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Abstract - The extinction probability of a branching process (a neutron chain in a multiplying medium) is
calculated for a system randomly varying in time. The evolution of the first two moments of such a process were
calculated previously by the authors in a system randomly shifting between two states of different multiplication
properties. The same model is used here for the investigation of the extinction probability. It is seen that the
determination of the extinction probability is significantly more complicated than that of the moments, and
it can only be determined by pure numerical methods. The dependence of the extinction probability on the
properties of the randomly fluctuating system are in agreement with the findings regarding the moments of the
population, but appear to show some new features as well. The results bear some significance not only for
neutron chains in a multiplying medium, but also for evolution of biological populations in a time-varying
environment.

I. INTRODUCTION

This paper discusses some aspects of the calculation of
the extinction probability in settings other than the classical
case of the extinction of family trees or neutron chains in a
stationary multiplying medium. The setting discussed here
is the extinction probability in systems randomly varying in
time. Such systems were studied before [1, 2, 3], but only the
temporal evolution of the first two moments was investigated.
As will be seen, the calculation of the extinction probability is
a considerably more complicated task, which necessitates the
use of numerical methods.

This work is strongly related to the collaboration of the
author with two of his colleagues, namely Lénard Pál and
Mike Williams. Hence at the end of the paper also some
personal reminiscences and reflections on the history of these
collaborations are mentioned. In particular some subtleties of
the properties of branching processes in temporally randomly
varying media, which are relevant to the present work, and
which were discovered together with L. Pál, are described.

II. THEORY

Ever since the classic work of Galton and Watson on
the extinction of family trees, the extinction probability of a
branching process, started by one entity (individual/particle),
has always been derived from a backward type master equa-
tion. One can write down a backward master equation for
the generating function g(z, t) of the probability distribution
p(n, t),

g(z, t) =

∞∑
n=0

zn p(n, t) (1)

of having n particles in the system at time t, given that at t = 0
there was one neutron in the system as [3]

∂g(z, t)
∂t

= Q
{
q
[
g(z, t)

]
− g(z, t)

}
(2)

with the initial condition

g(z, 0) = z. (3)

Here, Q is the intensity of the reaction, and q(z) is the gener-
ating function of the probability distribution f (n) of having n
particles from a reaction, i.e.

q(z) =

∞∑
n=0

zn f (n) (4)

From this, it is immediately possible to obtain an equation
for the probability p(0, t) ≡ p0(t) of extinction until time t,
since p0(t) = g(0, t). The extinction probability

p0 = lim
t→∞

p0(t)

is obtained immediately from (2) by assuming dp0(t)/dt = 0
when t → ∞, as the root of the equation

q(p0) = p0 (5)

Actually, the above equation can be derived directly from
a backward-type reasoning, considering the possible fate (=re-
action) of the first individual (particle). The reasoning, due
to the Dane Agner Krarup Erlang, a member of the famous
Krarup family by his mother, which was about to become
extinct, was published in the Matematisk Tiddskrift in 1929
and it goes as follows. The extinction probability p0 is equal
to the sum of the probabilities of the mutually exclusive events
that the first particle either will not have any secondaries, with
probability f(0), or will have one descendant, with probability
f (1), which will have to die out (with probability p0), or will
have two descendants (probability f (2)) which both will have
to die out (probability p2

0) etc. That is,

p0 = f (0) + f (1) p0 + f (2) p2
0 + · · · = q(p0) (6)
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Hence one can derive an equation directly for the extinction
probability, without the need of first deriving an equation for
g(z, t) and then substitute z = 0 and take the limit t → ∞.

However, for systems varying randomly in time, the back-
ward equation is not applicable. The main reason, as discussed
in [1, 2, 3], is that the factorisation ansatz of the backward
equation cannot be applied, because the evolution of the chains
started by neutrons born simultaneously will not be indepen-
dent (will be influenced simultaneously by the changing prop-
erties of the material). Hence the only possibility for the calcu-
lation of the extinction probability in a temporally randomly
varying medium is to use the forward equation.

