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Abstract - EDF R&D is currently working on a new, state-of-the-art calculation chain called ANDROMÈDE.
For core computations, it uses the 3D Cartesian code, Cocagne. Cocagne is a platform which provides several
engineering solutions as well as advanced solutions such as several solvers based on the S Pn (diffusion is a
particular case of S P1 equations) and S n methods for the time-independent Boltzmann equation. Cocagne
is fed with condensed and homogenised cross sections generated in the assembly calculation. In the present
state, the homogenisation-condensation process is carried out using the scalar flux. The latter may not be
well suited to produce cross sections for highly heterogeneous problems. The goal of this paper is to define a
simple method to condense cross section using an approximate for the first flux moment. The method is then
tested on assembly clusters with UOX-MOX interfaces and a numerical benchmark case called the KAIST 1A
benchmark.

I. INTRODUCTION

The time-independent Boltzmann transport equation de-
scribes the statistical behaviour of a population of neutral
particles in a system at equilibrium. Basically, it is a balance
equation between particles which are removed from and added
to a given control volume (streaming term), those which dis-
appear by absorption and scattering and those produced in
the control volume (source term). It is one of the most used
equations in reactor physics under a given set of assumptions
[1] and its numerical resolution to obtain the neutron flux is
widely applied for computations regarding the industrial mon-
itoring of existing nuclear reactors and for the design of future
systems.

EDF R&D is working on a state-of-the-art calculation
chain called ANDROMÈDE. The latter encompasses the
Apollo2 code/JEFF3-based CEA multigroup library/REL2005
scheme package for assembly computations to generate few-
group cross sections for the 3D code Cocagne for core compu-
tations. ANDROMÈDE has the advantage of providing indus-
trial two-group diffusion approximation for everyday uses by
operational teams as well as multigroup transport schemes for
advanced engineering and R&D purposes.

This paper focuses on the solution of the Boltzmann equa-
tion using the Simplified Pn method within the Cocagne frame-
work. Past results [2, 3] obtained on the KAIST benchmark [4]
with the S Pn method have shown that below 8 energy groups,
the S Pn method does not give satisfactory results on the bench-
mark. Indeed, few-group cross sections are not appropriate
to deal with problems that require spectrally rich data (e.g.
UOX-MOX interface, core-reflector interface). The goal of
this paper is to provide a method to generate few-group cross
sections that are suitable for such problems.

The first section presents the theoretical background sur-
rounding cross section condensation and the method which
has been applied in this work. Afterwards, we describe the re-
sults applied to assembly clusters with UOX-MOX interfaces
and the KAIST 1A benchmark. The results will be compared
to reference calculations, and will be discussed.

II. THEORY

1. Energy collapsing for multigroup cross sections

Cross sections provided to the core code are obtained via
an energy condensation with a weighting function. Consider
the following multigroup Boltzmann equation, with Ng energy
groups:
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with

• Ω.∇φg(r,Ω): streaming term for particles entering or
going out of the control volume

• Σ
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• qg(r,Ω): production source in the control volume (e.g.
by fission)

The energy collapsing from Ng energy groups to NG en-
ergy groups of the multigroup neutron transport equation is
expressed by summing over the micro-groups g which belong
to each coarse group G, and the resulting equation is
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with:
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Thus, the weighting function for the cross section should
strictly be an angular flux. It should be noted that in this
case, the total cross section and the differential scattering cross
section have an angular dependence and requires modification
of the solvers to deal with such equations or employing the
method given in [5]. However, given that the angular flux is
seldom available from codes such as Apollo2, the scalar flux
is used as an approximation as the weighting function:
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where φg
0(r) is the scalar flux defined as:

φ
g
0(r) =

∫
4π

d2Ω φg(r,Ω) (5)

Nonetheless, such weighting means that angular data is
lost during condensation as has been shown by [5]. In AN-
DROMÈDE, given that the Apollo2-REL2005 calculations
are carried out at 26 energy groups, cross sections for Cocagne
can be generated by weighting with the scalar flux for 2 to 26
energy groups. However, as was shown with the past works
[2, 3], few groups cross sections cannot deal with the highly
heterogeneous interfaces such as the core-reflector interface.
A more appropriate method would be an energy condensation
by the flux moments, but these are not readily available to the
user from our lattice code Apollo2.

