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Abstract - Industrial reactor-core calculations mostly resort to the nodal-diffusion methodology, relying on
the homogenization paradigm for the generation of few-group assembly cross-sections. The incapability of
cross-sections condensed with the infinite-medium spectrum to model core-environment spectral effects is one of
the major limitations in the numerical simulation of current- and next-generation reactor cores, characterized
by strongly heterogeneous geometrical layouts. AREVA NP has recently proposed a spectral-correction method
to reproduce the variation of the neutron spectrum between environmental and infinite-lattice conditions by
means of a modal expansion approach, which is solved for by Galerkin or Petrov-Galerkin projection of the
local fine-group neutron balance equation over a set of weighting operators. The accuracy of this method
significantly depends on the choice of the basis and test functions. Purely analytical modes turn out to be
often inadequate to reproduce the strongly varying shape of the spectrum deformation in the reactor core. The
present paper investigates an alternative strategy building upon the Proper Orthogonal Decomposition (POD).
This approach relies on the calculation of the optimal (in a least-square sense) orthonormal basis functions for
the space spanned by a set of snapshots of the reference spectrum variation. In our work, we test the capability
of the POD modes to contain characteristics of the spectral interactions between fuel-assemblies in the reactor
core. It is shown that the POD-Galerkin-based spectral rehomogenization can reconstruct very accurately the
spectrum in the real environment.

I. INTRODUCTION

Few-group cross-sections used in nodal diffusion codes
for 3D reactor core simulations derive from standard energy
collapsing and spatial homogenization performed during preli-
minary lattice transport calculations with reflective boundary
conditions [1]. The infinite-medium neutron flux used for cross-
section weighting does not account for environmental effects
arising in case of heterogeneous core configurations, common
examples of which are mixed MOX/UO2 fuel-loading patterns,
reflector boundaries, layouts with depletable strong local absor-
bers and elaborate insertion schemes of control mechanisms.
With these increasingly widespread complex designs reducing
the neutron leakage and optimizing the core-power distribution,
nodal cross-sections built by the standard homogenization pa-
radigm could fail to reproduce accurate estimates of reaction
rates and the multiplication factor. Therefore, core-environment
conditions need to be modeled to provide more accurate inputs
for nodal solvers.
Environmental effects triggered by core and assembly hetero-
geneity affect the neutron flux shape in both space and energy.
Though spatial and spectral effects are tightly coupled, for sake
of simplicity they are usually addressed separately by reactor
analysis methods. For example, at AREVA NP a spatial reho-
mogenization method has been developed [2]. In the present
work we focus on spectral aspects. A number of techniques
have been proposed in the past to correct single-assembly cross-
sections for spectrum effects. One of them applies empirical
correlations accounting for local spectral interactions [3]. Re-
cently a spectral rehomogenization method has been developed
at AREVA NP [4], as part of a more general cross-section cor-

rection model aiming to reproduce environmental effects of va-
rious nature [5]. The proposed approach consists of estimating
the difference between the environmental and infinite-medium
node-average spectra by means of a limited set of known modal
components in the domain of energy. The energy-condensation
defects are thus evaluated on-the-fly and added to the nodal
cross-sections provided by the standard lattice calculation. A
similar approach, called recondensation, has been also studied
at MIT [6].
A critical point in the definition of a modal expansion method
for the spectrum change in the real environment is the choice
of a suitable set of basis and test functions. These conside-
rably affect the accuracy of the core-flux energy distribution
reconstruction and, hence, of the cross-section update calcu-
lation. Modal synthesis methods have been extensively used
for reactor physics applications, and several “recipes” can be
found in literature for the selection of modes and weighting
operators, based on either physical insight as to the nature of
the sought solution or purely mathematical considerations [7].
In the original version of the spectral rehomogenization mo-
del [4], the basis functions were chosen to be a combination
of mathematical functions (Chebyshev polynomials and expo-
nential functions), together with a physically justified mode
(fission spectrum). Step functions were instead taken as weig-
hting modes. Their range was defined by a heuristic proce-
dure, attempting to minimize the deviation of the computed
real-environment spectrum from the reference one for some
benchmark problems. However, the results of this implemen-
tation showed that, despite of the use of the reference-leakage
energy distribution as input, for certain assembly configurati-
ons the prediction of the spectral deformation caused by the
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environment suffers from insufficient accuracy, especially in
the fast and epithermal ranges [5]. Here, neutron migration
is dominated by inelastic collisions and resonance absorption,
which causes the spectrum-variation shape to exhibit a strongly
varying and irregular behavior, more difficult to be faithfully re-
produced by merely mathematical modes. In order to enhance
the effectiveness of the method, an extensive investigation of
alternative trial and weighting functions has been carried out.
In this work we present a new approach based on the Proper
Orthogonal Decomposition (POD), combined with Galerkin
projection. The POD is a Reduced Order Modeling (ROM)
technique that has been widely used in the last decades in many
scientific and engineering fields. It extracts “mode shapes” or
basis functions from experimental data or detailed simulations
of high-dimensional systems [8]. The resulting modes have the
valuable property of inheriting “physical” information about
the system of interest and can be used to project the high-order
problem into the corresponding reduced subspace [9]. A low-
dimension approximate description of the problem under study
is thus possible. Though a growing interest in the POD has
been recently shown also in the nuclear community, a limited
number of works can be found in literature on its applications
to reactor modeling problems [10–13].
In this paper, we investigate the feasibility of a POD approach
for the search of basis (and test) functions in the framework of
our spectral cross-section correction model. This is done by
means of numerical simulations of few assembly-configuration
samples, representative of the spectral effects of the environ-
ment observable in a reactor core. The procedure followed to
compute the POD modes, building upon the method of snaps-
hots [14] and the Singular Value Decomposition (SVD) tool [8],
is described. The capability of the obtained basis functions to
contain characteristics from the phenomenon of interest (i.e.,
spectral interactions between fuel-assemblies) and to capture
relevant information (the “energy” of the system) is analyzed.
The results of nodal calculations with POD-based spectrum-
corrected cross-sections are compared to reference values from
the continuous-energy Monte Carlo neutron transport code
SERPENT [15]. In our analysis we point out the main ad-
vantages and shortcomings of this approach, in terms of both
accuracy and computational effort. Additional ongoing deve-
lopments are also outlined, in the light of a more extensive
application of the proposed methodology in the framework of
spectral rehomogenization. These include, for instance, the
development of a model for an accurate representation of the
neutron leakage energy distribution.

II. THEORY

In this section the main features of the spectral cross-
section correction method considered in the present work are
summarized, and the underlying ideas of our POD approach are
outlined. An overview of the proposed methodology follows.
As an exhaustive description of the POD theory is out of the
scope of this paper, only the aspects of interest in the context
of our work are highlighted. For a complete dissertation on this
topic, the interested reader might refer to [9].