Application of the forward equation for the determination
of the extinction probability is though much more cumbersome
than that of the backward equation, and is not to be found in
the literature. The difficulties will be illustrated with the case
of the traditional branching process in a stationary medium.
The forward equation for this case reads as

∂g(z, t)
∂t

= Q[q(z) − z]
∂g(z, t)
∂z

. (7)

Substituting z = 0 in Eq. (7) shows that there is a closure
problem; the resulting equation contains both p0(t) and p1(t);
differentiation with respect to z and substituting z = 0 will lead
to and equation containing p1(t) and p2(t), and so on. Besides,
being a forward equation, operating on the final co-ordinates,
one cannot take the limit t → ∞ in the equation itself, only in
the solution.

It is also obvious that heuristic reasoning of the type of Eq.
(6) is not possible either; the asymptotic value of p0 requires
the knowledge of the asymptotic value of p1, which requires
the knowledge of p2 and so on, illustrating again the problem
of closure and the knowledge of the full solution of p(n, t).

The above shows that a suitable starting point is to first
investigate the possibilities of determining the extinction prob-
ability from a forward master equation for the classic case
of the static medium, after which the solution method may
be attempted to be generalised to the case of the randomly
varying system. Two basic possibilities appeared to be worth
trying. The first is to Laplace transform in time the forward
equation, and then seek the asymptotic value of the extinction
probability with the help of the Tauberian theorem. In other
words, taking the Laplace transform

ḡ(z, s) =

∫ ∞

0
e−stg(z, t)dt (8)

will convert Eq. (7) to

s ḡ(z, s) − z = Q[q(z) − z]
∂ḡ(z, s)
∂z

, (9)

This differential equation may be solved for g(z, s). Since the
extinction probability is defined as

p0 = lim
t→∞

g(z = 0, t), (10)

From the solution for g(z, s), this can be recovered as

p0 = lim
s→0

s ḡ(z = 0, s) (11)

If such a solution can be obtained, one might try to generalise
it to the case of a medium randomly varying in time.

If this method should not work, then one can restrict the
branching process to a quadratic process, such that the total
number of new-born particles is either zero, one, or at most
two, i.e.

f (n) = f0 δn,0 + f1 δn,1 + f2 δn,2 (12)

and hence
q(z) = f0 + f1 z + f2 z2 (13)

It was shown in [3] that in a static system, for such a case a
complete time-dependent solution can be obtained for the full
generating function, and hence for the extinction probability.
Hence this method appeared to have larger potential to be
applicable for the randomly varying system.

In the case of a system randomly varying between two
states, such as in those treated in [3], the notations of which
will be used here, one seeks the generating function g j,i(z, t),
{i, j = 1, 2} of the probability that at time t there are n particles
in the system, and the system is in state j, on the condition
that at time t = 0, the system was in state i and there was one
particle in the multiplying medium. Since we are only inter-
ested in the asymptotic behaviour of the neutron population
irrespective of the state of the system, we seek the extinction
probability

p0,i = lim
t→∞

[g1,i(0, t) + g2,i(0, t)] (14)

It is this quantity whose calculation is attempted in this paper.
As will be seen, none of the above expectations worked,

and only a pure numerical scheme made it possible to calculate
the extinction probability in systems randomly varying in time.

III. SOLUTIONS

1. General solution in a static medium

We start with the forward equation

∂g(z, t)
∂t

= Q
[
q(z) − z

] ∂g(z, t)
∂z

, (15)

which can be re-written by introducing τ = Qt as

∂g(z, τ)
∂τ

=
[
q(z) − z

] ∂g(z, τ)
∂z

(16)

Taking a Laplace transform in time we have

ḡ(z, s) =

∞∫
0

dτe−sτg(z, τ) (17)

from which can deduce the following condition which may be
of use later, viz:

sḡ(z, s)
lim s→0

= g(z,∞) (18)

