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Abstract - An essential component of the deterministic reactor core analysis is the resonance self-shielding 

calculation, which is used to produce problem-specific multigroup cross sections. Equivalence theory and 

the subgroup method have been widely used to perform this task in the conventional two-step core analysis. 

However, recent progress with high-fidelity whole core direct transport methodology sets up new 

requirements for the associated self-shielding method, namely, being able to resolve within-pin effects such 

as multi-region depletion and non-uniform fuel temperature distribution. In the framework of whole core 

direct transport, the usability of existing self-shielding methods needs to be reexamined, and advanced self-

shielding methods should be proposed to allow these new requirements to be met. This paper reviews the 

important physics of resonance self-shielding that should be properly modeled in direct transport 

calculation, including spatial self-shielding effects, resonance interference, non-uniform temperature 

effects and clad self-shielding. We discuss the qualification of four self-shielding methods, i.e., equivalence 

theory, the physical subgroup method, ESSM and ESSM-X, in handling the basic and advanced 

requirements. The computational resources of these methods are also compared.  

 

 

I. INTRODUCTION 

 

In deterministic reactor core analysis, the multigroup 

(MG) approximation is usually used to treat the complicated 

energy behavior of resonance cross sections. The 

conventional reactor core analysis utilizes a two-step 

methodology. The two-step approach has been necessitated 

over the years because of the computational burden of 

dealing with the extreme energy dependence of cross 

sections and the geometric complexity of a full core reactor. 

Given a suitable fine-group library of cross sections from a 

library generation code such as NJOY [1] or AMPX [2], the 

first step is the lattice calculation that starts with the 

resonance self-shielding calculation to produce problem-

specific MG cross sections. Those cross sections are then 

condensed into few groups and homogenized over the lattice 

(e.g., full assembly or 1/4 assembly) for the full core 

diffusion calculation in the second step. In contract to the 

two-step method, modern direct whole-core transport 

methods perform a transport calculation using the realistic 

geometry, material composition, and temperature profile of 

the reactor configuration. However, evaluating the problem-

dependent MG effective cross sections for the explicit 

configuration (i.e., the resonance calculation) is still an 

essential task to assure the accuracy of the direct transport 

method. 

To avoid the expensive calculation of the continuous-

energy (CE) slowing-down equation for a fuel lattice, a 

number of physical and mathematical approximations have 

been developed for the resonance calculation [3]. Although 

some of the resonance methods developed for the lattice 

calculation can be incorporated into the direct transport 

method, the latter requires additional considerations for the 

pin-resolved capabilities of a ‘high-fidelity’ calculation, 

such as the within-pin depletion and thermal feedback [4]. 

This paper discusses the qualification of four typical 

methods in handling the basic and advanced requirements in 

the resonance calculation. Three resonance methods widely 

used in the current lattice and whole-core transport codes 

are reviewed, including equivalence theory [5], the physical 

subgroup method [6] (referred to as subgroup method for 

simplicity in the rest of the paper) and the embedded self-

shielding method (ESSM) [7,8]. A new method ESSM-X 

[9] recently implemented into the CASL direct transport 

neutronics solver MPACT [10] is also discussed. 

 

II. PHYSICS OF SELF-SHIELDING 

 

The following physics phenomena that are important 

for the resonance calculation are reviewed: spatial self-

shielding effects, resonance interference, non-uniform 

temperature profiles and clad self-shielding. ESSM-X, 

which addresses these phenomena, is briefly reviewed at the 

end of this section. 

  

1. Spatial Self-shielding Effects 

 

Spatial self-shielding is conventionally modeled by 

equivalence theory, which correlates the heterogeneous 

problem with a homogeneous resonance integral (RI) table 

by adding the equivalence cross section 
eq  into the 

background cross section, 

 

, ,b res iso p iso eq res

iso
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 .               (1) 

 

mailto:yuxuanl@umich.edu


M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, 

Jeju, Korea, April 16-20, 2017, on USB (2017) 

 

There are several approximations that could lead to 

formulas similar to Eq. (1), but here the single-term rational 

approximation [11] and the intermediate resonance 

approximation [12] are used. The equivalence cross section 

differs in each pin location due to neighboring shielding 

effects, thus variations of effective cross sections can be 

obtained by interpolating the background cross section 

through the RI table. In addition to the inter-pin effect, 

modeling the within-pin effect is also needed in the direct 

transport calculation.  

