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Abstract - A method is developed and demonstrated for addressing constraints within the context of fuel 

cycle optimization problems. The penalty-free method, based on constraint annealing, eliminates the use of 

traditional constraint penalty factors by treating each constraint as separate and concurrently solved 

minimization problems within a global optimization search framework. Results are demonstrated for a 

realistic core loading pattern design problem.  

 

I. INTRODUCTION 

 

Fuel cycle design and optimization belongs to a class of 

NP-hard combinatorial optimization problems characterized 

by discrete decision variables, non-linear formulations for 

the objective function and constraints, and use of 

computationally intensive, multi-physics models for 

evaluation of the parameters of interest. For LWRs, the fuel 

cycle design problem may be generally defined as the 

determination of the fresh fuel design(s), exposed fuel 

carryover, and fresh and exposed fuel placements within a 

loading pattern that minimizes fuel costs while meeting 

constraints on cycle energy production, operational margins 

and safety limits.  

Several approaches have proved capable for the 

solution of such problems, the most successful being 

methods based on simulated annealing [1] and evolutionary 

algorithms [2]. A primary implementation challenge that 

remains is the treatment of constraints within the 

optimization algorithm. Table I displays a representative, 

although not comprehensive, list of constraints of interest to 

PWRs. It is noted that numerous constraint formulations are 

possible and are unique to each reactor and fuel cycle under 

design. The optimization method must assure convergence 

of the search to the global optimum for the defined objective 

function while assuring the feasibility of the solutions 

obtained. For many problems, the existence of local minima 

and the potential for entrapment necessitates the use of 

techniques that allow for violation of constraints during the 

search. This is most readily accomplished through the use of 

penalty functions applied to the constraints as part of the 

objective function formulation. Penalty function approaches 

that have been employed for solution of large-scale 

combinatorial problems include static, dynamic, and 

adaptive methods [2]. Variations of these methods have 

been demonstrated for simulated annealing solution of the 

multi-cycle core loading optimization problem [3, 4].  

The penalty function approach takes the form of a 

modified objective function as follows: 
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Within Eq. 1, f  represents the unmodified objective 

function, 
i  is the penalty weight specific to constraint

iC , 

and I is the number of active constraints for the problem. It 

is noted that constraints are defined to have a lower zero 

bound representing non-violation of constraint limits while 

the objective function is generally treated as unbounded for 

purposes of the optimization. It is also clear that constraints 

may become objective functions through elimination of the 

lower zero bound and vice-versa. The penalty weights may 

be user input constants or may be adjusted periodically 

during the course of the optimization. As shown in Table I, 

the significant number and possible combinations of core 

loading design constraints poses a tremendous challenge. In 

general, penalty function formulations are problem 

dependent with penalty weights often tailored to achieve a 

balance between computational run time performance and 

quality of optimized solutions. An approach for treating 

penalty weights developed for solution of one design often 

lacks robustness when applied to a different reactor with a 

different set of constraints.  

 

TABLE I. Representative list of PWR core loading design 

constraints 

 

Category Parameters 

Reactivity MTC, SDM, critical boron  

Thermal Margins 

(unrodded/rodded) 

FdH, FQ, assembly average 

power, quadrant power tilt, 

steaming rate (CIPS/CILC), 

AST 

Fuel Exposure Peak rod, region average 

Vessel Fluence Peripheral fuel rod power 

Fuel Manufacturing Enrichment & burnable poison 

distributions 

Failed fuel mitigation 

and contingency 

Peripheral fuel re-use (GTRF), 

step-out-bundles 

 

II. CONSTRAINT ANNEALING METHOD 

 

Conceptually, the proposed penalty-free method [5] 

treats the objective function and constraints within the 

multi-constrained optimization problem as separate 

minimization problems to be solved for f and iC . Of 
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primary importance is the manner in which the separate 

minimization problems are coupled and how it impacts 

solution evolution during the course of the optimization. An 

approach based on parallel simulated annealing with mixing 

of states is next developed, hereafter referred to as 

constraint annealing. 

For purposes of clarity, and without loss of generality, 

the discussion that follows will focus on constraints only. 