1. The Spectral Rehomogenization Model

The neutron energy-balance equation in the real environ-
ment can be written, for a generic homogenized node, as [4]:

Σt(E)Φenv(E) + L(E) =
χ(E)
keff

∫ ∞

0
dE′νΣf(E′)Φenv(E′)

+

∫ ∞

0
dE′Σs(E′ → E)Φenv(E′), (1)

where Φenv(E) and L(E) represent respectively the spectrum in
environmental conditions and the leakage energy distribution.
The meaning of the remaining symbols corresponds to com-
mon notation in reactor physics literature. In order to ease the
search of basis and test functions, the energy E is replaced by a
lethargy-like quantity u, defined separately within each coarse
energy-group G as:

u =
ln

( E
EmG

)
ln

( EpG

EmG

) ,
where EpG and EmG denote the G−group upper and lower
energy boundaries. The variable u is thus bounded between 0
and 1 in each macro-group. We consider here NG = 2, with
Ep1 = 19.6 MeV, Em1 ≡ Ep2 = 0.625 eV and Em2 = 1.1 · 10−10

MeV. Moving to the 2-group framework and replacing E with
u, Eq. (1) can be rewritten, for group G, as:

Σt,G(u)Φenv,G(u) + LG(u) =

2∑
G′=1

(
χG(u)

keff

·

∫ 1

0
du′νΣ f ,G′ (u′)·

Φenv,G′ (u′) +

∫ 1

0
du′Σs,G′→G(u′ → u)Φenv,G′ (u′)

)
. (2)

In each coarse group, the environmental spectrum is defined as
the sum of the reference distribution in infinite-medium con-
ditions (here normalized to the node-average integral flux Φ̄G
coming from the nodal calculation) and of the sought spectrum
variation δΦG(u):

Φenv,G(u) = Φ̄Gϕ∞,G(u) + δΦG(u). (3)

The spectrum difference is expanded in terms of the modal
components QG,i(u), which are the target of our POD analysis:

δΦG(u) =

NQG∑
i=1

αG,iQG,i(u). (4)

In the current implementation, the number of basis functions
NQG is set to 4 for both macro-groups. The expansion coeffi-
cients αG,i are the unknowns of the spectral rehomogenization
problem. In order to solve for them, a standard weighting-
residual technique is applied to the lethargy-balance equation:
after substitution of Eqs. (3) and (4), Eq. (2) is projected over
the test functions WG, j(u) (with j = 1, ...,NQG ) and then inte-
grated over u within each coarse group. For instance, after
projection and some manipulation the term corresponding to
the total reaction rate reads as follows:∫ 1

0
duWG, j(u)Σt,G(u)Φenv,G(u) =

Φ̄GhR,t,G, j +

NQG∑
i=1

αG,ihV,t,G,i, j, (5)
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being the reference (hR,t,G, j) and variational (hV,t,G,i, j) rehomo-
genization coefficients respectively defined as:

hR,t,G, j =

∫ 1

0
duWG, j(u)Σt,G(u)ϕ∞,G(u), (6a)

hV,t,G,i, j =

∫ 1

0
duWG, j(u)Σt,G(u)QG,i(u). (6b)

Applying the same procedure to the remaining terms appearing
in Eq. (2), the rehomogenization problem can be cast in the
following form:

Φ̄GhR,t,G, j +

NQG∑
i=1

αG,ihV,t,G,i, j + cG, jL̄G =

2∑
G′=1

Φ̄G′
(
hR,s,G′→G, j+

χG, j

keff

hR, f ,G′
)

+

2∑
G′=1

NQG∑
i=1

αG′,i

(
hV,s,G′→G,i, j +

χG, j

keff

hV, f ,G′,i

)
, (7)

where L̄G is the node-average integral leakage coming from
the nodal calculation, whereas cG, j, χG, j and the coefficients
hR, hV are the rehomogenization parameters corresponding to
the fine-group neutron leakage, fission-emission spectrum and
various reaction rates. Variables in Eq. (7) are formulated as
follows:

cG, j =

∫ 1

0
duWG, j(u) fL,G(u), (8a)

χG, j =

∫ 1

0
duWG, j(u)χG(u), (8b)

hR, f ,G =

∫ 1

0
du νΣ f ,G(u)ϕ∞,G(u), (8c)

hV, f ,G,i =

∫ 1

0
du νΣ f ,G(u)QG,i(u), (8d)

hR,s,G′→G, j =

∫ 1

0
duWG, j(u)

∫ 1

0
du′Σs,G′→G(u′ → u)ϕ∞,G′ (u′),

(8e)

hV,s,G′→G,i, j =

∫ 1

0
duWG, j(u)

∫ 1

0
du′Σs,G′→G(u′ → u)QG′,i(u′).

(8f)
In Eq. (8a), fL,G(u) stands for the leakage energy shape. The
above-defined coefficients are computed for a given fuel-
assembly at the cross-section library level, so no additional lat-
tice calculation is needed when updating cross-sections throug-
hout the nodal simulation.
Eq. (7) reduces to an 8×8 (NGNQG × NGNQG in the more gene-
ral form) linear system that is solved independently for each
node following the main nodal calculation. After determining
the coefficients αG,i, the spectral cross-section correction for
reaction type R in a generic node can be computed as follows:

δΣR,G =
1

Φ̄G

∫ 1

0
duΣR,G(u)δΦG(u) =

1
Φ̄G

NQG∑
i=1

αG,ihV,R,G,i,0, (9)

where the subscript 0 in hV,R,G,i,0 means that the weighting
function is WG,0(u) = 1.
Cross-section distributions used in Eqs. (6) and (8) are, in
practice, those of the infinite medium. This is an approximation,
as Eq. (1) is rigorously valid in the real environment, where
fine-group cross-sections can be influenced by self-shielding
effects. However, the analysis performed for the validation of
the method revealed that the impact of such approximation is
negligible. A limitation of the current implementation is rat-
her that energy-space cross-terms are neglected: the estimated
cross-section correction is indeed averaged over the node, whe-
reas in reality the magnitude of spectral effects is significantly
higher at the interface with neighbor assemblies.
In order for this model to be applicable, the definition of a
suitable energy distribution fL,G(u) for the neutron leakage is
required. In most of the present work, the best-estimate shape
is taken as input from the reference transport calculation. This
allows us to keep the validation of the methodology unaffected
by the inaccuracy unavoidably introduced adopting a leakage
shape other than the theoretical one. It is thereby possible to
focus on the effect of the POD approach on the solution of the
nodal calculation with rehomogenized cross-sections.

2. The POD Approach

As mentioned in the introduction, we build our set of
POD basis functions QPOD

G,i (u) by the method of snapshots, in
combination with the Singular Value Decomposition (SVD).