2. SPn equations

The Simplified Pn or S Pn method derives from the 1D Pn
equations extended in 3D by uncoupling the space directions
and applying the 1D Pn system in each direction [6]. The
S Pn equation system can be grouped two-by-two as pairs
of even and odd equations, the even moments being scalar
terms and the odd moments being vector terms wrt. the space

variables. Thus, setting φ2k = ϕh and φ2k+1 = ψh for ∀0 ≤
k, h ≤ (n − 1)/2, the S Pn system is written as [7]:
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with ψ−1 = 0 and ϕ(n+1)/2 = 0.
Only, the first two flux moments have a physical meaning,

the higher moments account for the higher flux harmonics
which tend to decay quickly in reactor physics applications.
The first S Pn equation is that for the zeroth flux moment. It
is the balance equation that conserves the various reaction
rates and power that are computed from the scalar flux. On
the other hand, the higher moments correspond to higher flux
harmonics which are of interest for anisotropic problems. The
second equation for instance leads to the first flux moment, or
the neutron current:

ψg
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∫
4π

d2Ω Ωφg(r,Ω) = j(r)

This moment can be employed for energy collapsing in cases
where the streaming effects are significant. Todorova et. al.
[8] provided a simple method for approximating the first flux
moment. Using such an approximation, two different total
cross sections may be defined: one for even equations, and a
second for odd ones.

3. First flux moment approximation

Let us consider the energy collapsing of the total cross
section using an arbitrary function f g as given by:

Σ
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In the case where the total cross section is collapsed using
the scalar flux, f g is defined as:
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If a current-collapsing is employed:
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(8)

From the work [8], the authors assumed that the flux
gradient has the same energy distribution as the scalar flux.
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Hence, by using Fick’s law approximation for the neutron
current, the weighting function f g can be expressed as follows
to obtain an estimate for the first flux moment:
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where we define the Todorova flux φg
1(r) as:
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Thus, the total cross section can be collapsed using an
approximation of the first flux moment, the Todorova flux,
instead of the scalar flux as was discussed previously:
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However, these Todorova-collapsed cross sections are
applied only in the odd S Pn equations with those for the even
equations being condensed in energy using the usual scalar
flux. Thus, the neutron balance is conserved through the
zeroth flux moment while only higher harmonics are impacted
to allow for spectral effects.

III. METHOD VALIDATION

In this section, the energy-collapsing method for the odd
total cross sections and the odd-moment differential scattering
cross sections are tested using two cases:

• an elementary 3 × 3 colorset is employed as in [3]

• the KAIST 1A benchmark.

The cross section library for the Cocagne code are gen-
erated for various energy-group structures (ranging from 2 to
26) with the Apollo2-REL2005 scheme. The Todorova flux

is computed from the 26-group cross section library using the
scalar flux, the total and the P1 scattering cross sections in
each computational region. It is then used to collapse the total
cross section (odd total) and the odd differential scattering
moments for the various multigroup libraries. These cross
sections are injected in the S Pn solver of Cocagne.

Therefore, the multigroup S P3 calculations are carried
out using P1 and P3 (all cross sections collapsed with the
scalar flux) or Todorova-P1 (T P1) and Todorova-P3 (T P3)
(total cross sections for the odd equations and odd scattering
moments are collapsed with the Todorova flux) for 4, 6, and 8
energy groups (which are derived from the 26 group structure)
for the above configurations.

1. Equivalence factors

The various calculations for this work are carried out
for pin-homogenised cross sections. Unlike assembly-
homogenised core calculations, this implies that we must
apply some equivalence factor at the boundaries of the as-
sembly to ensure that the reaction rates for the homogenized
and condensed cross sections conserve the reaction rates from
the assembly calculations [9].

