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Abstract – In the present paper, statistical error of variance-to mean ratio, or Y value in the Feynman-α 

method, is theoretically investigated to discuss the relationship among the statistical error of Y value, 

external neutron source strength, and measurement time. Practical theoretical formulae are derived to 

estimate the statistical error of Y value from a single measurement of reactor noise. The derived formulae 

clarify that the statistical error of Y value can be reduced by the total number of counting gate, or total 

measurement time, rather than the strength of external neutron source. Through an actual reactor noise 

experiment at the Kyoto University Criticality Assembly, the derived estimation formulae are validated. 

 

I. INTRODUCTION 

 

Subcriticality monitoring is one of the important 

researches in order to achieve safe and efficient operation and 

management in nuclear fuel-related facilities. It is also 

important for the Accelerator-Driven System (ADS), where 

the subcritical state must be kept in operation [1]. 

Furthermore, in the retrieval of fuel debris from Fukushima 

Daiichi units 1-3 with the submersion condition, there is a 

possibility of positive reactivity insertion event due to the 

change of the moderation ratio; thus the subcriticality 

monitoring to prevent the recriticality is one of the important 

issues [2,3]. 

The Feynman-α method, or the variance-to-mean ratio 

method, is one of the practical subcriticality measurement 

techniques on the basis of “zero-power reactor noise analysis” 

[4-7]. Using the Feynman-α method, the prompt neutron 

decay constant 𝛼 can be measured by analyzing time-series 

data of neutron counts, then the measurement value of 𝛼 is 

converted to the subcriticality −𝜌 , which is the absolute 

value of negative reactivity. In the Feynman-α method, 

quantification of statistical error of the variance-to-mean 

ratio, or 𝑌  value, is useful information to determine the 

measurement time depending on the neutron count rate level. 

Here, one of the simple estimation methods for the statistical 

error is multiple measurements of reactor noise; however, it 

requires longer measurement time to repeat the multiple 

times of measurements. Thus, in authors’ previous study, 

statistical error estimation technique using only a single 

measurement of reactor noise, i.e. without multiple 

measurements, was proposed by the aid of the bootstrap 

method, which is one of the resampling techniques [8,9].  

As another approach, the present paper newly proposes 

theoretical formulae to estimate the statistical error of 𝑌 

value for a single measurement. The motivation is to clarify 

a major factor in the statistical error of 𝑌  value. In the 

following Sec. II, the theory for statistical error of 𝑌 value is 

described. Through an analysis for actual reactor noise data 

which were measured at the Kyoto University Criticality 

Assembly (KUCA), the derived estimation formulae are 

demonstrated in Sec. III, where the estimated statistical errors 

using the derived formulae are compared with (1) the 

bootstrap statistical error [9] and (2) the reference value from 

multiple measurements. Finally, Sec. IV presents the 

concluding remarks. 

 

II. THEORY 

 

1. Fundamental Theory for Statistical Error of Y value 

 

Let us assume a steady state of source-driven subcritical 

system. In this subcritical system, neutron counts 𝐶𝑖(𝑇) (𝑖 =
1~𝑁) are measured multiple times, where 𝑇 is a counting 

gate width and 𝑁 is the total number of count data. Then, 𝑌 

value is evaluated as the variance-to-mean ratio: 

𝑌 ≡
𝜎2

〈𝐶〉
− 1 ≈

𝑠2

𝐶̅
− 1, (1) 

𝜎2 ≡ 〈(𝐶 − 〈𝐶〉)2 〉, (2) 

where the bracket 〈 〉 means the expected value; 〈𝐶〉 and 𝜎2 

are the population mean and variance of neutron counts; and 

𝐶̅  and 𝑠2  represent the sample mean and the unbiased 

variance of 𝐶𝑖(𝑇), respectively: 

𝐶̅ =
1

𝑁
∑(𝐶𝑖 − 𝐶̅)2

𝑁

𝑖=1

, (3) 