A. The Method of Snapshots and SVD

Generally speaking, a snapshot is the solution of the equa-
tion modeling the problem of interest for a specific configu-
ration or state of the system [14]. Each combination of pa-
rameters governing the phenomenon under study generates a
different state, and can thus be used to obtain a snapshot. In
time-dependent problems, snapshots can also be taken as the
solution of the dynamically evolving system at given time in-
stances [11]. The snapshots derived from multiple solutions
of the high-dimensional problem are collected in an array (the
snapshot matrix), which is the input of the SVD [8, 9]. Such
factorization of the snapshot matrix returns, among other arrays,
a set of orthonormal vectors. It can be proved that these are the
optimal (in a least-square sense) orthonormal basis functions
for the vector space encompassed by the input matrix. They
are referred to as proper orthogonal modes, and they are the
sought POD basis. The shape of such functions is determined
by the information carried within the retained snapshots, and
can thus capture some relevant properties of the system un-
der study. Obviously, the higher the number of snapshots, the
more comprehensive the amount of information (and, hence,
the more successful are the computed modes to catch the over-
all “energy” and the dynamics of the system). The maximum
number of snapshots is mostly dictated by the computational
burden associated to their calculation. In the light of these
considerations, it is apparent that the POD basis can be built
so as to reproduce specific configurations by including their
solution in the snapshot series. Moreover, a clever choice of the
snapshot set can boost their capability to reproduce the solution
of “unseen” problems as well.
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B. Application to the Spectral Problem

In the framework of our work, snapshots of the spectrum
variation between environmental and infinite-medium conditi-
ons are taken. As already mentioned, spectral effects observable
in a reactor core mostly take place at the interface between adja-
cent assemblies. Hence, the main idea of the proposed approach
is to model several assembly-interface types for the generation
of snapshots. Two-dimensional colorset domains are a suitable
candidate for this purpose. This choice has also the advantage
of allowing us to decompose the whole-core problem into se-
veral sub-problems and, thus, to simplify our analysis. In order
to build a set of POD basis being as “energetic” as possible,
a separate calculation should be performed for each interface-
type in a reactor (i.e., for each unique set of four assemblies).
When considering several fuel-loading patterns and assembly
shuffling, this would result in a significant computational bur-
den. Moreover, there are other variables which might have an
influence on spectrum effects and, thus, need to be accounted
for in the snapshot generation process. These include the state
parameters describing the thermal-hydraulic condition of the
reactor environment (burn-up, moderator temperature and den-
sity, fuel temperature, diluted-boron concentration, etc.). The
high-dimensionality of the problem can thus make the snapshot
phase very demanding. Despite the repeated evaluations of the
problem for the POD-basis calculation have to be performed
only once, an effective sampling strategy has to be developed
to reduce the amount of costly computations. These aspects are
discussed in Section III, where the procedure adopted in this
work for the selection of snapshots is outlined.
We generate snapshots by solving the neutron transport equa-
tion for the colorset and single-assembly configurations: the
environmental and infinite-medium spatially-averaged spectra
are thus computed for each fuel bundle, together with the corre-
sponding variation. In order to determine the detailed spectrum
change, the number of fine energy-groups g used in the fast and
thermal coarse-groups (G = 1 and G = 2) is respectively 247
and 34. For both macro-groups, the matrix of snapshots AG is
obtained using the spectrum-variation determined for different
solutions of the transport problem. The SVD of AG returns the
following matrix decomposition:

AG = UGS GVT
G , (10)

where S G is a diagonal matrix of size nG × Ns (being nG the
number of fine groups for the coarse group G and Ns the number
of snapshots), whereas UG and VG have dimensions nG × nG
and Ns×Ns, respectively. The columns of the matrix UG are the
proper orthonormal modes. The elements of S G, which are non-
negative and sorted in descending order, are the singular values
of AG. They are proportional to the “energy” of each mode,
that is, its importance in the modal approximation of the vector
space spanned by AG. If all the nG eigenvectors produced by
the SVD are used, the error in the approximation of the original
snapshot data goes to 0. The POD basis set, consisting of NQG

modes, is built from a reduced form of Eq. (10), taking the
first NQG columns of UG. The corresponding array provides a
modal approximation of the snapshot set which minimizes the
error in the L2-norm compared to all the other approximations.
As stated in Section II.1, in our spectral rehomogenization

method we set NQG =4 for both groups. This number of modes is
chosen so as to be comparable with the original approach [4, 5].
Moreover, the achieved POD modes are also used as weighting
functions (Galerkin weighting).

3. Overview of the Methodology

A flow chart of the global procedure followed in our work
is depicted in Figure 1.

The methodology can be split into 2 phases:

• An off-line phase, in which snapshots of the spectrum
deformation in the colorset environment are collected for
several sample assembly-configurations. These snapshots
are used to extract, via the SVD, the set of POD basis
with which the rehomogenization parameters are to be
computed (by Eqs. (6) and (8)) during the cross-section
library preparation.

• An on-line phase, consisting of the actual core calcula-
tion. The nodal problem is first solved using the infinite-
medium cross-sections interpolated from libraries at the
current values of the state parameters for each node.
The nodal information (global flux and power distribu-
tions, keff) is then exploited to solve for each assembly
the spectral rehomogenization problem and the thermal-
feedback calculation. After interpolation from the para-
meterized tables at the new values of the state parameters,
cross-sections can thus be updated with the spectral cor-
rection computed by the POD-based rehomogenization.

As for the on-line phase, it is remarked that iterations bet-
ween the nodal calculation and the spectral rehomogenization
problem are nested in the thermal-feedback updates. Therefore,
their cost is amortized. Furthermore, the spectral-correction
method (which is, as seen in Section II.1, computationally inex-
pensive) is applied locally for each node. This makes it easily
parallelizable. Our methodology is consistent with the two-step
procedure commonly adopted in light-water-reactor analysis,
in which highly demanding branch transport calculations for
the preparation of cross-section libraries (off-line phase) are fol-
lowed by whole-core calculations with nodal-diffusion solvers
(on-line phase).

III. RESULTS AND ANALYSIS

1. Procedure for Validation

For the validation of the proposed method, nodal calcula-
tions were performed for three benchmark problems. These
were chosen among the most challenging configurations for
numerical methods usually encountered in a reactor core, and
consist of: a UO2 colorset with burnable-poison rods (Problem
1); a UO2 colorset hosting AIC control rods (Problem 2); a
UO2/MOX colorset (Problem 3). Spectral rehomogenization
was applied to these test-cases using POD basis (and weighting)
functions derived from multiple sets of snapshots:

• snapshots from a single-parameter study for a given in-
terface type (that is, we solved the colorset and single-
assembly transport problems sampling different values of
a given parameter);
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Parameters
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Fig. 1. Flow diagram of the POD-based spectral rehomogenization within the core nodal calculation.

• snapshots from a multi-parameter study for a given inter-
face type;

• assembly of all the snapshots sampled for the three diffe-
rent interface types.