Then Eq. (16) becomes

(q(z) − z)
dḡ
dz

= sḡ − z (19)
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Rearranging this we have

dḡ
dz
−

s
q(z) − z

ḡ = −
z

q(z) − z
(20)

Introducing the integrating factor leads to

d
dz

ḡe
−s

z∫
dz′

q(z′)−z′

 = −
z

q(z) − z
e
−s

z∫
dz′

q(z′ )−z′

(21)

Integrating from z to unity, we find

ḡ(1, s)e
−s

1∫
dz′

q(z′)−z′

−ḡ(z, s)e
−s

z∫
dz′

q(z′ )−z′

= −

1∫
z

z′dz′

q(z′) − z′
e
−s

z′∫
dz′′

q(z′′′ )−z′′

(22)
After some re-arrangement this becomes

ḡ(z, s) =
1
s

e
−s

1∫
z

dz′
q(z′ )−z′

+

1∫
z

z′dz′

q(z′) − z′
e
−s

z′∫
z

dz′′
q(z′′′ )−z′′

(23)

where we have set ḡ(1, s) = 1/s . Again we may write

sḡ(z, s) = e
−s

1∫
z

dz′
q(z′ )−z′

+ s

1∫
z

z′dz′

q(z′) − z′
e
−s

z′∫
z

dz′′
q(z′′′ )−z′′

(24)

We may now be tempted to use the relation Eq. (18). However
this leads on first sight to g(z,∞) = 1, for all z, which is not
helpful. The fact that this result occurs means that we have
not dealt with singularities appearing in the integrands of eq
(9). These occur at the zeros of

q(z) − z = 0 (25)

It would appear that before taking the limit in Eq. (24) we
should use the properties of q(z). Indeed, if one specifies
the process as quadratic, i.e. only absorption, scattering and
binary fission can take place, the problem can be solved. This
was shown in the book. Now we restrict ourselves to such
processes, and turn to the binary random medium.

2. Qadratic process in a time-varying medium

We will now employ the quadratic process, characterised
with the number distribution (12) and its quadratic generating
function (13). Note that since∑

n

f (n) = 1, (26)

one of the fi can be expressed with the other two, which
simplifies the notations. As is known, in the classical case,
the extinction probability is unity for subcritical and critical
systems, i.e. when

E{n} =

[
dq(z)

dz

]
z=1

= q′(1) ≡ ν ≤ 1, (27)

whereas it becomes less then unity for ν > 1. From (12) or
(13) one obtains

ν = f1 + 2 f2 (28)

using (26) leads to the condition of criticality as

f0 = f2. (29)

The distribution can be defined by two parameters, e.g. by f0
and f2, f0 + f2 ≤ 1, or by the mean ν and either the variance
or the second factorial moment q2 ≡ q′′(1) of the number of
secondary particles per reaction.

The temporally randomly varying multiplying system
will be the same as that used in our previous work [1, 2, 3].
It is assumed that the system has two states, with reaction
intensities Qi and the generating functions of the distribution
neutrons per reaction, qi(z), i = 1, 2. The generating functions
will be defined in terms of the parameters νi and q2,i, i = 1, 2.
We will seek the generating functions g j.i(z.t), j, i = 1, 2 of
the probability that at time t, the system is in state j and the
number of neutrons in the system equals n, given that at time
t = 0 the system was in state i and there was one neutron in the
system. It is also assumed that the probability that during time
∆t the system changes from state 1 to state 2, or vice versa, is
equal to λ∆t + o(∆t).

As it is shown e.g. in [3], the generating functions g j.i(z.t)
obey the following coupled differential equation system:

∂g1,i(z, t)
∂t

= Q1
[
q1(z) − z

] ∂g1,i(z, t)
∂z

+λ
[
g2,i(z, t) − g1,i(z, t)

]
,

(30)
and

∂g2,i(z, t)
∂t

= Q2
[
q2(z) − z

] ∂g2,i(z, t)
∂z

+λ
[
g1,i(z, t) − g2,i(z, t)

]
,

(31)
with the initial conditions

g j,i(0, z) = z δi j, i, j = 1, 2.