𝑠2 =
1

𝑁 − 1
∑(𝐶𝑖 − 𝐶̅)2

𝑁

𝑖=1

. (4) 

Note that the notation 𝑇  is omitted in Eqs. (1)-(4) for 

simplicity. Based on the propagation of uncertainty (or the 

sandwich rule) for Eq. (1), the statistical error of 𝑌  value 

(hereafter denoted as 𝜎𝑌) can be estimated as follows: 

𝜎𝑌 ≈ (1 + 𝑌)√(−
𝜎𝐶̅

𝐶̅
)

2

+ (
𝜎𝑠2

𝑠2
)

2

− 2
cov(𝐶̅, 𝑠2)

𝐶̅𝑠2
, (5) 

where 𝜎𝐶̅  and 𝜎𝑠2  mean the statistical errors of 𝐶̅  and 𝑠2 , 

respectively; and cov(𝐶̅, 𝑠2) is the covariance between 𝐶̅ and 

𝑠2. In Eq. (5), the expected values of 𝜎𝐶̅, 𝜎𝑠2 , and  cov(𝐶̅, 𝑠2) 

can be derived as follows [10]: 
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〈𝜎𝐶̅〉 = √
𝜎2

𝑁
, (6) 

〈𝜎𝑠2〉 = √
1

𝑁
(𝜇4 −

𝑁 − 3

𝑁 − 1
(𝜎2)2) , (7) 

〈cov(𝐶̅, 𝑠2)〉 =
𝜇3

𝑁
, (8) 

𝜇3 ≡ 〈(𝐶 − 〈𝐶〉)3 〉, (9) 

𝜇4 ≡ 〈(𝐶 − 〈𝐶〉)4 〉, (10) 

where 𝜇3 and 𝜇4 correspond to the 3rd and 4th order central 

moments, respectively. 

 

2. Theoretical Expression for Poisson distribution 

 

In order to gain more insight about the statistical error of 

𝑌 value, let us consider that the probabilistic distribution of 

neutron counts can be well approximated by the Poisson 

distribution. For example, this condition corresponds to the 

situation where there are no fissile materials and the external 

neutron source emits only one neutron per decay (Poisson 

source). As another example, if the subcriticality is deep 

and/or the detection efficiency is very low, the histogram of 

neutron counts may be well approximated by the Poisson 

distribution. Based on the characteristics of the Poisson 

distribution, 𝜎2 , 𝜇3  and 𝜇4   satisfy the following 

relationships: 

𝜎2 = 𝜆, (11) 

𝜇3 = 𝜆, (12) 

𝜇4 = 𝜆 + 3𝜆2, (13) 

where 𝜆 corresponds to the mean of neutron count, i.e. 𝜆 =
〈𝐶〉 . By substituting Eqs. (11)-(13) into Eqs. (6)-(8), the 

expected value of 𝜎𝑌 can be obtained from Eq. (5) as follows: 

𝜎𝑌,P ≈ √(−√
1

𝑁𝜆
)

2

+ (√
1

𝑁𝜆
+

2

𝑁 − 1
)

2

−
2

𝑁𝜆
 

= √
2

𝑁 − 1
, 

(14) 

where 𝜎𝑌,P means the expected value of statistical error of 𝑌 

value in the case of Poisson distribution. 

If a high detection efficiency detector and/or a high 

strength external neutron source is used for the Feynman-α 

experiment, the relative statistical error of sample mean, i.e. 

〈
𝜎�̅�

𝐶̅
〉 ≈

1

√𝑁𝜆
, can be reduced inversely proportional to the 

square root of 𝜆. It also means that the total measurement 

time, or 𝑁𝑇, can be reduced in such a situation, if the same 

statistical error level for 〈
𝜎�̅�

𝐶̅
〉 are desired. 