Fig. 1 shows a typical Westinghouse 17×17 PWR 

assembly with inter-assembly water gap. In Fig. 2, the U-

238 absorption rates of the three pin locations (each with ten 

rings of fuel) are compared with MCNP calculations [13]. 

The inter-pin effect is easily seen by examining Pins 1-3. 

Because of the larger equivalence cross section introduced 

by proximity to the water hole/gap, Pin 3 has the largest 

equivalence cross section followed by Pin 1. As a result, the 

effective absorption rates of Pin 1 for all fuel rings are 

slightly larger than those of Pin 2, and Pin 3 has the largest 

absorption rates of the three pins. The within-pin effect can 

be also be seen In Fig. 2, as each pin sees a large gradient of 

U-238 absorption rates from fuel surface to center, leading 

to the rim effect as the fuel depletes.  

  

 
Fig. 1 PWR assembly with inter-assembly water gap 

 

Although there is a theoretical limitation in applying 

both the multi-term rational approximation and the 

intermediate resonance approximation [5,14], the accuracy 

of modeling inter-pin effects by equivalence theory is 

generally acceptable. However, an asymptotic study shows 

that the rational approximation cannot work for a multiple-

ring fuel region [15]. Therefore, conventional equivalence 

theory and ESSM, which depends on equivalence theory, 

cannot model the within-pin reaction rate distribution 

correctly. The multiple fuel region escape probability should 

be calculated by extending the rational type approximation 

[15,16]. If the conventional rational form is still desired, an 

energy dependent equivalence cross section is needed. On 

the other hand, the subgroup method effectively computes 

an energy-dependent equivalence cross section via subgroup 

levels, so a better representation of the within-pin effect is 

achieved by the subgroup method. Numerical verification of 

these observations will be discussed in Section III. 

 

 
Fig. 2 Spatially dependent absorption rates of U-238 for 

Pins 1, 2 and 3 

 

We’ve discussed the within-pin effect along the radial 

direction. In some circumstances, reaction rates could vary 

significantly in the azimuthal direction. For instance, Pin 4 

in Fig. 1 has a strong azimuthal heterogeneity. We ran 

MCNP for Pin 4 with an azimuthally refined mesh shown in 

Fig. 3. The U-238 effective absorption cross sections and 

rates of subregions 1 and 3 computed by MCNP using a 56-

group energy structure [17] are shown in Fig. 4. Differences 

in the range 4%~15% are observed for the effective cross 

sections in major resonance groups for Subregions 1 and 3, 

while 10%~35% differences are observed for the reaction 

rates. Interestingly, for large resonances such as the U-238 

6.67eV, the difference in effective cross sections between 

Subregions 1 and 3 is small, but the difference in reaction 

rate is large, indicating the latter is primarily due to the 

difference in neutron flux. As reaction rate is our major 

concern, a precise azimuthal model for cross section is 

appreciated, but is not a mandatory requirement. As will be 

shown in Section III, the azimuthal effect can be accurately 

modeled by the subgroup method, while the results of 

ESSM/ESSM-X are acceptable even they are less accurate 

in handling the azimuthally varied cross sections. 

 

 
Fig. 3 Within-pin mesh for investigating azimuthal effect 

(region 1 is closer to the water hole) 

3 
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Fig. 4 Comparison of U-238 absorption cross section and 

rates between Subregions 1 and 3 

 

Traditionally, resonance calculations have been 

performed in a 2-D geometry by neglecting the axial 

heterogeneity in generating the MG cross section. Although 

a 3-D transport capability (e.g., 3-D MOC) makes it 

possible to perform the resonance calculation for a 

consistent 3-D geometry, this significant extension of the 

direct transport method should be based on its necessity, 

given the computational burden for the 3-D transport kernel. 

Ref. [18] discusses the effect of the cross sections produced 

either by a 2-D MCNP calculation with axially reflective 

boundaries, or by a 3-D MCNP calculation of the realistic 

configuration. These cross sections are then fed to a 

deterministic solver for eigenvalue calculation. Table I 

shows the eigenvalue comparison by using the 2-D and 3-D 

cross sections for three typical LWR cases with significant 

axial heterogeneities. From the trivial eigenvalue difference 

between 2-D and 3-D cross sections, it can be concluded 

that a 2-D resonance calculation should be sufficient for a 

direct transport calculation of the LWR applications. 