The expectation is that substituting quadratic forms for the
qi(z), taking temporal Laplace transforms and eliminating, say,
g2,i(z, s), a differential equation in z can be derived for g1,i(z, s).
Having solved this differential equation, one can obtain the
corresponding extinction probability by the Tauberian theorem
as

lim
t→∞

g1,i(0, t) = lim
s→0

s g1,i(0, s) (32)

Unfortunately, this strategy does not work because the aris-
ing differential equation for g1,i(z, s) is not amenable for an
analytic solution. A Laplace transform in time yields

Q1
[
q1(z) − z

] ∂ḡ1,i(z, s)
∂z

+λ ḡ2,i(z, s)− [λ + s] ḡ1,i(z, s) = z δ1,i

(33)
and

Q2
[
q2(z) − z

] ∂ḡ2,i(z, s)
∂z

+λḡ1,i(z, s)− [λ + s] ḡ2,i(z, s) = z δ2,i

(34)
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Substitution of a quadratic form for the qi(z) yields for the
factors multiplying the derviatives in (33) and (34)

qi(z) − z = (1 − z)
(
1 − ν̄i +

1
2

q2,i(1 − z)
)

(35)

Putting these into the equations, differentiating (33) w.r.t. z
and eliminating g2,i(t, z) leads to

d2ḡ1(z, s)
dz2 +

[
ν1 − 1

q1(z) − z
−

λ + s
q1(z) − z

−
λ + s

q2(z) − z

]
dḡ1(z, s)

dz
+

s(s + 2λ)
(q1(z) − z) (q2(z) − z)

ḡ1(z, s) +
q2(z) − z(2λ + 1 + s)
(q1(z) − z) (q2(z) − z)

= 0

(36)
This equations shows the basic difference between the deter-
mination of the moments and that of the extinction probability.
When calculating the moments, the substitution z = 1 can be
made already in the defining equations. Hence after a temporal
Laplace transform, there remain only algebraic equations to
be solved with constant coefficients for the g(n)

j,i (1, s). These
can be readily handled, even with a general (not quadratic)
qi(z), since only the moments of this distribution occur. For
the extinction probability, the substitution z = 0 would lead to
a closure problem, hence the differential equations first need to
be solved for the g j.i(z, s), and the substitution z = 0 can only
be made afterwards. The differential equation is not of con-
stant coefficients, rather the coefficients are highly non-linear
functions of z. This shows that the derivation of the extinction
probability in a randomly varying medium is substantially
more complicated than calculating the first two moments of
the neutron distribution.

3. Numerical solution

Since there is very little hope that Eq. (35) can be solved
analytically, we chose a numerical solution. Since a numerical
solution is not suitable for the application of the Tauberian
theorem, instead of solving the Laplace-transformed equations
(33) - (34) or (36), the original equations (30) - (31) will be
solved.

It is convenient to transform the variable
z (0, 1) to x (−1, 1) to x = 2z − 1, so that it conforms
to the space of the Chebyshev polynomials. Thus, Eqs (30)
and (31) then become

∂g1(x, t)
∂t

= Q1 (1 − x)
(
1 − ν1 +

1
4

q2,1(1 − x)
)
∂g1(x, t)
∂x

+

λ
[
g2(x, t) − g1(x, t)

]
(37)

and

∂g2(x, t)
∂t

= Q2 (1 − x)
(
1 − ν2 +

1
4

q2,2(1 − x)
)
∂g2(x, t)
∂x

+

λ
[
g1(x, t) − g2(x, t)

]
(38)

and the initial conditions become

g1,i(x, 0) =
1
2

(1 + x)δ1i and g2,i(x, 0) =
1
2

(1 + x)δ2i. (39)

We solve equations (37) and (38) by replacing the derivative
∂/∂x by a Chebyshev-Gauss-Lobatto collocation in the form