On the hand, Eq. (14) clarifies that 𝜎𝑌,P can be reduced 

by only increasing the total number of count data 𝑁, due to 

the relative statistical error of 〈
𝜎

𝑠2

𝑠2
〉 ≈ √

1

𝑁𝜆
+

2

𝑁−1
. It is 

interestingly noted that the relative covariance term 

〈
cov(𝐶̅,𝑠2)

𝐶̅𝑠2
〉 ≈

1

𝑁𝜆
 is not negligible if 𝜆 is close to zero (e.g. the 

neutron count rate is low and/or the counting gate width 𝑇 is 

small), because the correlation coefficient 〈
cov(𝐶̅,𝑠2)

𝜎�̅�𝜎𝑠2
〉 ≈

1 √1 +
2𝑁

𝑁−1
𝜆⁄  converges to +1 (i.e. strongly positive 

correlation coefficient) as 𝜆 approaches zero. Thus, this fact 

suggests that the correlation between 𝐶̅  and 𝑠2  should be 

taken into account in the estimation of the statistical error of 

𝑌 value. 

 

3. Practical Estimation Method 

 

A. Estimation Formula using Unbiased Estimators for 

Central Moments  

 

In an actual reactor noise experiment, the probability 

distribution of neutron count does not necessarily satisfy the 

Poisson distribution because of the neutron-correlation due to 

multiple emission of neutrons in the decay of external source 

and in the fission event. This physical phenomenon is the 

measurement principle of reactor noise analysis such as the 

Feynman-α method. Then, 𝜎2 , 𝜇3  and 𝜇4  can be estimated 

using the unbiased estimators 𝑠2 , 𝑀3  and 𝑀4 , respectively 

[11]; where 𝑀3 and 𝑀4 are obtained by 

𝑀3 =
𝑁

(𝑁 − 1)(𝑁 − 2)
∑(𝐶𝑖 − 𝐶̅)3

𝑁

𝑖=1

, (15) 

𝑀4 =
𝑁2 − 2𝑁 + 3

(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)
∑(𝐶𝑖 − 𝐶̅)4

𝑁

𝑖=1

 

−
3(2𝑁 − 3)

𝑁(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)
(∑(𝐶𝑖 − 𝐶̅)2

𝑁

𝑖=1

)

2

. 

(16) 

Using these unbiased estimators 𝑠2, 𝑀3 and 𝑀4 in Eqs. (5)-

(8) instead of 𝜎2, 𝜇3 and 𝜇4, the statistical error 𝜎𝑌,est can be 

evaluated by the following formula: 

𝜎𝑌,est

≈ (1 + 𝑌)√
1 + 𝑌

𝑁𝐶̅
+

1

𝑁
(

𝑀4

(𝑠2)2
−

𝑁 − 3

𝑁 − 1
) −

2𝑀3

𝑁𝐶̅𝑠2
. 

(17) 

In the conventional Feynman-α method, the calculation of 𝐶̅ 
and 𝑠2 are required for the evaluation of 𝑌 value as defined 

in Eq. (1). For the estimation of 𝜎𝑌,est  by Eq. (17), the 

additional calculations of 𝑀3 and 𝑀4 are necessary. 
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B. Estimation Formula with consideration of only 2nd Order 

Neutron-correlation 

 

Now, let us derive the approximation formula for the 

statistical error of 𝑌 value to be compared with that of the 

Poisson distribution, Eq. (14). In general, the 3rd and 4th order 

neutron-correlations are lower than the second order neutron-

correlation, because the magnitude of nth order neutron 

correlation is proportional to the nth power of detector 

importance function, or detection efficiency [12]. Based on 

this approximation, approximation values of 3rd and 4th order 

factorial moments are derived as follows. 