  

Table I Comparison of Eigenvalues 

Case 3D-XS 2D-XS 

1 1.29166 1.29170 

2 1.36064 1.36066 

3 1.29027 1.29028 
1. PWR pin cell (full details) with axial boundary leakage 

2. Hot BWR pin cell (distributed moderator densities) 

3. Partially inserted control rod in 3x3 pin configuration 

 

2. Resonance Interference 

 

Resonance interference is a long-standing problem that 

arises from the overlapping in energy of cross sections from 

several resonance isotopes. Fig. 5 shows the cross section 

interference between U-235 and U-238 at 5eV-90eV. Since 

the RI table is often prepared for each resonance isotope 

independently, resonance interference is neglected at this 

step and treated at the MG level, e.g., using Bondarenko 

iteration as described in the WIMS code [19].  

 

 
Fig. 5 Resonance interference between U-235 and U-238 

[20] 

 

However, it was shown in early research that 

corrections for the interference effect in the MG framework 

cannot resolve various conditions of the resonance overlap 

for a mixture of resonance isotopes [21]. It is necessary to 

utilize the CE cross section data to either predetermine the 

resonance interference factors (RIF) among resonance 

isotopes, or compute them on the fly [21]. Efforts were 

made to incorporate the interference effect by extending the 

dimension of the RI table or adding subgroup parameters 

using the density ratio of two resonance isotopes [22,23]. 

The difficulty for these methods occurs when the number of 

resonance isotopes becomes large, e.g., for MOX fuel or 

depleted fuel because the increased size of the RI table 

depends on the number and significance of the resonance 

isotopes in a specific problem. Alternatively, a 

heterogeneous pseudo-resonant isotope approach was 

proposed [24] to generate the RI table of a mixture that 

inherently includes the interference effect. However, similar 

practical issues are encountered when the number of 

isotopes is large and the fractions of them are various in the 

depletion calculation. To correct the interference effect on 

the fly, Ref. [25,26] discuss several successful methods 

based on the RIF model. The numerical results are included 

in Section III. 

 

3. Miscellaneous Effects 

 

Associated with the spatial self-shielding effect is the 

temperature distribution within a pin cell when thermal 

feedback is considered. In the conventional lattice 

calculation, an ‘effective temperature’ is chosen to replace 

the realistic temperature distribution of a fuel rod. Various 

approaches to obtain the effective temperature are discussed 

in Ref. [27]. However, the effective temperature model 

cannot be used if one wants to obtain accurate self-shielded 
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cross sections in every subregion of the fuel. Also, 

equivalence theory and ESSM cannot treat a non-uniform 

temperature distribution because of their inability to model 

within-pin effects. The subgroup method lacks a firm 

theoretical foundation to treat non-uniform temperature, so 

correction methods have been developed to account for the 

temperature distribution [28,29]. The numerical results for 

subgroup temperature correction is included in Section III.  

Previously the focus of resonance calculation is on the 

resonance isotopes in the fuel pellet and burnable absorbers. 

A recent study showed that lack of self-shielding calculation 

for clad materials could introduce an eigenvalue error of 

100-300 pcm [30]. Ref. [30] developed a simplified model 

by treating the clad region as an infinite slab, which 

efficiently yields accurate effective cross sections for clad 

isotopes using equivalence theory. For the subgroup method 

and ESSM/ESSM-X, since the background cross section of 

every resonant region can be determined by solving the MG 

fixed source problem (FSP), the self-shielding calculation of 

clad regions does not require extra efforts. However, to 

avoid the interaction between fuel and clad materials, 

separate resonance categories [6] should be used for the two 

materials, increasing the computational cost of solving the 

FSPs. In fact, all the resolved resonances of  Zr isotopes are 

well within 100eV-0.1MeV (see Fig. 6), and only a few 

groups are present in this energy range for the typical group 

structure of ~50 groups normally used in direct transport 

methods. As a result, self-shielding calculation for the full 

resonance range (usually down to ~1eV) is not necessary for 

the category of Zr. Also, the resonance isotopes in the clad 

category are less-important than those of other categories, so 

a 1-group subgroup method was developed to perform a 

single group FSP for the less-important category such as 

clad [31]. The accuracy and efficiency of the 1-group 

subgroup is also discussed in Section III. 