Snapshots were computed via 281-group calculations perfor-
med with the continuous-energy Monte Carlo code SERPENT.
Each multigroup spectrum-variation solution was obtained run-
ning 5.25 · 106 active neutron histories. For reasons related
to the computing time, the B1 critical-spectrum calculation
was not performed for the fine-group flux distributions. Nodal
simulations were performed with BRISINGR, a TU Delft in-
house developed code based on a standard non-linear CMFD-
NEM solving strategy. Two-group input cross-sections and
discontinuity factors were also computed by SERPENT, which
was used as reference for the comparison of the nodal solver
outcome. Single-assembly calculations for group-constant ge-
neration were run with 5.63 · 108 active neutron histories. A
standard deviation lower than 2.5 % was found for all the com-
puted homogenization parameters. Therefore, an uncertainty-
propagation analysis was deemed not to be necessary. Simu-
lations were made for fresh initial-core isothermal conditions
(i.e., without thermal-hydraulic and fuel-depletion feedacks).
The values of the main state parameters correspond to hot full-
power conditions (namely, Tfuel=846 K, Tmod=582 K, p=158
bar). For sake of consistency with the snapshot simulations, no
critical-buckling correction was applied. A nodalization of 2×2
nodes per assembly was chosen. For each test-case, three diffe-
rent calculations were performed: with infinite-medium cross-
sections from parameterized libraries (a), with cross-sections
corrected by means of the reference spectral defect (b), and
with POD-based spectral rehomogenization of cross-sections
(c). The reference spectral correction was evaluated, according
to Eq. (9), by collapsing the fine-group cross-section distri-
bution ΣR,G(u) with the reference spectrum variation δΦre f

G (u)
computed in SERPENT. This choice has been done because
there are two kinds of errors in cross-section homogenization:
spatial and spectral. As only the spectral error is addressed
here, the homogenization defect cannot be fully corrected.
The presentation of the results is organized as follows. Focus

is first given to the effect of inter-assembly heterogeneity on
the calculation of the POD modes and on the performance of
spectral rehomogenization. An analysis is then performed on
the impact of the state parameters on the POD basis. Finally,
some preliminary considerations are made on the ongoing de-
velopment of a POD-based model for the approximation of the
leakage energy distribution.

2. Analysis on Inter-Assembly Heterogeneity

A. Problem 1 - UO2 Colorset with Pyrex Rods

The 2-D colorset is depicted in Figure 2. It consists of
four 17 × 17 PWR fuel assemblies of fresh UO2 having two
different compositions: the former with 1.8% enrichment, the
latter with 3.1% enrichment and 16 rods containing burnable
absorber (Pyrex). The concentration of diluted boron in the
moderator is 700 ppm.

UO2

3.1% + Pyrex

UO2

1.8%

UO2

1.8%

UO2

3.1% + Pyrex

(a) (b) (c)

Fig. 2. Assembly set (a) and layout of UO2 fuel-assemblies
with 1.8% enrichment (b) and 3.1% enrichment and Pyrex rods
(c).

In this configuration inter-assembly spectral effects are
driven by the difference in the enrichment and by the local pre-
sence of burnable-poison rods. As the primary goal of this work
is to investigate the feasibility of the POD-based rehomogeni-
zation, we begin by testing the method with a simple approach
for the generation of snapshots. We analyze a one-parameter
dependence, with the Pyrex content in the heterogeneous as-
sembly as parametric variable. Solutions for the spectrum
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variation were computed sampling uniformly the target range
[5.9 · 10−5, 1.8 · 10−3] atoms/cm3 for the concentration of boron
in the burnable-poison rods (Nbp

B10
). For validation purposes,

an initial number of 200 snapshots was chosen. As a first at-
tempt to analyze the effect of the state parameters on the POD
modes, the snapshots were simulated at a diluted-boron concen-
tration of 1465 ppm (i.e., the concentration making the colorset
critical), instead of the value of 700 ppm used for two-group
constant generation and for the nodal calculation.
We first want to verify whether the POD approach can accura-
tely reproduce solutions used to build the original snapshot set.
Therefore, we simulate the colorset in BRISINGR for one of the
values of Nbp

B10
spanned by the snapshot matrix (i.e., 9.3 · 10−4

atoms/cm3). For this configuration, Figure 3 reports a best-fit
of the reference heterogeneous-assembly spectrum variation
computed with the first four POD basis functions generated by
the above-mentioned procedure. These are plotted in Figure 4.
The quality of the fit is outstanding, despite of the low number
of modes used. By comparing Figures 3 and 4 it is apparent
that the first- and second-order POD basis retrieve the global
shape of the reference spectrum deformation. The spiky pro-
files observable in the higher-order modes, especially in the
epithermal region, contribute to the reconstruction of the fine
details of δΦ(u), including those associated to the resonances
(it is remarked that these spikes could be damped by gene-
rating snapshots with a deterministic transport code or using
many more neutron histories). It can also be noticed that the
computed modes inherit the property of the spectrum-variation
snapshots to have null average within each macro-group, which
is a consequence of the normalization introduced in Eq. (3).
Thanks to this feature, we avoid defining discontinuous ana-
lytical basis functions when trying to fit the thermal-group
spectrum change, whose values are very close to 0 in more than
half of the corresponding pseudo-lethargy domain.
The spectrum variation estimated by the POD-based rehomo-
genization (calc. c) is plotted in Figure 5. The reconstruction
is excellent in the thermal range, especially in the assembly
hosting Pyrex rods. The prediction in the fast group is also
accurate, though a slight overestimation of the magnitude of
the reference change is observed in the epithermal region. Ta-
ble I reports the results in terms of keff and average power for
the nodal calculations (a), (b) and (c), whereas Table II shows
the corresponding errors on nodal cross-sections for the two
assemblies. Spectral corrections computed by rehomogeniza-
tion reproduce almost exactly the reference ones in the thermal
group. In the fast range, all corrections go in the right direction,
apart from that for fast-to-thermal scattering (which has, on
the other hand, a small contribution). The effectiveness of re-
homogenization in improving the integral parameters is also
apparent. The performance of the method is clearly not affected
by the use of a set of POD basis generated at a considerably
different diluted-boron concentration from the current one.
A brief analysis is now carried out on the behavior of the singu-
lar values of the fast- and thermal-group snapshot matrices A1
and A2 (see Section II.2.B). Figure 6 shows the singular values
corresponding to four snapshot sets differing for their number:
50, 100, 150, 200. For all these sets, they decrease sharply
for the first two modes in the thermal group and for the first
three modes in the fast group, after which a sort of “plateau”
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Fig. 3. POD fourth-order best-fit of the fast (a) and thermal (b)
spectrum variation per unit lethargy for the assembly hosting
Pyrex rods. The relative difference is computed with respect
to the assembly-averaged integral fluxes from the reference
calculation.