∂y(x)
∂x

∣∣∣∣∣
xk

≈

N∑
j=0

Dk, jy(x j) (40)

where x j = cos(π j/N) and the Dk, j are defined in [4] (but
see the original paper by Don and Solomonoff [5] for correct
form).

dg1k,i(t)
dt

= Q1(1 − xk)
(
1 − ν1 +

1
4

q2,1(1 − xk)
)
×

 N∑
j=1

Dk, jg1, j,i(t) + Dk,0g1,0,i(t)

 + λ1
(
g2,k,i(t) − g1,k,i(t)

)
(41)

and

dg2k,i(t)
dt

= Q2(1 − xk)
(
1 − ν2 +

1
4

q2,2(1 − xk)
)
×

 N∑
j=1

Dk, jg2, j,i(t) + Dk,0g2,0,i(t)

 + λ1
(
g1,k,i(t) − g2,k,i(t)

)
(42)

Eqs (41) and (42), together with the initial and boundary con-
ditions, allow a numerical solution, from which the extinction
probability is extracted at z = 0 or x = −1. Since we are inter-
ested in the extinction probability irrespective of the system
state, we use Eq. (14). In terms of the collocation points this
is expressed as

gi(0, t) = g1,N,i(t) + g2,N,i(t) (43)

This way the whole time dependence of the probability gi(0, t)
of no particles being in the system is recovered, and the ex-
tinction probability is equal to its value for a t for which the
asymptotic state is reached.

4. Quantitative results and discussion

Quantitative results for some characteristic cases will be
shown below. The selection of the cases is based on the knowl-
edge gained through the study of the behaviour of the moments
of the neutron population in systems randomly varying in time
[1, 2, 3]. In these works, a system, both of whose states are
subcritical or supercritical, are called strongly subcritical and
strongly supercritical, respectively. Those systems which fluc-
tuate between a subcritical and a supercritical state fall into
three categories. Defining the parameters

αi = Qi (νi − 1), (44)

and
λcr =

α1 α2

α1 + α2
(45)

it was found that systems that fulfil the condition

λ = λcr (46)
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such that α1 α2 < 0, are critical in the mean, in the sense that
the expectation of the population is constant. Systems where
λ < λcr are supercritical in the mean, thas is the expectation
of the population diverges in time, whereas if λ > λcr, the
system is subcritical in the mean, that is the expectation dies
out asymptotically. In particular, it was shown that for systems
for which one has

α1 + α2 = 0 or
ν1 + ν2

2
= 1, (47)

whose “average criticality” is zero in time in the traditional
sense, are supercritical in the mean, except the pathological
case when λ diverges.

Some quantitative results are shown below, and they will
be discussed in light of the above. Fig.1 shows the quantities
gi(0, t) for the case of a strongly subcritical system for i = 1, 2.
In the numerical work, the data Q1 = 104s−1, Q2 = 2 ×
104s−1, λ = 103s−1, ν1 = 0.7, ν2 = 0.9, q2,1 = q2,2 = 9.2
were used. As is expected, both extinction probabilities tend
to unity, but g1(0, t), which corresponds to the case when
the system started from the deeper subcritical case, reaches
the asymptotic value faster. This is in accordance with the
findings on the expectations in [3], where also a dependence
of the asymptotic values on the initial conditions was found,
and which is clear intuitively.

Fig. 1. Time dependence of the extinction probability in a
strongly subcritical randomly varying system

In Fig.2 extinction probabilities are shown for the case of
a strongly supercritical system with ν1 = 2.4 and ν2 = 2. The
other data are the same as in the previous case. Here, as is also
expected, both extinction probabilities are less then unity, with
the system starting from the higher supercriticality (system 1)
having a lower extinction probability. The asymptotic values
of g1(0, t) and g2(0, t) are 0.7017 and 0.7761, respectively.