 

 
Fig. 6 Resonances of Zirconium isotopes [20] 

    

 

4. Description of ESSM-X 

 

ESSM-X [9] was originally developed to improve the 

accuracy of ESSM in treating temperature-dependent fuel 

subregions and resonance interference. The method 

performs a conventional ESSM calculation without 

subdivision of the fuel region to capture the inter-pin 

shielding effect. The resultant self-shielded cross sections 

are modified by correction factors incorporating the within-

pin effects and resonance interference. These correction 

factors are computed through an efficient local quasi-1D 

slowing-down model, in which the inter-pin effect has been 

included by an equivalence cross section rather than an 

explicit boundary condition, 

 

, , ,( ) ( ) ( ) ( ) ( )t i eq i i i eq iu u u Q u u    
 

.           (2) 

 

Eq. (2) is actually in a 0-D form, but 1-D information is 

embedded in , ( )eq i u  and ( )iQ u , the equivalent source and 

equivalence cross section of region i. Specifically, 

, ( )eq i u is derived from the CE fuel escape probability of 

region i, 
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( )iQ u  is derived as the superposition of scattering sources 

of all fuel regions that contribute to region i, 

 

,

, ,

( )( )
( ) ( )

1 ( ) ( )

i jt i

i j

j Fesc i t j

P uu
Q u Q u

P u u








 
 .            (4) 

 

In Eq. (4), i jP is the first flight collision probability from 

region i to j, and ( )jQ u is the regular scattering source that 

can be evaluated by numerically integrating the scattering 

kernel. Fig. 7 summarizes the calculation flow of ESSM-X. 

  

  

 
Fig. 7 ESSM-X calculation 

 

III. RESULTS 

 

We compare the subgroup method, ESSM and ESSM-X 

with regard to the important physics discussed in the 

previous section. The three methods are implemented in 

MPACT and the 56-group cross section library is used [17]. 

Regular ESSM                                     Quasi-1D slowing-down 
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1. Spatial Self-shielding Effects 

 

The spatially dependent absorption rates are compared 

for the three methods. For the case shown in Fig. 1, the 

radial variation of U-238 absorption rates of Pin 3 in the 

resonance energy range (0.6eV-25keV) are compared with 

MCNP. As previously addressed, ESSM is unable to resolve 

the within-pin effect, although one can solve a FSP with 

multiple fuel rings so that each ring obtains an individual 

equivalence cross section. Fig. 8 shows that ESSM 

underestimates by 15% the U-238 absorption rate at the fuel 

rim. This bias could lead to 30% underprediction of Pu-239 

in the rim zone at 31 GWd/tU (Fig. 9) and a significant bias 

of power distribution along the fuel radius (Fig. 10). The 

errors with the subgroup method are much smaller, and 

ESSM-X shows the best match with MCNP results. For all 

three methods, the total absorption rates of U-238 integrated 

over the fuel rings are acceptable according to the table 

included in Fig. 8. 

 

 
Fig. 8 Comparison of U-238 absorption rates in Pin 3 

 

 
Fig. 9 Comparison of Pu-239 content in the rim zone 

 
Fig. 10 Comparison of power distribution at 31.2 GWD/tU 

 

In Section II.1, the azimuthal self-shielding is 

investigated. All three methods can be adapted to account 

for the azimuthal self-shielding by solving the FSP with the 

azimuthally refined mesh of Fig. 3. In Fig. 11, we compare 

the ratios of U-238 absorptions in subregions 1 and 3, 

predicted by MCNP and the three self-shielding methods. 

For the large resonances of U-238, all three methods predict 

the ratios accurately. ESSM and ESSM-X slightly 

underestimate the ratios for a few high energy resonances, 

but these resonances are less important. In general, all three 

methods are able to capture this effect acceptably. 