becomes apparent. This confirms that the very first low-order
modes retain most of the information carried by the snapshot
set, whereas a wide range of high-order modes has lower im-
portance: these reproduce the finest details of the spectrum
variation, but they do not contribute to reconstruct its global
shape. It can also be observed that the first low-order singular
values do not change significantly with the number of snapshots
Ns, whereas those corresponding to higher-order modes (from
the beginning of the “plateau” onwards) tend to increase with
Ns. This behavior implies that, after an adequate number of
snapshots, adding more of them (i.e., sampling more points in
the parameter space) only results in a change of the lower sin-



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

0 0.2 0.4 0.6 0.8 1
�0.4

�0.3

�0.2

�0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

u

Q
1
(u
)

Order 1
Order 2
Order 3
Order 4

(a)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

�0.5

�0.4

�0.3

�0.2

�0.1

0

0.1

0.2

0.3

0.4

0.5

u

Q
2
(u
)

Order 1
Order 2
Order 3
Order 4

(b)

Fig. 4. Fast-group (a) and thermal-group (b) POD basis functions computed via the method of snapshots and SVD for a
one-parameter analysis of the colorset with Pyrex rods.
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Fig. 5. Spectrum variation per unit lethargy estimated by the POD-based spectral rehomogenization in the two assemblies of the
colorset with Pyrex rods (Figure 2). The relative difference is computed with respect to the assembly-averaged integral fluxes from
the nodal calculation. Four modes were used in each coarse group for the modal expansion.

gular values, and does not affect the higher ones. Furthermore,
these changes become less and less apparent as the number of
snapshots increases. This feature is of paramount importance
in the definition of a criterion for an adaptive selection of snaps-

hots, which is, in a more general context, the subject matter of
a companion paper at this conference [16].
An analysis of the singular-value behavior can thus give some
relevant insight into the number of snapshots to be sampled
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Table I. Errors on the multiplication factor (keff) and nodal fission power distribution (Pavg) for the colorset with Pyrex rods,
having keff=1.08733. Power errors within brackets correspond to the fast (first value) and thermal (second value) groups. The
number of rehomogenization iterations for convergence is also shown for simulation (c).

UO2 1.8% UO2 3.1% + Pyrex

Simulation No. rehom. iter ∆keff [pcm] Error on Pavg (%) Error on Pavg (%)

Standard (a) - -402 0.93 (0.82, 0.96) -0.82 (-0.59, -0.89)
Ref. δΣspectr. (b) - -372 0.43 (0.52, 0.42) -0.38 (-0.37, -0.38)
Spectr. rehom. - POD (c) 8 -367 0.61 (0.62, 0.61) -0.53 (-0.44, -0.56)

Table II. Errors (%) on nodal cross-sections for the assembly with 1.8% enrichment (a) and the one with 3.1% enrichment and
burnable-absorber rods (b).

UO2 1.8% Σa,1 Σa,2 νΣ f ,1 νΣ f ,2 Σt,1 Σt,2 Σs,1→1 Σs,1→2 Σs,2→1 Σs,2→2

Reference [cm−1] 0.00858 0.0621 0.00485 0.0825 0.539 1.310 0.513 0.0179 0.00124 1.246

Simulation Error %

Standard (a) -0.251 0.747 0.396 0.838 -0.254 0.266 -0.268 0.124 -6.03 0.250
Ref. δΣspectr. (b) 0.057 0.180 0.146 0.253 0.006 -0.053 0.006 0.003 0.038 -0.064
Spectr. rehom. - POD (c) 0.146 0.137 0.225 0.208 0.031 -0.078 0.019 0.308 0.36 -0.089

(a)

UO2 3.1% + Pyrex Σa,1 Σa,2 νΣ f ,1 νΣ f ,2 Σt,1 Σt,2 Σs,1→1 Σs,1→2 Σs,2→1 Σs,2→2

Reference [cm−1] 0.00997 0.0978 0.00660 0.133 0.526 1.297 0.499 0.016 0.0017 1.198

Simulation Error %

Standard (a) 0.263 -0.496 -0.228 -1.11 0.254 -0.493 0.267 -0.166 6.76 -0.503
Ref. δΣspectr. (b) -0.021 0.328 -0.113 -0.219 -0.003 0.007 -0.003 0.002 -0.025 -0.019
Spectr. rehom. - POD (c) -0.156 0.326 -0.210 -0.221 -0.045 0.005 -0.034 -0.327 -0.027 -0.021

(b)
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Fig. 6. Singular values of the fast-group (a) and thermal-group (b) POD modes computed for the colorset with Pyrex rods. The
dependence on the number of snapshots Ns is shown. Higher singular values correspond to low-order modes, whereas lower
singular values correspond to high-order modes.

for the POD-basis calculation, as well as into the optimal num-
ber of modes to be used in the rehomogenization model for a

sufficiently accurate approximation of the spectrum variation.
It was verified that the precision of the results presented in
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Tables I and II is not deteriorated either by the choice of POD
basis generated from 50 snapshots (instead of 200) or by the
use of two and three modes (instead of four) for the expansion
of the thermal and fast spectrum variation, respectively.

B. Problem 2 - UO2 Colorset with AIC Control Rods

We now increase the level of complexity of our analysis
by performing a multi-parameter study for the generation of
snapshots. We consider a colorset made of four 17 × 17 UO2
assemblies with enrichment of 1.8%, two of which host 24
AIC (Silver-Indium-Cadmium) control rods. No boron is pre-
sent in the moderator. The colorset- and assembly-layout is
represented in Figure 7.

UO2

1.8% + AIC

UO2

1.8%

UO2

1.8%

UO2

1.8% + AIC

(a) (b) (c)

Fig. 7. Assembly set (a) and layout of the uncontrolled (b)
and controlled (c) UO2 fuel-assemblies with 1.8% enrichment.

In order to build a set of solutions representative of spectral
effects induced by control elements and different enrichments,
we parameterize the system using three variables:

• the fuel enrichment, which is homogeneously sampled
in the interval [2.1%, 3.6%] for both the controlled and
uncontrolled assemblies;

• the number of control rods inserted in each heterogeneous
fuel bundle (4, 8, 12, 16, 24, 28), changed keeping the
symmetry in the assembly layout;

• the type of control rods (AIC and B4C).