Next we consider a case when the system is fluctuating be-
tween a subcritical and a supercritical state with ν1 = 0.6 and
ν2 = 1.4, with the values λ = 103s−1 and Q1 = Q2 = 104s−1.
This system fulfils the condition expressed in (47), i.e. its av-
erage criticality is zero in the traditional sense. However, such
systems were found to be supercritical in the mean. Indeed,
as the results show in Fig. 3, the extinction probabilities are
less then unity, the asymptotic values being 0.993 for system

Fig. 2. Time dependence of the extinction probability in a
strongly supercritical randomly varying system

1 starting from the subcritical case and 0.956 for system 2
starting from the supercritical case. The extinction probabili-
ties are, however, much closer to unity than in the case of the
strongly supercritical system. This is again in agreement with
what one could expect from the behaviour of the moments in
such systems.

Fig. 3. Time dependence of the extinction probability in a
randomly varying system which is supercritical in the mean

One further case of interest with a system supercritical in
the mean is shown below. Fig. 4 shows the case with ν1 = 1.2
and ν2 = 0.75, λ = 103 s−1 and Q1 = Q2 = Q = 104 s−1. With
these data one finds that λcr = 104s−1 > λ, hence the system
is still supercritical in the mean, although “less supercritical”
than in the previous case, since if α1 + α2 = 0, λcr diverges.
The asymptotic values are equal to g1(0,∞) = 0.9774 and
g2(0,∞) = 0.9997, respectively. This latter figure differs from
unity only in the range of the numerical uncertainties. Hence
these numerical results indicate the interesting finding that
for this particular system, which is supercritical in the mean,
the extinction probability is less than unity only in the case
when the system starts from the supercritical state. Starting
from the subcritical state, the extinction probability appears
to be very close, or equal to unity. This indicates that in this
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case the character of the extinction probability is principally
different from that of the moments, for which the difference
in the initial conditions did not lead to such a substantial
difference. It has though to be added that these results are
based on numerical results, and further checks are necessary
to confirm the numerical accuracy of the present calculations.

Fig. 4. Time dependence of the extinction probability in a
randomly varying system which is “slightly supercritical” in
the mean

It is now interesting to investigate the case when the sys-
tem is exactly critical in the mean, according to the definitions
given in [3], i.e. when Eqs (45) and (46) are fulfilled. This
definition is based on the fact that in such a system the ex-
pectation of the population number is asymptotically constant,
irrespective of the initial conditions (although the quantitative
value of the asymptotic expectations does depend on the initial
state). Based on the properties of the extinction probability in
constant systems, where the extinction probability is unity in
a critical system, it is expected that the extinction probabilities
will tend to unity also in the time-varying system, irrespective
of the initial conditions.

Such a case is shown in Fig. 5. With Q1 = Q2 = Q =
104 s−1 and λ = 103 s−1, the values ν1 = 1.02 and ν2 = 0.975
fulfil (45) and (46). Indeed, as the Figure shows, and also the
numerical values confirm to four significant digits, the extinc-
tion probabilities tend to unity even in this case. However, the
convergence is much slower than in the strongly supercritical
system or in a system which is supercritical in the mean (note
the logarithmic scale on the x-axis).

It is thus seen that the properties of the extinction prob-
ability in systems fluctuating in time are in agreement with
those of the lower order moments, but appear to show some
novel features as well. It is also seen that these properties can
only be explored by numerical methods. The investigations
are going on and will be extended to further cases and with
extended convergence tests to both confirm the present results,
as well as to get a deeper insight into the characteristics of the
extinction probability in systems randomly varying in time.

Fig. 5. Time dependence of the extinction probability in a
randomly varying system which is critical in the mean

IV. SOME HISTORY

It is a special pleasure and privilege that this paper is the
joint work with two senior colleagues and former mentors,
true giants of reactor physics and neutron fluctuations, Lénárd
Pál and Mike Williams. Besides personal friendship, scientific
collaboration with them was thoroughly decisive in shaping
my whole career. This paper is also historic in the sense that it
is the first (but hopefully not the last) joint publication of the
three of us. However, let me start with some preliminaries to
this particular paper.