Firstly, a master equation for probability generating 

functions of neutron count is described as follows [7,12]: 

ln(𝐺(𝑍, 𝑇|𝑆)) 

= ∫ 𝑑𝑢
∞

0

∫ 𝑑𝑉
𝑉

𝑆(𝑟) ∑ 𝑝𝑠(𝑞, 𝑟) ×

∞

𝑞=0

 

{(�̅�(𝑍, 𝑇|𝑟, 𝑢))
𝑞

− 1}, 

(18) 

𝐺(𝑍, 𝑇|𝑆) ≡ ∑ 𝑍𝐶𝑃(𝐶, 𝑇|𝑆)

∞

𝐶=0

, (19) 

�̅�(𝑍, 𝑇|𝑟, 𝑢)

≡ ∫ 𝑑𝐸
∞

0

∫ 𝑑Ω
4𝜋

𝜒𝑠(𝑟, 𝐸)

4𝜋
𝑔(𝑍, 𝑇|𝑟, 𝐸, Ω⃗⃗⃗, 𝑢), 

(20) 

𝑔(𝑍, 𝑇|𝑟, 𝐸, Ω⃗⃗⃗, 𝑢) ≡ ∑ 𝑍𝐶𝑝(𝐶, 𝑇|𝑟, 𝐸, Ω⃗⃗⃗, 𝑢)

∞

𝐶=0

, (21) 

where  

𝑝(𝐶, 𝑇|𝑟, 𝐸, Ω⃗⃗⃗, 𝑢)  : probability that 𝐶  neutrons are 

detected during counting gate width 𝑇  due to one 

neutron at (𝑟, 𝐸, Ω⃗⃗⃗, 𝑢 ), where 𝑢  is a backward time 

variable, i.e. 𝑢 ≡ −𝑡 , 𝑢 = 0   corresponds to the 

counting gate closing time; 

𝑔(𝑍, 𝑇|𝑟, 𝐸, Ω⃗⃗⃗, 𝑢)  : probability generating function for 

𝑝(𝐶, 𝑇|𝑟, 𝐸, Ω⃗⃗⃗, 𝑢); 

�̅�(𝑍, 𝑇|𝑟, 𝑢)  : weighted mean of probability generating 

function, of which weighting function is  
𝜒𝑠(𝑟,𝐸)

4𝜋
; 

𝑃(𝐶, 𝑇|𝑆)  : probability that 𝐶  neutrons are detected 

during counting gate width 𝑇  due to stationary 

external neutron source 𝑆: 

𝐺(𝑍, 𝑇|𝑆) : probability generating function for 𝑃(𝐶, 𝑇|𝑆); 

𝑆(𝑟) : spatial distribution of source strength; 

𝑝𝑠(𝑞, 𝑟)  : probability that 𝑞  neutrons are emitted per 

decay; 

𝜒𝑠(𝑟, 𝐸) : energy spectrum of external neutron source. 

 

Using mathematical properties of probability generating 

function 𝐺(𝑍, 𝑇|𝑆)  for Eq. (18), an 𝑛 th order neutron-

correlation value 𝑌𝑛 (𝑛 ≥ 2) is defined as: 

𝑌𝑛 =
1

〈𝐶〉

𝜕𝑛 ln(𝐺(𝑍, 𝑇|𝑆))

𝜕𝑍𝑛
|

𝑍=1

 ,  (22) 

where 𝑌2  corresponds to the 𝑌  value in the Feynman-α 

method. For example, 1st to 4th order partial derivatives of 

ln(𝐺(𝑍, 𝑇|𝑆)) with respect to 𝑍 are shown below: 

𝜕(ln𝐺)

𝜕𝑧
=

1

𝐺

𝜕𝐺

𝜕𝑧
 , (23) 

𝜕2(ln𝐺)

𝜕𝑧2
=

1

𝐺

𝜕2𝐺

𝜕𝑧2
− (

𝜕(ln𝐺)

𝜕𝑧
)

2

 , (24) 

𝜕3(ln𝐺)

𝜕𝑧3
=

1

𝐺

𝜕3𝐺

𝜕𝑧3
− (

𝜕(ln𝐺)

𝜕𝑧
)

3

− 3 (
𝜕(ln𝐺)

𝜕𝑧
)