A total number of 240 snapshots were computed. Moreover, we
want to test the capability of the method to accurately predict
spectrum deformations for “unseen” problems (i.e., problems
whose solution was not included in the snapshot array for the
determination of the POD basis). Therefore, we also apply
spectral rehomogenization to the problem under study with the
set of modes computed for the colorset with Pyrex. We refer to
the nodal calculations with the AIC- and Pyrex-configuration
sets of modes as c1 and c2, respectively. The spectrum variation
predicted in both cases is reported in Figure 8.
The set of POD basis from the multi-parameter analysis per-
fectly reconstructs the fast-group spectrum variation. A very
accurate outcome is found also for the set of modes derived
for the colorset with Pyrex, though a slight distortion of the
computed distributions arises within the fast group in proximity
of the high-energy “Maxwellian”. As for the thermal group, no
appreciable difference is encountered between the two calcu-
lations, for both of which the prediction is not as accurate as
in the fast range (especially in the controlled assembly). The
spectrum variation is indeed overestimated in the higher part

of the thermal domain (u ∈ [0.85,1.0]) and underestimated in
its intermediate region (u ∈ [0.6,0.85]). This misprediction
might be related to the fact that in the thermal range most of
the error is caused by spatial effects. In order to take them
into account, spatial rehomogenization should thus follow the
spectral correction.
Errors on integral parameters and nodal cross-sections are
shown in Tables III and IV. The unexpectedly small error
on keff for the standard calculation is the result of fortuitous er-
ror compensation, as evidenced by the high errors on the nodal
power. The simulation with reference corrections still exhibits a
somewhat high error on the thermal power, which confirms the
need of applying spatial rehomogenization as well. When look-
ing at errors on nodal cross-sections, the overestimation and
underestimation of the spectrum change in different regions of
the thermal domain cause some beneficial error cancellation in
thermal absorption in both assemblies, as well as in production
(νΣ f ) in the uncontrolled bundle.
It can be concluded that, also in this case, rehomogenization
reproduces satisfactorily the calculation with reference cor-
rections. In addition, the Pyrex modes can approximate the
spectrum variation with a comparable accuracy to those com-
puted “ad hoc” for controlled configurations.

C. Problem 3 - UO2/MOX Colorset

The third colorset, which is shown in Figure 9, consists of
two 18× 18 UO2 and MOX assemblies. The UO2 assembly has
enrichment 2.1%, whereas the MOX assembly is made of three
fuel-pin types differing for their Pu-content and U-enrichment.
The concentration of diluted boron in the moderator is 2907
ppm.
As for Problem 2, spectral rehomogenization was first app-
lied with the POD modes computed for the Pyrex colorset
(calc. c1). In this case, the basis functions resulting from high-
order Legendre-polynomial best-fits of the original snapshots
were used. This was done in order to eliminate the “noise”
caused by a different pattern of the spectrum-change fine de-
tails in the two test-cases. Figure 10 shows the corresponding
fast-group spectrum-variation reconstruction for the UO2 as-
sembly. Despite the accuracy of the outcome is acceptable
in the epithermal range, it stands out that the method is not
capable of recreating the “bump” observable at the end of the
pseudo-lethargy domain (for u ∈ [0.9,1.0]). This is expected,
as the POD basis computed for the Pyrex colorset were not
“trained” to reproduce such localized, abruptly sign-changing
bulge. This shape was found to be a characteristic of the present
assembly-interface type, and to become even sharper when the
enrichment in the UO2 bundle is increased.
Rehomogenization was thus applied making use of two addi-
tional sets of basis functions (still using four modes in both
groups):

• the POD modes obtained from a multi-parameter study for
the present configuration, in which, following the example
of Problems 1 and 2, the UO2 enrichment and the Pu
content in the three above-mentioned MOX-assembly pin
types were considered as parametric variables;

• the POD modes obtained assembling all the snapshots
computed for the three colorsets investigated in this study.
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Fig. 8. Spectrum variation estimated by the POD-based rehomogenization in the two assemblies of the colorset with AIC control
rods (Figure 7). Labels Pyrex set and CR set correspond to calculations c1 and c2, respectively.

Table III. Errors on the multiplication factor (keff) and nodal fission power distribution (Pavg) for the colorset with control rods.
For detailed meaning of c1 and c2, see text. The reference value of keff is 0.98859.

UO2 1.8% UO2 1.8% + AIC

Simulation No. rehom. iter ∆keff [pcm] Error on Pavg (%) Error on Pavg (%)

Standard (a) - 54 3.07 (0.75, 3.50) -4.77 (-0.89, -5.78)
Ref. δΣspectr. (b) - -500 1.14 (0.22, 1.32) -1.77 (-0.26, -2.18)
Spectr. rehom. - POD (c1) 8 -531 1.20 (0.27, 1.39) -1.86 (-0.32, -2.29)
Spectr. rehom. - POD (c2) 9 -549 1.18 (0.36, 1.35) -1.83 (-0.43, -2.22)

We refer to nodal simulations with these two sets of basis
functions as c2 and c3, respectively. The purpose of calculation
c3 is to verify whether rehomogenization combined with few
low-order modes can still synthesize effectively spectral defor-
mations triggered by different assembly-interface types, and
thus exhibiting a considerably unlike behavior (especially in the
fast range). This property of the POD modes is essential for the
applicability of the proposed methodology at an industrial le-
vel, because it would allow us not to compute “fuel-dependent”
modes.
Both calculations gave excellent results. As they were almost
identical, for sake of conciseness we report them only for cal-
culation c3 (Figure 11, Tables V and VI).
Rehomogenization now manages to accurately reproduce the
previously observed bulge in the fast group. Such outcome can

be achieved only by a proper “training” of the POD modes, that
is, if solutions for this particular assembly-configuration are
included in the snapshot set. This feature can also be deduced
from Figure 12, showing the fast-group POD basis computed
from the snapshot set corresponding to calculation c3.
Apparently, the second-order mode retains the shape of the
high-energy bulge, as well as the steep profile visible in the
epithermal range (for u ∈ [0,0.1]) for the UO2/MOX assem-
blies (see Figure 11). It must be remarked that merely ana-
lytical functions are unlikely to capture the strongly varying
bulge-shape observed in the high-energy-part of the fast-group
spectrum change, unless a very high order of the expansion
is used. In the fast range, due to the fast fissions of U238 the
production cross-section νΣ f (u) usually assumes its higher va-
lues for u > 0.8 (if one does not consider the resonance spikes).
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Table IV. Errors (%) on nodal cross-sections for the assemblies without (a) and with (b) AIC control rods. For detailed meaning
of c1 and c2, see text.

UO2 1.8% Σa,1 Σa,2 νΣ f ,1 νΣ f ,2 Σt,1 Σt,2 Σs,1→1 Σs,1→2 Σs,2→1 Σs,2→2

Reference [cm−1] 0.00827 0.0557 0.00486 0.0837 0.534 1.313 0.509 0.0174 0.0011 1.256

Simulation Error %

Standard (a) 1.59 0.562 0.492 0.608 0.680 0.155 0.558 3.80 -4.79 0.141
Ref. δΣspectr. (b) 0.028 0.203 -0.135 0.237 -0.020 -0.047 -0.020 -0.051 0.0 -0.058
Spectr. rehom. - POD (c1) -0.038 0.223 -0.150 0.258 -0.046 -0.036 -0.040 -0.219 -0.316 -0.047
Spectr. rehom. - POD (c2) -0.068 0.227 -0.078 0.262 -0.073 -0.034 -0.066 -0.047 1.85 -0.146

(a)