The formalism used in COCAGNE is called the SPH (Su-
PerHomogenisation) method. The latter defines equivalence
factors for each cell m of the computational mesh and each
energy group g. Besides, the equivalence factor also depends
on the transport operator and thus also on the anisotropy of
the problem. Hence, for each anisotropy, similar to classical
scalar-flux-condensed cross sections, equivalence factors for
Todorova-condensed cross sections are also defined and com-
puted. These factors will be applied to the corresponding cross
sections for all calculations.

Thus, this step ensures that core calculations are carried
out in the same conditions for all configurations studied.

2. Assembly colorset

The 3× 3 colorset studied includes a fresh central MOX-1
assembly surrounded by UOX-2 assemblies at 24 GWd/ton
burn-up (the assemblies are taken from the KAIST benchmark
which will be described later). The goal of using this colorset
is to evaluate the use of the energy-collapsing strategy on a
simple UOX-MOX interface where pins are subjected to a high
flux gradient (different neutronic properties due to material
composition).

The best-estimate calculation is a 26 group S P3 − P3 cal-
culation with pin-homogenized cross sections in the Cocagne
platform. The reference keff value is 1.11638. For each
anisotropy previously described, calculations are carried out
with the S P3 solver for 4, 6 and 8 groups and the results are
compared to the best-estimate results for reactivity and local
pin values.

Figure 1 shows that the discrepancies at the UOX-MOX
interfaces are reduced using T P3 since the T P3 cross sections
are collapsed with a weighting function that allows for harder
spectral variations. From the results in Table I, it is interesting
to note that:

• As the number of groups is increased, there is sufficient
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Groups Anisotropy ∆keff(pcm) min. (%) max. (%) rms. (%)

4 P1 -121 -3.4 3.5 0.9
4 P3 -121 -3.5 3.6 0.9
4 T P1 -105 -2.2 2.5 0.5
4 T P3 -104 -2.2 2.6 0.5

6 P1 -70 -2.7 1.7 0.5
6 P3 -68 -2.8 1.8 0.5
6 T P1 -66 -2.4 0.9 0.3
6 T P3 -65 -2.4 1.0 0.3

8 P1 -56 -2.6 1.0 0.4
8 P3 -55 -2.6 1.1 0.4
8 T P1 -54 -2.2 0.4 0.3
8 T P3 -52 -2.2 0.5 0.3

TABLE I: Reactivity and local pin power discrepancy results on the assembly colorset.

spectral data to obtain satisfactory results on integral
quantities such as the reactivity, and thus the T Pn cross
sections leads to the same results as the Pn ones.

• On the other hand, the local pin power is a more hetero-
geneous information as it is a local quantity and is more
subject to spectrum effects. Thus, if the number of groups
is not sufficient, the Pn cross sections are less accurate
and lead to higher discrepancies on the local pin power.
Using the Todorova-collapsed cross sections, it can be
observed that the results for the 4-group calculation is
as good as that for Pn results at 6 groups, and the same
conclusions can be drawn for the 6-group T Pn compared
to the 8-group Pn results. Furthermore, the discrepancy
spreads are always much lower with T Pn method.

3. KAIST 1A benchmark problem

This benchmark problem has been published by N.
Cho[4]. The KAIST 1A benchmark is a small MOX-loaded
core, basically a simplified PWR problem of reduced size
(hence power) and consists of 52 assemblies producing 900
MWth at nominal power. Figure 2 shows a description of the
radial map of those assemblies in the core at zero burn-up.

The core contains five types of assemblies:

• UOX-1: UOX assembly enriched at 2.0% 235U,

• UOX-2: UOX assembly enriched at 3.3% 235U, with
BA-16, it implies that there are 16 gadolinia pins,

• MOX-1: MOX assembly with zoning for plutonium en-
richment: 8.7% enrichment in the central zone, 7.0% in
in the intermediate zone and 4.3% in the peripheral zone,
with BA-8, there are 8 gadolinia pins.

The gadolinia pins are enriched in gadolinium isotopes
at 9.0% on natural uranium support. CR refers to the rodded
configuration of the core where all the guide tubes, except the
central one, are filled with B4C rods. The core is enclosed by
a stainless steel baffle. The reflector is simple and consists of

Fig. 2: The KAIST 1A core with its assemblies.

water at 570K and has the same composition as the moderator
with 800 ppm of soluble boron concentration.