From the early days of my first encounter with neutron
fluctuations in multiplying systems, I was fascinated by the
complete separation of zero power noise and power reactor
noise. Not only that they are valid in opposite limits of the
neutron population (low and high neutron population, respec-
tively), also their mathematical description (master equations
for the probability distributions and the Langevin equation
for the neutron density as a random process, respectively), as
well as the use of the theory (determining the multiplication
properties of the medium and parameters of the fluctuations
of the medium, respectively), are all different. I found the
usual explanations for the complete lack of contact between
these two areas in the literature insufficient and not satisfac-
tory, because they were alluding as if any such contact was
impossible.

I became interested in trying to bridge these two areas
by seeking a description which encompasses both types of
neutron fluctuations, having zero power noise and power re-
actor noise as opposite limits of the theory. In particular I
also envisaged that if any new book on neutron fluctuations
was to be written, which I myself had some vague plans for, a
discussion and clarification of this question must be included.
The first occasion for taking up this line was in 1999, when
I had a short sabbatical, during which I visited Anil Prinja at
the UNM for less than a month. For simplicity, as a starting
point, we assumed a multiplying medium with two different
states, such that it was jumping randomly between those two
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states, and applied the master equations of zero power noise.
A solution of this problem would contain both the effects
of branching (zero power noise) and the fluctuations of the
medium (power reactor noise). With the help of the backward
master equation we managed to derive the first two moments
of the neutron population, including the temporal covariance,
and were able to recover the zero power and power reactor
cases in the corresponding limits.

The story could have ended here. However, I was inter-
ested in extending the treatment from the case of a dichotomic
random material (jumping randomly between two states) to
a “real” random material, like the one that one always treats
in traditional power reactor noise, i.e. a medium whose pa-
rameters change in time as a continuous random function, as
opposed to a binary random function. Since I started collab-
orating with Lénárd Pál after 2002 (when he was a keynote
speaker at the last SMORN symposium ever, held in Göteborg
in May 2002), I approached him with the question of how to
extend the case of a binary medium to a continuously vary-
ing medium. Lénárd first wanted to reconstruct our previous
results by own calculations, and in his careful and general
manner, just out of interest, solved the case of the binary ran-
dom medium with both the forward and the backward method.
To our surpr Springerise, the results, which we expected to
be equivalent, differed from each other. After a long period
of searching for an error in the calculations, we realised that
the reason of the differing results is the fact that the backward
equation is not applicable, due to the failure of the factori-
sation assumption which the backward equation requires in
order to avoid the closure problem.

Thereafter we switched to the forward approach, and de-
rived analytic solutions for the first two moments and the
temporal covariance function of the neutron population both
for one starting particle as well as for the case of a stationary
external source. These results became a separate chapter in our
book on neutron fluctuations [3]. However, we have not con-
sidered the extinction probability. As the above considerations
show, this does not arise automatically from the solutions we
obtained earlier, rather it constitutes an interesting challenge,
which is tackled in this contribution.

Mike comes in to this work on another line, which is
directly related to the extinction probability. First of all, my
very first paper on master equations of particle transport was a
joint publication we made during my IAEA postdoc fellowship
at the Department of Nuclear Engineering of Queen Mary
College, London, where Mike was my host. We published a
paper on the statistics of radiation damage, actually a process
in which a quadratic generation function is exact since there
are at most two particles in one collision, the projectile and
the recoil. This was way back in 1979, the paper appeared
in J. Phys. D. in 1980. Strangely, however, although we
have kept a close contact ever since then, we did not publish
anything jointly until 2014, when Mike involved me into a
study he made on the behaviour of the extinction probability
in a system when the delayed neutrons are also accounted for.
His interest in this subject was raised by some parts of our
book with Lénárd on neutron fluctuations. Mike’s experience
with numerical treatment of the extinction probability became
essential in tackling the problem treated in this case. I am

thoroughly happy and grateful for having the privilege of doing
some joint work with Lénárd and Mike, which converged into
this joint paper.
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