Incorporation of one or several objective functions into the 

optimization method described is readily achieved by 

treating each objective function as an unbounded constraint, 

noting that both positive and negative values are now 

possible. The result is a constrained optimization problem 

(COP) that degenerates into a constraint satisfaction 

problem (CSP) when the objective functions are set equal to 

zero.  

  

1. Adapted Simulated Annealing 

 

Constraint annealing is based on the method of 

simulated annealing where random sampled, successive 

solutions are either accepted or rejected based on the 

Metropolis criterion: 
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Within Eq. 2, each constraint maintains a unique 

cooling schedule to assess solutions generated within the 

Markov chain sequences. Global solution acceptance is 

based on satisfying the Metropolis criterion for each 

constraint. This equates to satisfying the bounding 

constraint (i.e. the lowest acceptance probability) for a given 

sampled solution. It is noted that a sampled solution may 

therefore satisfy a subset of non-bounding constraints (i.e. 

local acceptance) while being rejected as a global accepted 

solution. This motivates a second key aspect of constraint 

annealing and that is the use of local acceptance/rejection 

information as part of the annealing schedule. 

The annealing schedule for each constraint is based on 

adjustment of the inverse temperature following completion 

of each Markov chain. For constraint annealing, the choice 

of a -schedule seeks to maintain a stationary probability 

distribution for each constraint i at cooling step n: 
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For the proposed method, an adaptation of the Lam cooling 

schedule [6] is utilized for each constraint as follows: 
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where:  
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The Lam cooling schedule of Eq. 4 and 5 satisfies the 

stationary condition of Eq. 3, with   being a characteristic 

of the cooling schedule. A key aspect is that within 

constraint annealing, the global acceptance ratio and   are 

common to each constraint annealing schedule while the 

standard deviation estimates and resultant inverse 

temperatures are calculated local to each constraint. 

Constraint annealing therefore combines knowledge of the 

individual constraint behavior with global solution 

acceptance as the means to inform the optimization search. 

It is noted that at a fixed temperature the average constraint 

value will converge to the true mean as the Markov chain 

length goes to infinity (i.e. a time-homogeneous Markov 

chain). Therefore, a sufficiently small   can always be set 

that will establish quasi-equilibrium, albeit with a slower 

cooling rate and increased run-time. 

 

2. Parallel Acceleration with Mixing of States 

 

Parallel simulated annealing (PSA) allows for 

acceleration of the optimization by incorporating parallel 

Markov chains within the solution algorithm thus enabling 

solution on tens to hundreds of processors [7]. Within PSA 

concurrent Markov chains are initiated at the start of each 

temperature evaluation. Within constraint annealing, the 

sampling probability is calculated for each member of the 

population based on the minimum constraint probabilities 

for each solution and the inverse temperature as follows: 
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where: 
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For HPC applications, parallel Markov chains consisting of 

successively generated solutions may be assigned to 

independent processors (or groups of independent 

processors). As defined, PSA may be performed 

synchronously, where the Markov chain length is fixed for 

each processor, or asynchronously, where the Markov 

chains may be truncated to achieve optimal CPU load 

balance. 

 

3. Algorithm 

 

The algorithm consists of an initialization phase, where 

randomization of the solutions occurs and initial 

temperatures are established. This is followed by an 

optimization phase consisting of PSA and mixing of states 

components. Appendix A shows the pseudo-code for the 

algorithm. In summary, the objective function and each 

constraint will evolve according to a unique temperature. 

Each generated solution will be evaluated against the 

objective function and constraints according to the 

Metropolis criterion of Eq. 2 resulting in the set of 

acceptance probabilities. Individual state-transitions are then 

calculated and the solution accepted globally if the lowest 

constraint acceptance probability is satisfied. Upon 

completion of the set of parallel Markov chain, pooled 

statistics from each constraint are used with the global 

acceptance ratio to calculate updated temperatures 

according to Eq. 4 and 5. In addition, the set of current best 

solutions from the completed Markov chains are used to 

construct a probability density function according to Eq. 6 

and 7 which is sampled to provide initial solutions for the 

subsequent Markov chains. To summarize the key points: 

 

a) Potential solutions are generated based on a common 

move generation strategy.  

b) Solutions are evaluated with respect to the individual 

acceptance criterion for each constraint, independent of 

the other constraints that might exist. 

c) Solutions are globally accepted or rejected based on 

having satisfied all constraint individual acceptance 

criteria. 

d) Local constraint and objective function statistics are 

accumulated based on all evaluated solutions within the 

Markov chain. This includes acceptances where a new 

best solution is assigned and rejections where the 

current best solution is maintained. 

e) Global acceptance ratios are calculated based on global 

accepted solutions. 

f) Starting solutions for each parallel Markov chain are 

obtained by sampling from the population of P current 

best global solutions, which comprises the union of 

solutions obtained for each Markov chain at completion 

of the previous temperature evaluation. 