 

 
Fig. 11 Comparison of azimuthally dependent U-238 

absorption rates 

 

2. Resonance Interference 

 

The resonance interference effect is investigated by 

comparing energy dependent reaction rates for key nuclides 

using the three resonance methods. Figs. 12 and 13 show the 

results of U-235 and Pu-239 for a MOX pin cell with 16 

wt% Plutonium. Both ESSM and the subgroup method 

Total absorption rate 

MCNP: 7.16e-4 

Subgroup: 7.14e-4 

ESSM: 7.19e-4 

ESSM-X: 7.16e-4 
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model the resonance interference by Bondarenko iteration, 

which is unable to produce the correct reaction rates for U-

235 and Pu-239 when multiple resonances are present. 

ESSM-X significantly improves the energy dependent 

reaction rates by using a correction factor based on solving 

the CE slowing-down equation. 

 

 
Fig. 12 Comparison of U-235 absorption rates for a MOX 

pin cell 

 

 
Fig. 13 Comparison of Pu-239 absorption rates for a MOX 

pin cell 

 

3. Miscellaneous Effects 

 

To study the non-uniform temperature effect, the 

subgroup method and ESSM-X analyze SNU’s pin cell 

benchmark problems (the average temperature of each 

problem is shown in Fig. 13) [32]. In addition to the radially 

dependent reaction rates that have been presented 

previously, the fuel temperature coefficient (FTC) is also 

predicted. In Fig. 14 the significant discrepancy of the 

subgroup method as compared to MCNP is primarily due to 

the crude treatment of resonance interference, but in this 

analysis the slope of the curve (FTC) is more important. 

Because of linearly interpolating the CE cross sections 

among temperatures, the errors of the last two temperatures 

of ESSM-X become larger when the temperature grid is 

coarser at the high temperatures in the CE library. Other 

than that, both subgroup (with correction) and ESSM-X 

give reasonable estimates of FTC for the first five 

temperatures. 

 

 
Fig. 14 Reactivity of non-uniform temperature pin cells 
*The statistic error of MCNP results are all within 5 pcm (too 

small to view in the figure) 

 

In Section II.3, the 1-group subgroup approximation is 

introduced to deal with the less important resonance 

categories such as clad. Table II shows the eigenvalue 

differences for VERA Progression Problems 1 and 2 [33] 

when the 1G subgroup is applied to different categories. 

From the ‘1G’ column, we see an eigenvalue bias of -40 to -

90 pcm when 1G subgroup is applied to all of the four 

predefined categories (two for uranium, one for clad and the 

other for absorbers). From the ‘1G-Clad’ column, enabling 

1G subgroup only for clad calculation is sufficiently good as 

compared to the standard MG subgroup. For some cases 

with resonance absorbers in a separate category (AgInCd in 

2g, Gadolinium in 2o and 2p), we have small eigenvalue 

difference of ~20 pcm if using 1G subgroup for the two 

non-uranium categories (‘1G-ButU’ column). Given a total 

of four categories being used in our calculation, applying 

1G approximation to any of the categories (such as clad) 

roughly saves 25% of the subgroup calculation time.  
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Table II Results of 1G subgroup compared to MG subgroup 

Case MG(keff) 

Eigenvalue difference (pcm) 

compared with MG 

1G 1G-Clad 1G-ButU 

1a 1.186242 -71.6 0.1 0.1 

1b 1.181856 -79.5 0.1 0.1 

1c 1.171485 -85.5 0.1 0.1 

1d 1.162268 -79.1 0.1 0.1 

2a 1.180841 -60.3 0.1 0.0 

2b 1.182547 -67.9 0.1 0.1 

2c 1.173164 -73.4 0.1 0.1 

2d 1.164766 -67.3 0.1 0.1 

2e 1.069116 -55.0 0.1 0.1 

2f 0.975980 -51.1 0.1 0.1 

2g 0.849946 -22.0 0.1 22.7 

2h 0.791799 -37.2 0.1 0.0 

2i 1.178756 -59.8 0.1 0.0 

2j 0.975239 -51.1 0.1 0.1 

2k 1.020060 -53.1 0.1 0.1 

2l 1.017051 -49.8 0.1 0.0 

2m 0.936860 -44.7 0.1 0.0 

2n 0.868073 -42.7 0.1 0.0 

2o 1.047530 -61.6 0.1 -9.6 

2p 0.927848 -62.0 0.1 -17.0 

2q 1.171205 -85.0 0.0 -0.1 

 