KAIST 1A offers a very interesting study case as it is in
2D and temperatures are imposed in the benchmark problem.
In the case of the validation of the Todorova-flux method, the
KAIST 1A benchmark offers a very challenging case with a
small but highly heterogeneous core with both UOX-MOX
and core-reflector interfaces. This core can be depleted for
numerical validation purposes without imposing any thermal-
hydraulics which significantly complexifies the analysis.

The Todorova flux is employed for energy collapsing of
cross sections for both fuel and reflector assemblies. The best-
estimate calculation is a 26-group S P3 − P3 calculation with
pin-homogenized cross sections in the Cocagne platform. All
the calculations for all the energy groups and anisotropy orders
are carried out using the pin-homogenised cross sections. The
reference keff value is 1.13257. For each anisotropy previously
described, calculations are carried out with the S P3 solver
for 4, 6 and 8 groups and the results are compared to the
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Fig. 1: Pin power comparisons between the 4-group S P3 with P3 (left) and T P3 (right) and the best-estimate calculations.

best-estimate results for reactivity and local pin values.

A. Results for zero-burnup calculations

The results for step zero (zero burnup) calculations are
given in Figure 3 and Table II. From Table II, it can be ob-
served that the new collapsing method leads to larger discrep-
ancies in reactivity. Besides, there is a change in the sign of the
discrepancy and thus, where the scalar-flux collapse leads to
overestimation, the new method leads to an underestimation of
the keff. This effect was not observed on the assembly clusters
studied in the previous section. Hence, it can be deduced that
the Todorova collapsing method impacts the reflector effects.
Therefore, it is incumbent to analyse reaction rates to ensure
that there are no compensation effects.

From Table II, it can be observed that the Todorova-
condensed cross sections decrease the dispersion between
the minimum and maximum discrepancies. This is translated
on Figure 3 as a better prediction of the pin power distribution
since the in-out shift is less visible for the lower ones. Hence,
it can be deduced that the Todorova-collapsed cross sections
lead to better spectral distribution of neutrons and thus, power
maps. For the scalar-flux collapsing method (figures in the
upper row), it can be seen that the power distribution is biased
by an in-out shift which thus leads to compensation effects on
the global core reactivity. Such effects are not observed with
the new method and the power distributions are very smooth,
without trends from the inside of the core to its periphery.

Furthermore, it can also be observed that the RMS value
of the discrepancies decreases for the T Pn cross sections. The
same conclusions that were observed for the assembly clusters
can be extrapolated for the core calculations. For this bench-
mark, it is very encouraging to obtain 4-group results that are
almost of same quality as 6-group ones (even slightly better)
and are below 1%, which is highly satisfactory for industrial
uses.

B. Depletion calculation results

Following the work on zero burnup calculation, the next
step is to test the collapsing method on depletion calculations.
In [3], the KAIST 1A core has been depleted using differ-
ent solvers and simulations, with a 1D reflector model [10].
From this work, we observed that two-group diffusion calcu-

lations were much better than multigroup S P3 calculations
if the number of groups were not sufficient. Thus, we con-
cluded that simplified transport required sufficient number of
groups to allow for spectral effects, especially for such a small
heterogeneous core.

Following this observation, the Todorova-collapsed cross
section libraries were used for depletion of the KAIST 1A
benchmark with the same simulation as the previous paper. Iso-
topic depletion computations were carried out on the KAIST
1A core and the boron concentration cB was computed at each
step. No thermalhydraulics feedback was employed for these
computations to compare only the collapsing effect, without
any additional bias. Our aim is to verify whether the previous
observation for static zero burnup calculations holds true even
during depletion. For this simulation, we have also added
pin-by-pin two-group diffusion calculation, which is a coarser
approximation.