𝜕2(ln𝐺)

𝜕𝑧2
, 

(25) 

𝜕4(ln𝐺)

𝜕𝑧4
=

1

𝐺

𝜕4𝐺

𝜕𝑧4
− (

𝜕(ln𝐺)

𝜕𝑧
)

4

 

−6 (
𝜕(ln𝐺)

𝜕𝑧
)

2
𝜕2(ln𝐺)

𝜕𝑧2
− 3 (

𝜕2(ln𝐺)

𝜕𝑧2
)

2

 

−4
𝜕(ln𝐺)

𝜕𝑧

𝜕3(ln𝐺)

𝜕𝑧3
. 

(26) 

In addition, 𝐺(𝑍, 𝑇|𝑆) satisfies the following mathematical 

properties: 

𝐺(𝑍, 𝑇|𝑆)|𝑍=1 = ∑ 𝑃(𝐶, 𝑇|𝑆)

∞

𝐶=0

= 1, (27) 

𝜕𝑛𝐺

𝜕𝑍𝑛
|

𝑍=1
= 〈𝐶(𝐶 − 1)(𝐶 − 2) ⋯ (𝐶 − 𝑛 + 1)〉. (28) 

Using Eqs. (22)-(28), 2nd to 4th order neutron-correlation 

values can be expressed as: 

𝑌 ≡ 𝑌2 =
𝜕2 ln 𝐺

𝜕𝑍2
|

𝑍=1

=
〈𝐶(𝐶 − 1)〉 − 〈𝐶〉2

〈𝐶〉
 ,  (29) 

𝑌3 =
𝜕3 ln 𝐺

𝜕𝑍3
|

𝑍=1

=
〈𝐶(𝐶 − 1)(𝐶 − 2)〉 − 〈𝐶〉3 − 3𝑌〈𝐶〉2

〈𝐶〉
 , 

(30) 

𝑌4 =
𝜕4 𝑙𝑛 𝐺

𝜕𝑍4
|

𝑍=1

 

=
1

〈𝐶〉
(

〈𝐶(𝐶 − 1)(𝐶 − 2)(𝐶 − 3)〉 − 〈𝐶〉4

−6𝑌〈𝐶〉3 − 3𝑌2〈𝐶〉2 − 4𝑌3〈𝐶〉2 ),  

(31) 

If 𝑌3 and 𝑌4 are negligible small in Eqs. (30) and (31), the 3rd 

and 4th order factorial moments are approximated by: 

〈𝐶(𝐶 − 1)(𝐶 − 2)〉 ≈ 〈𝐶〉3 + 3𝑌〈𝐶〉2, (32) 

〈𝐶(𝐶 − 1)(𝐶 − 2)(𝐶 − 3)〉
≈ 〈𝐶〉4 + 6𝑌〈𝐶〉3 + 3𝑌2〈𝐶〉2. 

(33) 
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By utilizing Eqs. (32) and (33) for the estimators of 3rd and 

4th order central moments 𝑀3  and 𝑀4 , the following 

approximation formulae can be derived: 

𝑀3 ≈ (1 + 3𝑌)𝐶̅, (34) 

𝑀4 ≈ 3{(1 + 𝑌)𝐶̅}2 + (1 + 7𝑌)𝐶̅. (35) 

By substituting Eqs. (34) and (35) into Eq. (17), the 

approximation formula for the statistical error 𝜎𝑌,2nd can be 

finally derived as follows: 

𝜎𝑌,2nd ≈ (1 + 𝑌)√
𝑌(1 − 𝑌)(2 − 𝑌)

(1 + 𝑌)2𝑁𝐶̅
+

2

𝑁 − 1
, (36) 

where Eq. (36) is applicable to the condition where the sign 

in the square-root of is positive, e.g. 𝑌 < 1.  As compared Eq. 

