

iv
e

 n
e

u
tr

o
n

 n
u

m
b

e
r

time (s)

1.0E+04

1.0E+05

1.0E+06

18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5

e
ff

e
ct

iv
e

 n
e

u
tr

o
n

 n
u

m
b

e
r

time (s)

Fig. 5. Detail of the transition from stochastic to

deterministic solutions for the realizations with the largest

(top, blue) and smallest (bottom, red) values of r. The

closed circles are the stochastic values and the line is the

deterministic continuation from the calculation that

produced Figs 3 and 4. The open circles are values from

additional stochastic stages obtained by separate

calculations.

3. Ramp Reactivity Insertion Problem

This problem demonstrates Marduk’s ability to handle

linear time-dependent reactivity insertions. There are

initially no neutrons or precursors in the system. The

complete set of problem parameters is given in Table IV.

Reactivity increases at a constant rate from an initial value

of −0.01 to 0.0065 over the course of 16.5 s. Marduk was

run for 100 realizations using operational mode 1. Figure 6

shows the effective neutron population averaged over the

realizations (points) as well as the deterministic point

kinetics solution (line) versus time. As can be seen, there is

good agreement.

Table IV. Parameters for Ramp Reactivity Problem

quantity value(s)

Λ (s) 51.5 10−×

S (s−1) 8800

; 0, , 5pν ν = …
0.027, 0.158, 0.339, 0.305,

0.133, 0.038

β 0.0065

eff
β 0.0068

, 1, , 6
i

a i = …
0.033, 0.219, 0.196, 0.395,

0.115, 0.042

D, , 1, ,6i iλ = … (s−1)
0.0124, 0.0305, 0.111, 0.301,

1.14, 3.01

5 10 15

0.01

1

100

10
4

time (s)

Fig. 6. Average neutron population for the ramp reactivity

insertion problem. Points are averages over 100 stochastic

realizations. The line is the deterministic solution.

4. Probability of Initiation Problem

This problem demonstrates Marduk’s ability to

determine the POI. The problem consists of a prompt-

supercritical system with no external source, and neglects

delayed neutrons. At 0t = there is one neutron present. For

long times there are two possible outcomes: the neutron

population goes to zero or becomes exponentially

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

increasing. The fraction of times the latter outcome occurs is

the POI.

The POI may be determined analytically [2] as
0

1 x− ,

where
0

x is the root of

 ()g x c x xν
ν

ν

≡ −∑ (10)

lying on the interval (0,1), and cν is the probability that an

event in which the interacting neutron is lost produces ν

neutrons as a result. These probabilities are related to the

fission multiplicities by

()0 01 1

; 0

k
c p

k
c pν ν

ν

ν
ν

= − −

= >

. (11)

Exact values of the POI were calculated for four values of k

using the multiplicity distribution given in Table V. For

each k value, Marduk was run in operational mode 3 for one

million realizations. Table VI shows the exact POI values,

the Marduk values, the percent differences, and the relative

standard deviation determined using the binomial

distribution. In all four cases the Marduk values are in

statistical agreement with the exact values.

Table V. Fission multiplicity distribution for the POI

problem.

ν pν

0 0.0317

1 0.1720

2 0.3363

3 0.3038

4 0.1268

5 0.0266

6 0.0026

7 0.0002

Table VI. Probability of Initiation

k POI
Marduk

value

difference

(%)

standard

deviation (%)

1.01 0.01036 0.01035 −0.10 1.00

1.05 0.05083 0.05085 0.04 0.43

1.10 0.09937 0.09928 −0.09 0.30

1.50 0.42670 0.42679 0.02 0.12

V. PARALLEL EFFICIENCY

To measure parallel efficiency, the constant reactivity

problem from Sec. IV.2. was run multiple times, with the

number of server processes ranging from 1 to 2000. For

each calculation, the number of realizations was ten times

the number of server processes. Table VII gives the

execution time for each calculation, as well as the parallel

efficiency defined as the ratio of the single-server time to

the multi-server time. As can be seen, the parallel efficiency

is over 90% up to 2000 server processes. The calculations

were run on a cluster of 12-core Intel Xeon E5-2680v3 2.5

GHz (Haswell) Processors.

Table VII. Parallel Performance

number

of server

processes

number of

realizations

elapsed

time

(s)

parallel

efficiency

1 10 807 1.00

10 100 846 0.95

100 1,000 866 0.93

1000 10,000 885 0.91

2000 20,000 871 0.93

VI. CONCLUSION

A code called Marduk has been developed to analyze

the behavior of neutron and precursor populations in nuclear

systems having a weak or no external source. It can treat

prompt and delayed neutrons as distinct populations, and it

can accommodate an arbitrary number of delayed neutron

precursor families. It can also run prompt-neutron-only

problems, such as determination of the POI. It can solve

problems in which reactivity changes with time in a piece-

wise linear, discontinuous fashion.

The code runs multiple realizations for each problem to

obtain a distribution of outcomes from which the quantities

of interest are obtained. Examples of such quantities are the

distribution of the effective neutron number and the POI.

Each realization uses a Monte Carlo method to sample the

times between events, as well as the outcomes of the events.

Once the population exceeds a threshold above which the

behavior is essentially deterministic, the code has the option

to switch to a much more computationally-efficient

deterministic point-kinetics algorithm. The code is

parallelized using MPI, with a single master process that

assigns realizations to multiple server processes. Parallel

efficiency of greater than 90% has been demonstrated using

up to 2000 server processes.

Results have been presented for four problems. Two of

the problems have analytic solutions, and the Marduk values

agree with these. For the other two problems the average of

many realizations performed with Marduk were compared

to numerical solutions of the point kinetics equations, and

excellent agreement was found.