4. Computing resources 

 

A cross section library of ~50 groups is generally well 

within 50MB for storage of the cross section data, so the 

methods entirely based on multigroup cross section data 

such as equivalence theory, subgroup and ESSM, are 

generally satisfactory from a memory standpoint. Of the 

three methods, equivalence theory requires minimum 

computing time, since the calculations are analytic except 

for the evaluation of the Dancoff factor, which may require 

a single group transport sweep [34]. In contrast, subgroup 

and ESSM need to perform FSP calculations in each 2-D 

plane for every resonance group and category. Generally, 

the computing time of subgroup and ESSM is comparable, 

since ESSM needs ~4 iterations to converge the equivalence 

cross section, while subgroup solves for ~4 subgroup levels. 

Because of its use of CE cross sections to solve the slowing-

down equation, ESSM-X is more expensive than the other 

methods.  

Table III compares the computing time and memory 

demand of the three methods. Cases 1-4 represent the 

combinations of fresh/depleted fuel and coarse/fine mesh. 

The fine mesh FSP calculation utilized 10 radial rings in the 

fuel, a 0.01 cm ray spacing, 24 azimuthal angles per octant, 

and 4 polar angles. For the coarse mesh, the fuel is 

subdivided into 3 rings, and a 0.05/16/3 discretization is 

used for the MOC solver. In spite of the number of isotopes, 

four resonance categories are used for FSP calculations, so 

the computing times of subgroup and ESSM do not increase 

when the fuel is depleted. The additional time of ESSM-X 

compared to ESSM is modest (especially for the fine mesh), 

primarily due to solving the quasi-1D slowing-down 

equation. The memory demand and the efficiency of ESSM-

X is sensitive to the number of isotopes, which determines 

the size of CE data loaded into the problem and the speed of 

slowing-down calculation. A merit of ESSM-X is that the 

pin-cell based slowing-down calculations are naturally 

decoupled, so the additional memory requirement for 

ESSM-X (~260MB for a depleted case) should be 

independent of the geometrical size of the problem. This 

also makes the model easy to be implemented in parallel.   

 

Table III Computing resources of the resonance methods 

 Reso. calc. time (s) Memory (MB) 

 Sub. ESSM ESSM-X Sub. ESSM ESSM-X 

1 19.1 19.2 18.8 31.4 31.3 57.9 

2 18.9 18.3 22.7 31.6 31.6 294 

3 1.50 1.40 1.63 9.43 9.43 35.8 

4 1.49 1.38 3.92 9.49 9.48 272 
Case 1: fresh pin + fine mesh 

Case 2: depleted pin (153 isotopes) + fine mesh 

Case 3: fresh pin + coarse mesh 

Case 4: depleted pin + coarse mesh 

 

IV. CONCLUSION 

 

This paper reviews the important physics that the 

resonance self-shielding method needs to account for in 

direct transport calculations. Table IV summarizes the 

features of the four resonance methods regarding their 

capability to resolve the physics of interest. As the fastest 

model, equivalence theory is not able to account for many of 

the important phenomena. The efficiency of the subgroup 

method and ESSM is comparable, but subgroup is superior 

in terms of modeling the physics correctly.  

 

Table IV Comparison of resonance methods 
Physics Equivalence 

Theory 

Subgroup ESSM ESSM-

X 

Inter-pin √ √ √ √ 

Radial × O × √ 

Azimuthal × √ O O 

Interference* × × × √ 

Temperature × O × √ 

√   good              O   acceptable       ×   problematic 

*RIF model could make the first three methods better 

 

As shown in the table, ESSM-X is a high-fidelity 

model.  Recently, a similar approach that models the global 

and local self-shielding effects separately has also been 

successful by integrating equivalence theory with local 

slowing-down calculation [35]. In fact, any of the three 

multigroup-based methods (equivalence theory, the 

subgroup method and ESSM) can be combined with 

slowing-down calculation to improve the local accuracy. 
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Future work for these fusion-type methods is to improve the 

efficiency of the associated slowing-down calculation and to 

implement a better temperature model for CE cross sections.  

In addition, it can be concluded from this paper that (1) 

the simplified clad self-shielding treatments are sufficient; 

(2) it is not necessary to perform the 3-D self-shielding 

calculation in PWR applications.  
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