(36) with Eq. (14), the statistical error 𝜎𝑌 is corrected due to 

the 2nd order neutron correlation factor, 𝑌. If the Feynman-α 

experiment is conducted under a situation where the total sum 

of neutron count 𝑁𝐶̅  is large enough, 𝜎𝑌  can be mainly 

reduced by increasing 𝑁. In such a situation, a high strength 

external neutron source, or large 𝐶̅ , contributes little to 

improving the statistical error of 𝑌 , although the relative 

statistical error of mean 〈
𝜎�̅�

𝐶̅
〉 can be reduced. It is noted that, 

the relative statistical error 
𝜎𝑌,2nd

𝑌
 becomes smaller by 

increasing 𝑌 using a detector with higher efficiency, since the 

absolute value of 𝑌 is proportional to the detection efficiency. 

Hence, the improvement of the detection efficiency is 

important to reduce the relative error of 𝑌 value. 

Using Eq. (36), the statistical error 𝜎𝑌,2nd  can be 

approximately estimate by reusing 𝑌  value without 

calculation of 𝑀3  and 𝑀4 , i.e. the calculations of 𝐶̅ and 𝑠2 

are sufficient for the error estimation.  

 

III. EXPERIMENTAL ANALYSIS 

 

1. Experimental Condition 

 

In the previous study, the reactor noise experiments were 

conducted in the A-core (A3/8”p36EU-NU) at the Kyoto 

University Critical Assembly (KUCA) [13]. The detail of this 

experiment is reported in the reference [9]. 

The experimental core and the loaded fuel assembly are 

shown in Fig. 1 and 2, respectively. In this experiment, 3He 

detectors (#1~4) were placed at axially center positions of 

excore reflector assemblies. Using these detectors, the time-

series data of neutron counts were successively measured. At 

the shutdown state, the reactor noise was measured without 

any external neutron source such as a Cf source, i.e. using 

only inherent neutron source which mainly consists of 

spontaneous fission of 238U and (α,n) reactions of 27Al due to 

α-decay of uranium isotopes [14]. The detector#2 is used for 

the present reactor noise analysis, where the neutron count 

rate 𝐶̅/𝑇 is 4.444 ± 0.011 [count/sec].  

 
Fig. 1. Top view of experimental core (A3/8”p36EU-NU). 

 

 
Fig. 2. Fuel assembly loaded in experimental core. 

 

In order to measure the reference values of statistical 

error 𝜎𝑌,ref , 93 times of 10 minutes’ reactor noise 

measurements were conducted. Using the conventional 

bunching method [15], the variation of 𝑌(𝑇)  was 

individually evaluated for each of 10 minutes’ measurements. 

When the counting gate width is 𝑇  [sec], the number of 

counting gate 𝑁 corresponds to 𝑁 = ⌊600 𝑇⁄ ⌋. Using 93 sets 

of 𝑌𝑚(𝑇), the reference statistical error 𝜎𝑌,ref were estimated. 

𝜎𝑌,ref = √
1

93 − 1
∑ {𝑌𝑚 − (

1

93
∑ 𝑌𝑚′

93

𝑚′=1

)}

93

𝑚=1

2

, (37) 

 

In order to confirm the validity of error estimation 

formulae, one of the 10 minutes-reactor noise measurements 

is selected. Then, the statistical errors 𝜎𝑌,est  and 𝜎𝑌,2nd  are 

estimated by both Eqs. (17) and (36). For discussion about 

the 2nd order neutron correlation effect, the approximated 

statistical error 𝜎𝑌,P  using the Poisson distribution is also 

evaluated using Eq. (14). 