Figure 4 shows the discrepancy on the critical boron con-
centration for 4, 6 and 8 energy groups against an S P3 − P3
reference calculations for both condensation models. It can be
observed that there are two sets of plots, those for the scalar
flux and those for the Todorova-condensed cross sections. The
first set corresponds to the same observations as that in [3]
whereby the diffusion calculation leads to more satisfactory
results than multigroup S P3. Indeed, the spectral effects on
the condensation of cross sections to few energy groups leads
to significant discrepancies when applied to this benchmark.
Diffusion, on the other hand, is a much better approxima-
tion leading to widely acceptable results. For the T Pn cross
sections, there is a change in the sign of the observed discrep-
ancies as well as a decrease in their magnitude. Furthermore,
the discrepancies remain more or less stable over the depletion
process.

Table III shows the RMS discrepancies for pin power
distributions at beginning, middle and end of cycle (BOC,
MOC and EOC). The same tendency can be observed over
the cycle for the pin power discrepancies. As the number of
groups increases, the condensation effects are less significant.
Nonetheless, the discrepancies are more stable over the cycle
for the Todorova-collapsed cross sections.
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Groups Anisotropy ∆keff(pcm) min. (%) max. (%) rms. (%)

4 P1 109 -4.8 4.2 1.6
4 P3 120 -4.7 4.2 1.6
4 T P1 -211 -2.3 3.8 0.9
4 T P3 -200 -2.4 3.9 0.9

6 P1 112 -3.9 2.4 1.0
6 P3 123 -3.9 2.3 1.1
6 T P1 -199 -2.1 1.8 0.6
6 T P3 -186 -2.1 1.8 0.5

8 P1 111 -3.4 1.7 1.0
8 P3 122 -3.4 1.6 0.9
8 T P1 -197 -1.7 2.3 0.4
8 T P3 -185 -1.7 2.0 0.4

TABLE II: Reactivity and local pin power discrepancies for the KAIST 1A benchmark problem at zero burnup.

(a) 4G P3 (b) 6G P3 (c) 8G P3

(d) 4G TP3 (e) 6G TP3 (f) 8G TP3

Fig. 3: Local pin power discrepancies for the KAIST 1A benchmark problem at zero burnup. All figures are scales to -5 – 5%.
Figures on the top row correspond to the comparison of computations with “usual” scalar-flux-collapsed cross sections. On the
other hand, the bottom row shows results for Todorova-collapsed cross sections.
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Fig. 4: Discrepancy on the critical boron concentration for 4, 6 and 8 energy groups against a 26-group S P3 − P3 reference
calculations for both condensation models.

Groups Anisotropy BOC (%) MOC (%) EOC (%)

4 P1 2.0 1.4 1.3
4 P3 2.1 1.5 1.3
4 T P1 0.9 0.8 0.7
4 T P3 0.9 0.8 0.7

6 P1 1.5 1.0 0.9
6 P3 1.6 1.0 0.9
6 T P1 0.5 0.5 0.6
6 T P3 0.5 0.5 0.5

8 P1 1.2 0.9 0.7
8 P3 1.3 0.9 0.8
8 T P1 0.5 0.4 0.5
8 T P3 0.4 0.4 0.5

TABLE III: RMS local pin power discrepancies for the KAIST 1A benchmark problem at BOC, MOC and EOC.
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IV. CONCLUSIONS

In this work, the goal was to apply a simple method to
evaluate a more convenient energy-collapsing method for het-
erogeneous spectral problems with few energy groups in the
S Pn framework within the Cocagne platform. The Todorova
flux was successfully applied as a satisfactory approximation
for the neutron current or first flux moment to collapse the
cross sections which are injected in the odd equations of the
S Pn equation system.

Two cases were studied to validate the method, an assem-
bly colorset and the KAIST 1A benchmark. The results on
the assembly colorset were satisfactory both for integral and
local quantities for a UOX-MOX interface. Results on the
KAIST 1A benchmark for eigenvalue calculations as well as
depletion calculations are very encouraging. The discrepan-
cies on reactivity are slightly worsened but remain within an
acceptable range. Yet, the most important aspect is the fact
that pin-power discrepancies are improved both in magnitude
and in their distribution - there is no in-out shift on the core.

The claim is that despite the widespread beliefs that the
S Pn method works only if sufficient energy groups are em-
ployed, it is shown that a more adapted energy-collapsing
method may be applied to obtain satisfactory results with few
energy groups.
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