APPENDIX: CONSISTENT DETERMINISTIC

EQUATIONS

Here we demonstrate that the expected value of the

effective neutron number computed stochastically by

Marduk is identical to the value obtained from the solution

of the usual point kinetics equations. Following MacMillan

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

[13], we rewrite Eq. (1) explicitly in terms of the quantities

pertinent to the problem of interest, i.e.

()
() ()

() ()

()

() ()

()

()()

()

()

()

max

max

1 2

1 2 1 2

C,1 1 1 2

1

1 2

C,2 2 1 2

2

1 2

1

0

1 2

1

0 1

1 2

, , ,
1, , , , , ,

1 1, , ,

, , ,

1 , 1, ,

, , ,

1
1 1

1, , ,

1
1

1, , ,

I

i

i

i

dP n n t
S P n n t P n n t

dt

n P n n t

n
P n n t

k

n P n n t

n
P n n t

k

n p

P n n t

n p

P n n t

ν

ν
ν

ν

ν
ν

λ

λ

ν βν
ν

ν

ν β ν
ν

ν

=

= =

= − −  

+ + +

−
Λ

+ + +

−
Λ

+ − + −
Λ

× − +

+ − +
Λ

× − + −

+

∑

∑∑

m
m m

m

m

m

m

m

m δ

()()

()

()

()

() ()

()

max

max

2

0

1 2

2

0 1

1 2

D, 1 2

1

D, 1 2

1

1 1

, 1, ,

1

, 1, ,

1 , 1, ,

, , , ,

I

i

i

i

I

i i i

i

I

i i

i

n p

P n n t

n p

P n n t

m P n n t

m P n n t

ν

ν
ν

ν

ν
ν

γ
βν

ν

ν

γ
β ν

ν

ν

λ

λ

=

= =

=

=

+ −
Λ

× − +

+ +
Λ

× − + −

+ + − +

−

∑

∑∑

∑

∑

m

m δ

m δ

m

 (12)

where ()1
col , ,

I
m m≡m … and

i
δ is a vector of length I

with a 1 as the ith location and zeros elsewhere. The

expected values of the various populations are given by

()

()
1 2

1 2

, , , ; 1, 2

, , , ; 1, ,

i i

i i

n n P n n t i

m m P n n t i I

= =

= =

∑
∑

m

m …

, (13)

where the summations are over all possible values of the

number of prompt neutrons, delayed neutrons, and delayed

neutron precursors. Multiplying Eq. (12) through by
1

n and

performing the summations yields an equation for
1

n in

terms of the expected values of the other variables.

Equations for the expected values of the other variables can

be obtained in an analogous way. The coupled set of

equations so obtained is

()

()

1 eff

eff 1 2

2 2

D,

1

1 2 D,

11 1

; 1, ,

I

i i

i

i i

i i

d n k
n n S

dt k

d n n
m

dt k

d m
n n m i I

dt

γ β
β

λ

β
γ λ

=

−− 
= − + + 

Λ Λ 

= − +
Λ

= + − =
Λ

∑

…

. (14)

The equations for the expected number of prompt and

delayed neutrons can be combined to get a single equation

for the expected effective neutron number. Defining

i i
c mγ≡ and

eff ,i i
β γβ≡ , we obtain

eff eff

eff D,

1

eff ,

eff D, ; 1, ,

I

i i

i

ii

i i

d n
n c S

dt

d c
n c i I

dt

ρ β
λ

β
λ

=

−
= + +

Λ

= − =
Λ

∑

…

, (15)

which are just the usual point kinetics equations.

REFERENCES

1. M. M. R. WILLIAMS, Random Processes in Nuclear

Reactors, Pergamon Press, Oxford (1974).

2. G. I. BELL, “Probability Distribution of Neutrons and

Precursors in a Multiplying Assembly,” Annals of

Physics, 21, 243 (1963).

3. D. HAWKINS and S. ULAM, “Theory of

Multiplicative Processes. 1.,” LA-171, Los Alamos

Scientific Laboratory (1944).

4. G. I. BELL, et al., “Probability Distribution of

Neutrons and Precursors in Multiplying Medium, II,”

Nucl. Sci. Eng., 16, 118 (1963).

5. K. S. KIM, et al., “Time Evolving Fission Chain

Theory and Fast Neutron and Gamma-Ray Counting

Distributions,” Nucl. Sci. Eng., 181, 225 (2015).

6. C. M. COOLING, et al., “Coupled Probabilistic and

Point Kinetics Modelling of Fast Pulses in Nuclear

Systems,” Ann. Nucl. Energy, 94, 665 (2016).

7. T. J. TRAHAN, et al., “A Monte Carlo Algorithm for

Fission Chain Analysis of Dynamic Stochastic

Systems,” Trans. Am. Nucl. Soc., 113, 661 (2015).

8. I. PAZSIT and L. PAL, Neutron Fluctuations, Elsevier,

Amsterdam, (2008).

9. C. W. GARDINER, Handbook of Stochastic Methods,

Springer-Verlag, Berlin, (1983).

10. N. G. VAN KAMPEN, Stochastic Processes in Physics

and Chemistry, North-Holland, Amsterdam, (1981).

11. P. KAPS and P. RENTROP, Numerical Initial Value

Problems in Ordinary Differential Equations, Prentice-

Hall, Inglewood Cliffs, N. J. (1971).

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

12. W. H. PRESS, et al., Numerical Recipes in FORTRAN,

2nd Edition, Cambridge University Press, Cambridge

(1992).

13. D. B. MACMILLAN, “Probability Distribution of

Neutron Populations in a Multiplying Assembly,” Nucl.

Sci. Eng., 39, 329 (1970).