Furthermore, as an alternative error estimation technique, 

the bootstrap standard deviation 𝜎𝑌∗ is numerically evaluated 

by the bootstrap method. In the bootstrap method, a 

histogram of original neutron count data is utilized as an 

experimentally-based probability distribution in the 

resampling to evaluate the statistical error of 𝑌 , e.g. the 

bootstrap-standard deviation 𝜎𝑌∗  and the bootstrap-

confidence interval. The detail of this methodology is 

explained in reference [9]. In Appendix A, the brief 

explanation about the estimation of 𝜎𝑌∗ is summarized. 
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2. Results 

 

Figure 3 shows statistical errors of (1) reference 𝜎𝑌,ref,  

(2) approximated 𝜎𝑌,P  using the Poisson distribution, (3) 

𝜎𝑌,est  using the unbiased estimators for 3rd and 4th central 

moments, (4) 𝜎𝑌,2nd  with consideration of only 2nd order 

neutron-correlation, and (5) 𝜎𝑌∗ by the bootstrap method. 

 

 

 
Fig. 3. Estimation results of statistical error of 𝑌 value. 

 

As shown in Fig. 3, 𝜎𝑌,est , 𝜎𝑌,2nd , and 𝜎𝑌∗  agree well 

with reference 𝜎𝑌,ref . Compared with these results, 𝜎𝑌,P  is 

underestimated, although 𝜎𝑌,P is the simplest way to roughly 

guess the statistical error without measured neutron count 

data, i.e. Eq. (14) needs only 𝑁  which can be given 

beforehand in the experimental design stage. 

By comparison between 𝜎𝑌,P and 𝜎𝑌,2nd, it is confirmed 

that the 2nd order neutron-correlation effect is important to 

improve the estimation of the statistical error 𝜎𝑌. From the 

fact that 𝜎𝑌,2nd  is nearly equal to or slightly smaller than 

𝜎𝑌,est, it is demonstrated that the 3rd and 4th order neutron-

correlations have small impact on the estimation of 𝜎𝑌. The 

advantage of 𝜎𝑌,2nd  is lower calculation cost, i.e. the 

statistical error can be obtained from the measurement values 

𝐶̅  and 𝑌  only. Although 𝜎𝑌,est  needs additional calculation 

for 𝑀3 and 𝑀4, but the calculation cost is insignificant. Thus 

𝜎𝑌,est is also one of the practical estimation methods. 

As previously reported in the reference [9], the bootstrap 

method can provide the reasonable statistical error such as the 

bootstrap standard deviation 𝜎𝑌∗. As shown in Fig. 3, 𝜎𝑌∗ and 

𝜎𝑌,est  are almost the same. The disadvantage of bootstrap 

method is that calculation cost is relatively high due to the 

resampling procedures. In the present analysis, the bootstrap 

replicates 𝑌∗ were randomly resampled 1000 times to obtain 

𝜎𝑌∗ with high precision, thus the total calculation time of the 

bootstrap method is approximately at least 1000 times higher 

than that of  𝜎𝑌,2nd  and 𝜎𝑌,est . Because of this calculation 

time, the bootstrap method may be unsuitable for the real-

time statistical error estimation in the on-line monitoring 

system. Note, however, that the bootstrap method enables us 

to easily estimate not only the statistical error of 𝑌 but also 

the statistical error of prompt neutron decay constant 𝛼 

(denoted as 𝜎𝛼). In the present study, the authors have only 

derived the theoretical formulae for 𝜎𝑌 . The theoretical 

derivation for 𝜎𝛼  is a one of the future tasks, because the 

derivation of 𝜎𝛼  is more complicated due to the fitting 

procedure to evaluate 𝛼.  

Consequently, it is validated that the derived theoretical 

formulae, Eqs. (17) and (36), are useful to estimate the 

statistical error of 𝑌  value from a single measurement of 

reactor noise. By utilizing these estimation formulae, the 

variation of 𝑌(𝑇) can be measured with the statistical error, 

as shown in Fig. 4. The estimated statistical error is also 

applicable to the weight in the fitting procedure for 𝛼. 

 

 
Fig. 4. Variation of 𝑌(𝑇)  with the statistical error 𝜎𝑌,est 

(error bar represents 1σ). 