 

III. RESULTS 

 

The constraint annealing method is demonstrated within 

the FORMOSA-P code [8] for a 3-loop Westinghouse PWR 

loading pattern design formulated as a COP. The decision 

variables for this problem include fresh burnable poison 

design, fresh and exposed fuel placements, and gradient 

orientations of the exposed fuel bundles. 

The move generation strategy is based on performing 

perturbations to the set of decision variables as a means of 

sampling a new solution. The possible perturbations 

include: 1) the binary swap of exposed fuel, 2) the binary 

swap of fresh and exposed fuel, 3) the change of fresh fuel 

burnable poison design in a single location, and 4) the 

change in exposed fuel gradient orientation in a single 

location.  

For the current application, constraint annealing is 

executed synchronously, where each processor executes a 

Markov chain of length N to completion. The value of N is 

based on the number of perturbations possible for the move 

generation strategy for the binary swap of fresh and exposed 

fuel (N=160 for the current problem). Convergence is based 

on a global acceptance ratio (set equal to 0.01) or detection 

of asymptotic convergence based on the objective function 

and constraint mean and standard deviation values. A value 

of =1.0, equal to one standard deviation within the 

stationary criteria of Eq. 3, was selected as the only 

‘adjustable’ parameter. All problems were executed on a 24 

CPU core machine (i.e. 24 parallel Markov chains). 

Two cases are considered. Case A focuses on the 

assessment of the constraint annealing method as pertains to 

the robustness of the algorithm in identifying a global 

optimum solution. This is achieved by repeat execution of 

the same problem with different random number seeds. The 

goal is to assess performance, as measured by the evolution 

of key parameters during the progress of the optimization as 

well as the final results. For Case A the objective function is 

the maximization of EOC boron concentration at a target 

EOC exposure (i.e. minimizing the negative boron). 

Constraints for Case A include limits on FdH and peak rod 

burnup only.  

For Case B the focus is on the demonstration of the 

constraint annealing method for a realistic core design 

problem, as defined by a unique objective function and 

constraint configuration created from the parameter list of 

Table I. Two objective functions are defined: 1) the 

maximization of EOC boron concentration at a target EOC 

exposure and 2) the minimization of vessel fluence. 
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Constraints include: 1) FdH, 2) rodded FdH (i.e. the lead 

control bank at the rod insertion limit), 3) HZP MTC, 4) 

peak rod burnup, 5) steaming rate, and 6) alternate source 

term (AST). It is noted that Case B is a more restrictive 

subset of Case A. Table II describes the problem definition 

for each case. 

 

TABLE II. Optimization problem configurations 
Constraint Case A 

Limit 
Case B 
Limit 

EOC Boron (ppm) >0.0 > 0.0 

Fluence n/a < 0.180 

FdH < 1.590 < 1.590 

Rodded FdH n/a < 1.590 

Peak Burnup (GWD/MTU) < 54.00 < 54.00 

MTC (pcm/℉) n/a < 0.0 

Steaming Rate (lbm/ft2-hr) n/a < 4.00 

AST (kW/ft) n/a = 0.00 

 

Several items are important to note. Of the constraints 

listed in Table I, the fuel manufacturing and contingency 

constraints are readily addressed through the sampling 

procedure. This is particularly important for constraints such 

as GTRF where the exclusion of certain fuel placements 

will reduce the size of the decision space. Constraints such 

as those on enrichment and BP distributions are likewise 

addressed as part of the sampling process and reduce the 

decision space. The remainder of the constraints within 

Table I must be evaluated utilizing a core simulator. Most of 

the reactivity, thermal margin and exposure constraints are 

straightforward with some exceptions.  