UO2 1.8% + AIC Σa,1 Σa,2 νΣ f ,1 νΣ f ,2 Σt,1 Σt,2 Σs,1→1 Σs,1→2 Σs,2→1 Σs,2→2

Reference [cm−1] 0.0116 0.0817 0.00474 0.0853 0.534 1.287 0.507 0.0153 0.00142 1.203

Simulation Error %

Standard (a) -1.72 0.716 -0.641 -0.933 -0.806 -0.374 -0.665 -4.78 7.64 -0.457
Ref. δΣspectr. (b) 0.596 1.28 0.199 -0.118 0.018 0.051 0.004 0.015 -0.011 -0.033
Spectr. rehom. - POD (c1) 0.517 1.14 0.083 -0.328 0.027 -0.059 0.017 -0.179 1.71 -0.143
Spectr. rehom. - POD (c2) 0.591 1.14 -0.024 -0.334 0.059 -0.062 0.050 -0.047 1.85 -0.146

(b)

MOX
UO2

2.1%

UO2

2.1%
MOX

(a) (b) (c)

Fig. 9. Assembly set (a) and layout of UO2 (b) and MOX (c)
fuel-assemblies. Three different fuel-pin types are present in
the MOX assembly: with low Pu-content (1.78% Pu239, 0.22%
U235) at the assembly corners, with intermediate Pu-content
(2.53% Pu239, 0.21% U235) along the assembly outer edges and
with high Pu-content (3.86% Pu239, 0.20% U235) in the rest of
the fuel bundle.

An accurate reconstruction of the spectrum deformation is thus
needed also in this region of the energy domain to compute
a reliable δνΣ f , which significantly affects corrections on the
integral parameters of the nodal calculation. This can be seen
examining the errors on fast-group cross-sections (especially
in the UO2 assembly) and nodal power for calculation c1.
Spectral rehomogenization with the POD basis of calculation
c3 was applied to Problems 1 and 2 as well. The correspon-
ding results showed the same accuracy as the calculations with
POD basis derived from parametric studies for the standalone
colorsets.

3. Analysis on the State Parameters

We briefly consider here the impact of the main state pa-
rameters on the computed POD basis. We take as example
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Fig. 10. Spectrum variation computed in the UO2 assembly of
the UO2/MOX colorset (Figure 9) with the POD modes derived
for the assembly set with Pyrex rods.

the colorset with Pyrex rods, for which previous results re-
vealed that the performance of the POD-rehomogenization is
not influenced by the value of diluted-boron concentration at
which the snapshots are taken. Figure 13 represents the first-
order POD modes determined sampling different points of the
state-parameter space. The solid lines correspond to sets of
snapshots at null burn-up and different values (with respect
to the nominal conditions at which snapshot were generated
in Section III.2.A) of diluted-boron concentration, moderator
density and fuel temperature. The dashed lines correspond
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Fig. 11. Spectrum variation estimated by rehomogenization with the set of POD basis c3. The strong magnitude of the
thermal-spectrum change in the MOX assembly is apparent.
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Fig. 12. Fast-group POD modes computed collecting all the
snapshots simulated for Problems 1, 2 and 3.

instead to snapshots of the burn-up history of the colorset at the
same nominal conditions. One hundred burn-up steps (up to
80 MWd/kgU) were considered to generate them. Apparently,
for the thermal group the POD-basis shape does not depend on
the state parameters. As for the fast group, the first-order basis
also have a very much alike shape when considering snapshots
computed for fresh fuel at different thermal and diluted-boron

conditions. A similar outcome was found for the second- and
third-order modes (which are not represented here for sake of
brevity). However, more appreciable differences arise if solu-
tions are sampled at different burn-up values. We found that
these deviations become more apparent for higher-order modes.
Such outcome is somewhat expected. It was observed, indeed,
that the spectrum variation exhibits quite substantial changes as
long as the fuel elements are burnt, both in its global shape and
in its fine details. These differences are probably related to iso-
tope build-up and, in the case considered here, to the depletion
of burnable absorbers. Hence, the outcome of this preliminary
analysis suggests that burn-up is the most significant state para-
meter to be sampled when building snapshots. Moreover, as the
accumulation of Pu is usually strongly dependent on moderator
conditions, it might be the case that also the coolant-related
state parameters become important when generating snapshots
for burn-up calculations.

4. A Model for the Leakage Energy Distribution

In the calculations performed so far the leakage energy
distribution from the reference transport solution was used in
the rehomogenization problem. In the final implementation
of the methodology this shape has to be computed with nodal
information. For this purpose, two tracks have been explored
so far:

• a POD-basis expansion also for the leakage energy
function fL,G(u) (Eq. (8a));
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Table V. Errors (%) on nodal cross-sections for the UO2 (a) and MOX (b) assemblies. For detailed meaning of c1 and c3, see
text.

UO2 2.1% Σa,1 Σa,2 νΣ f ,1 νΣ f ,2 Σt,1 Σt,2 Σs,1→1 Σs,1→2 Σs,2→1 Σs,2→2

Reference [cm−1] 0.00927 0.0894 0.00547 0.0979 0.534 1.302 0.508 0.0171 0.00178 1.211

Simulation Error %

Standard (a) -0.606 1.13 0.071 1.27 -0.326 0.536 -0.372 1.17 -8.89 0.507
Ref. δΣspectr. (b) 0.114 0.185 0.365 0.301 0.011 0.017 0.011 -0.034 -0.058 0.005
Spectr. rehom. - POD (c1) 0.203 0.189 0.062 0.306 0.137 0.017 0.131 0.272 -2.08 0.006
Spectr. rehom. - POD (c3) 0.025 0.203 0.315 0.319 -0.014 0.027 -0.014 -0.054 -0.276 0.015

(a)

MOX Σa,1 Σa,2 νΣ f ,1 νΣ f ,2 Σt,1 Σt,2 Σs,1→1 Σs,1→2 Σs,2→1 Σs,2→2

Reference [cm−1] 0.0142 0.260 0.00990 0.375 0.526 1.517 0.498 0.0131 0.00345 1.254

Simulation Error %

Standard (a) 0.026 0.422 0.015 0.582 0.389 -0.651 0.432 -0.870 11.7 -0.908
Ref. δΣspectr. (b) -0.090 0.885 -0.254 1.08 -0.015 0.334 -0.014 0.035 -0.112 0.221
Spectr. rehom. - POD (c1) -0.246 0.784 -0.271 0.958 -0.090 0.243 -0.086 -0.074 0.868 0.129
Spectr. rehom. - POD (c3) -0.003 0.878 -0.254 1.08 0.004 0.239 0.004 0.024 0.917 0.105

(b)

Table VI. Errors on the multiplication factor (keff) and nodal fission power distribution (Pavg) for the UO2/MOX colorset. For
detailed meaning of c1 and c3, see text. The reference value of keff for the colorset is 1.00196.