 

IV. CONCLUSION 

 

As the statistical error estimation for 𝑌  value from a 

single measurement of reactor noise, the practical estimation 

formulae of 𝜎𝑌,est  and 𝜎𝑌,2nd , or Eqs. (17) and (36), were 

newly derived. The derived formulae clarified that the 

statistical error σ𝑌  can be reduced by the total number of 

counting gate 𝑁 (or total measurement time 𝑁𝑇) rather than 

the strength of external neutron source. It is noted that the 

relative statistical error 
𝜎𝑌

𝑌
 can be improved using a detector 

with higher efficiency.  

Through the reactor noise analysis for the actual KUCA 

experiment, it was validated that the statistical errors 𝜎𝑌,est 
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and 𝜎𝑌,2nd  using Eqs. (17) and (36) agree well with the 

reference value of 𝜎𝑌,ref which was obtained from multiple 

measurements of reactor noise. Furthermore, it was 

confirmed that the 2nd order neutron-correlation effect is 

important in the estimation of the statistical error of 𝑌 value 

by comparing with the approximated statistical error 𝜎𝑌,P 

using the Poisson distribution. The estimated error of 𝜎𝑌,est 

using the unbiased estimators for 3rd and 4th central moments 

was approximately equal to that of the bootstrap method. 

Compared with the bootstrap method, the advantage of the 

practical estimation formulae of 𝜎𝑌,est  and 𝜎𝑌,2nd  is lower 

calculation cost. 

 

APPENDIX A: BOOTSTRAP METHOD 

 

The estimation procedures of statistical error 𝜎𝑌∗  are 

briefly explained below: 

1. Original time-series data of neutron counts 𝐶𝑖(𝑇0)  are 

provided by a single measurement of reactor noise, where  

𝑇0  is a basic counting gate width. The total number of 

count data is 𝑁0. 

2. Set 𝑘 be an arbitrary number of bunching (1 ≤ 𝑘 < 𝑁0). 

3. The “resampling position 𝑟 ” is determined using a 

uniform random integer number, 1 ≤ 𝑟 ≤ (𝑁0 − 𝑘 + 1). 

Then, neutron count 𝐶∗(𝑘𝑇0) is resampled by bunching 

the successive count data as follows: 

𝐶∗(𝑘𝑇0) = ∑ 𝐶𝑖(𝑇0)

𝑟+𝑘−1

𝑖=𝑟

. (A.1) 

4. By repeating 𝐾(= ⌊𝑁0/𝑘⌋) times of random-resampling 

described in step 3, then “bootstrap sample” of count data 

is newly generated as follows: 

𝐶∗(𝑘𝑇0) ≡ {𝐶1
∗(𝑘𝑇0), 𝐶2

∗(𝑘𝑇0), ⋯ , 𝐶𝐾
∗ (𝑘𝑇0)}. (A.2) 

5. Using Eq. (1) for 𝐶∗(𝑘𝑇0), “bootstrap replicate 𝑌∗(𝑘𝑇0)” 

is evaluated for the bunching gate width 𝑘𝑇0. 

6. Repeat steps 2 through 5 by varying 𝑘  to obtain the 

variation of 𝑌∗ with respect to counting gate width. 

7. In order to estimate standard deviation of the bootstrap 

replicate 𝑌∗ , repeat steps 2 through 6 several times. 

Consequently, many number of bootstrap replicates 𝑌∗𝑏 

are obtained for 𝑏 = 1,2, ⋯ , 𝐵. Here, 𝐵 is the number of 

bootstrap replicates. 

8. Using dataset of 𝑌∗𝑏  in step 7, the bootstrap standard 

deviation of 𝑌∗  (denoted as 𝜎𝑌∗ ) is calculated for each 

counting gate width 𝑘𝑇0: 

𝜎𝑌∗ = √
1

𝐵 − 1
∑ (𝑌∗𝑏 −

1

𝐵
∑ 𝑌∗𝑏′

𝐵

𝑏′=1

)

2𝐵

𝑏=1

 . (A.3) 
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