First, the fluence constraint is modeled as a weighted 

integral over cycle exposure of the assembly fuel rod 

powers (i.e. fast flux source terms), where higher weight 

factors indicate higher importance with respect to the 

overall vessel fluence critical weld locations. Fluence as 

defined is therefore a unitless parameter consistent with the 

definition of an average relative rod power. Second, the 

steaming rate is a core average value calculated as an 

integral over the core and the operating cycle of the amount 

of subcooled nucleate boiling vapor mass flux. It is used as 

a proxy for CIPS, a phenomena in PWRs where the uptake 

of soluble boron within the fuel crud layer can induce axial 

power offset swings during normal operation.  Finally, AST 

establishes a limit on peak linear power (kW/ft) as a 

function of fuel rod burnup. AST addresses fuel release for 

postulated accidents such as loss of coolant, steamline 

break, and the fuel handling accident. AST can be the 

limiting constraint in some reactor designs due to the use of 

high burnup fuel in high power locations.  

 

1. Case A Results 

 

Table III displays the statistics results for the Case A 

problem executed 11 times utilizing different random 

numbers seeds. For all trials, the FdH and rod peak burnup 

constraints were satisfied with an accompanying increase in 

EOC boron. As shown, the standard deviations for all 

parameters are small relative to the mean value indicating 

the optimization search algorithm is capable of finding 

essentially the same optimum solution. This is further 

reinforced by examination of the BOC k∞ distribution 

(mean and standard deviation) which show similar results 

(Fig. 1 and 2) including the same fresh loading fuel pattern 

for all cases executed. The low standard deviations are also 

indicative of nearly identical fuel being loaded in the same 

core locations. 

 

TABLE III. Summary of optimization results for COP, 

independent run statistics 

 

Constraint Limit Mean Std.  

EOC Boron (ppm) >0.0 +13.0 0.7 

FH < 1.590 1.588 0.003 

Peak Burnup (GWD/MTU) < 54.00 53.45 0.08 

  

 

Fig. 1. BOC k distribution (mean value) 

 

 
Fig. 2. BOC k distribution (standard deviation) 

 

Fig. 3-5 display the algorithm performance over the 

course of the optimization search. The results shown are 

based on the average values for all trials executed. Fig. 3 

shows the acceptance ratios for the FdH constraint and the 

EOC boron objective function as well as the global 

acceptance ratio. It is clear the global acceptance ratio is 

dominated by the satisfaction of the FdH constraint. Note 

that the peak rod burnup constraint is not a limiting 

constraint for this problem.  

Fig. 4 displays the evolution of temperature during the 

optimization. As shown, a similar shape evolves for both the 

EOC boron objective function and the FdH constraint. The 

Exposed Loc. 

Fresh Loc. 

Exposed Loc. 

Fresh Loc. 
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exception is that the FdH temperature shows a sharp 

decrease towards the end of the optimization. This is 

consistent with the constraint violations being eliminated 

(i.e. a small standard deviation as appears in Eq. 4).  

 

 
Fig. 3. Case A. Acceptance ratios (11 trial runs) 

 

 
Fig. 4. Case A. Temperature evolution (average of 11 trial 

runs) 

 

 
Fig. 5. Case A. Objective function and constraint evolution 

(11 trial runs) 

 

Fig. 5 shows the evolution of the EOC boron and FdH 

(mean values) at each cooling step of the optimization. For 

the EOC boron objective function, the mean asymptotically 

approaches -5.5 (equal to +5.5 ppm in boron). This 

compares with a much higher value of +13.0 ppm for the 

optimum solution which is contained within the population. 

This is readily explained by Fig. 3 which shows the EOC 

boron objective function maintaining a high acceptance rate 

towards the end of the optimization search (~ 80%). 

 

2. Case B Results 

 

Case B incorporates an additional objective function 

and four additional constraints to the Case A problem 

specification. Fig. 6 displays the acceptance ratios for all 

objective function and constraints as well as the global 

acceptance ratio during the optimization search. Fig. 7 

similarly displays the temperature results. The flat line 

behavior within the temperature curves represent the point 

at which constraint violations have been eliminated. All 

constraint limits were satisfied at the completion of the 

search. 

 

 
Fig. 6. Case B. Acceptance ratios 

 

 
Fig. 7. Case B. Temperature evolution 
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In contrast to Case A, the limiting constraints for Case 

B in terms of dominating the global acceptance rate is more 

complex. Both Fdh (rodded and unrodded) are bounding 

during the first half of the optimization search until the 

constraint violations are eliminated. Steaming rate becomes 

dominant in the latter stages of the optimization. 