UO2 2.1% MOX

Simulation No. rehom. iter ∆keff [pcm] Error on Pavg (%) Error on Pavg (%)

Standard (a) - -85 1.85 (0.71, 2.19) -1.39 (-0.41, -1.82)
Ref. δΣspectr. (b) - -119 0.92 (0.99, 0.88) -0.69 (-0.56, -0.73)
Spectr. rehom. - POD (c1) 8 -131 1.01 (0.77, 1.06) -0.76 (-0.44, -0.88)
Spectr. rehom. - POD (c3) 7 -135 0.93 (0.97, 0.90) -0.69 (-0.55, -0.74)

• a non-linear diffusive approach, in which the local leakage
distribution is assumed to be proportional to the difference
between the environmental spectrum in the node and the
average environmental spectrum in the surrounding nodes.

The second strategy has given by far the best results, and is
currently being investigated in detail. An example of its appli-
cation, in combination with the POD approach for the trial/test
functions, is shown in Figure 14 for the heterogeneous assembly
of the colorset with Pyrex rods (Problem 1). The description of
the new leakage model is deferred for subsequent publication,
together with additional refinements of rehomogenization and
a more extensive validation of the methodology.

IV. CONCLUSIONS

In this paper we showed that spectral rehomogenization,
in conjunction with the POD-based approach for the search of
basis/weighting functions, can reproduce very accurately core-
environment effects associated to spectral interactions between
fuel-assemblies when the reference-leakage energy distribution

is used. Preliminary results of a leakage model using only nodal
information are also very promising. It is therefore the authors’
belief that the proposed methodology will contribute to obtain
more accurate estimates of light-water-reactor power distribu-
tion and multiplication factor from nodal-diffusion codes, still
using single-assembly-generated homogenization parameters.
Our next challenge is the exploitation of the POD strategy at an
industrial level. In order to capture as many characteristics as
possible of the spectral interactions occurring in the reactor core
and to find a set of rehomogenization modes effectively usable
for several core layouts and states, a more extensive research
of snapshots has to be performed. In our preliminary analy-
sis we took advantage of the fact that spectrum deformations
in the real environment often exhibit some common features
regardless of the assembly-interface type, as well as a weak
dependence on state parameters other than the burn-up. For a
commercial-code target, a more systematic approach (possibly
featuring adaptivity capability) is required, paying attention to
minimize the computational burden of the off-line phase. For
this purpose several sampling methods available in literature
are currently being investigated.
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Fig. 13. Thermal-group (a) and fast-group (b) POD modes computed for the colorset with Pyrex for different values of diluted-
boron concentration (CB), fuel temperature (Tfuel), moderator density (ρmod) and burn-up (Bu). Nominal conditions correspond to
CB=1465 ppm, Tfuel=846 K, ρmod= 0.708 g/cm3. Burn-up snapshots (see dashed curves) were taken at these conditions.

0 0.2 0.4 0.6 0.8 1
15

10

5

0

5

10

u

δ
Φ

2
(u
)
(%
)

UO2 3.1% + Pyrex, G=2

Reference
Rehom.

0 0.2 0.4 0.6 0.8 1
1

0.5

0

0.5

1

1.5

2

2.5

3

u

δ
Φ

1
(u
)
(%
)

UO2 3.1% + Pyrex, G=1

Reference
Rehom.

Fig. 14. Heterogeneous assembly of the colorset with Pyrex rods (Figure 2c): spectrum variation estimated by the POD-based
rehomogenization, with a non-linear diffusive model for the leakage energy distribution using only nodal information and
single-assembly data from cross-section libraries.

REFERENCES

1. K. S. SMITH, “Assembly homogenization techniques for
Light Water Reactor analysis.” Progress in Nuclear Energy,
17, 3, 303–335 (1986).

2. A. DALL’OSSO, “Spatial rehomogenization of cross secti-
ons and discontinuity factors for nodal calculations.” in
“Proc. of Int. Conf. PHYSOR,” (2014).

3. S. PALMTAG and K. SMITH, “Two-group spectral cor-
rections for MOX calculations.” in “Proc. Int. Conf. Phy-
sics of Nucl. Sci. and Tech.”, (1998), vol. 1, p. 3.

4. A. DALL’OSSO, D. TOMATIS, and Y. DU, “Improving
Cross Sections via Spectral Rehomogenization.” in “Proc.
of Int. Conf. PHYSOR,” (2010), pp. 9–14.

5. M. GAMARINO, D. TOMATIS, A. DALL’OSSO, D. LAT-
HOUWERS, J. KLOOSTERMAN, and T. VAN DER HA-

GEN, “Investigation of Rehomogenization in the Frame-
work of Nodal Cross Section Corrections.” in “Proc. of Int.
Conf. PHYSOR,” (2016), pp. 3698–3707.

6. L. ZHU and B. FORGET, “An energy recondensation met-
hod using the discrete generalized multigroup energy ex-
pansion theory.” Annals of Nuclear Energy, 38, 8, 1718–
1727 (2011).

7. W. M. STACEY, Modal approximations: theory and an
application to reactor physics, vol. 41, The MIT Press
(1967).

8. A. CHATTERJEE, “An introduction to the proper ortho-
gonal decomposition.” Current science, 78, 7, 808–817
(2000).

9. K. KUNISCH and S. VOLKWEIN, “Galerkin proper ort-
hogonal decomposition methods for parabolic problems.”



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Numerische mathematik, 90, 1, 117–148 (2001).
10. F. WOLS, Transient analyses of accelerator driven systems

using modal expansion techniques, Master’s thesis, Delft
University of Technology (2010).

11. A. BUCHAN, C. PAIN, F. FANG, and I. NAVON, “A
POD reduced-order model for eigenvalue problems with
application to reactor physics.” International Journal for
Numerical Methods in Engineering, 95, 12, 1011–1032
(2013).

12. A. G. BUCHAN, A. CALLOO, M. G. GOFFIN, S. DAR-
GAVILLE, F. FANG, C. C. PAIN, and I. M. NAVON, “A
POD reduced order model for resolving angular direction
in neutron/photon transport problems,” Journal of Compu-
tational Physics, 296, 138–157 (2015).

13. A. SARTORI, Reduced order methods: applications to
nuclear reactor core spatial dynamics, Ph.D. thesis, Polite-
cnico di Milano (2015).

14. L. SIROVICH, “Turbulence and the dynamics of coherent
structures, part III: dynamics and scaling.” Quarterly of
Applied mathematics, 45, 583–590 (1987).

15. J. LEPPÄNEN, M. PUSA, T. VIITANEN, V. VALTA-
VIRTA, and T. KALTIAISENAHO, “The Serpent Monte
Carlo code: Status, development and applications in 2013,”
Annals of Nuclear Energy, 82, 142–150 (2015).

16. F. ALSAYYARI, D. LATHOUWERS, and J. KLOOSTER-
MAN, “A non-intrusive POD approach for high dimensi-
onal problems using sparse grids.” in “International Con-
ference on Mathematics and Computational Methods Ap-
plied to Nuclear Science and Engineering (M&C 2017),”
(2017).