Fig. 8-9 display the evolution of the objective function 

values during the course of the optimization. As shown, 

both the EOC boron and fluence exhibit similar behavior 

which is explained by noting that higher EOC boron is 

consistent with reduced core leakage and thus vessel 

fluence. As a result, both EOC boron and fluence are 

impacted greatly by the selection of fuel on the core 

periphery. The optimization results in improvements to both 

objective functions with optimum values of +4.9 ppm for 

EOC boron and 0.170 for fluence (representing a 5% 

improvement versus the target value of 0.180).  

A comparison with Case A (Fig. 5) shows consistent 

EOC boron behavior. This is expected since the Case B 

specification was developed from the Case A problem 

definition. However, the boron improvement for Case B 

when compared with Case A (+13 ppm) is much reduced. A 

comparison with the calculated fluence for Case A (0.186) 

shows significant improvement. It is noted that fluence was 

not considered in the Case A problem definition. 

 

 
Fig. 8. Case B. EOC boron objective function evolution 

 

 
Fig. 9. Case B. Fluence objective function evolution 

Fig. 10-14 display the evolution of the constraint values 

during the course of the optimization. The constraint 

violations on peak rod burnup, MTC, and AST are 

eliminated relatively early during the search as shown in 

Fig. 10, 11 and 12, respectively. It is noted that peak rod 

burnup and AST are impacted by the local powers within 

higher burnup fuel. In contrast, the MTC is impacted by the 

total burnable poison loading within the fresh fuel.  

 

 
Fig. 10. Case B. Peak burnup constraint evolution 

 

 
Fig. 11. Case B. MTC constraint evolution 

 

 
Fig. 12. Case B. AST constraint evolution 

 

The next constraints eliminated during the search are 

the unrodded and rodded FdH as shown in Fig. 13 and 14, 
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respectively. It is noted that satisfying both FdH constraints 

will seek solutions where the limiting peaking factors are 

located in the vicinity of the lead control bank locations. 

Finally, Fig. 15 shows the steaming rate constraint which is 

eliminated during the late stages of the optimization search. 

 

 
Fig. 13. Case B. FdH constraint evolution 

 

 
Fig. 14. Case B. Rodded FdH constraint evolution 

 

 
Fig. 15. Case B. Steaming rate constraint evolution 

 

Fig. 16-17 shows a comparison of BOC peaking factor 

distributions (unrodded) for the Case A and Case B 

optimized results. Also displayed are the locations of fresh 

and exposed fuel as well as the limiting assembly locations 

in terms of their fluence contribution. The locations of the 

lead control rod banks are highlighted in red. Several key 

points are made. First, the fresh loading patterns show 

significant differences among both interior (groupings of 8) 

and axis (groupings of 4) core locations. The result is a 

significant reduction in peaking factors in the fluence 

locations for Case B. Second, Case B shows reduced 

peaking factors in the fresh core locations as well as 

significantly reduced peaking factors in the key fluence 

locations. Examining the locations of the lead control bank 

locations, it is clear that rod insertion will increase the 

power in the limiting locations away from the control rods. 

For Case A, the fresh locations with peaking of 1.58 show 

an increase of 0.02 with rods inserted (leading to violation). 

For Case B, a similar increase 0.02 maintains the peaking 

factor below the constraint violation limit. It is again noted 

that neither fluence nor rodded FdH were active constraints 

for Case A. Thus, the results are consistent with the problem 

specifications.  

 

 
 

Fig. 16. Case A. BOC peaking factors (unrodded) 

 

 

 
 

Fig. 17. Case B. BOC peaking factors (unrodded) 

 

 

Exposed Loc. 

Fresh Loc. 

Fluence Loc. 

Exposed Loc. 

Fresh Loc. 

Fluence Loc. 
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IV. CONCLUSIONS 

 

A penalty-free algorithm has been developed and 

demonstrated for solution of fuel cycle optimization 

problems. The method eliminates any need for penalty 

functions and problem specific adjustable parameters as are 

often encountered in multi-objective, multi-constrained 

optimization problems. Two case studies were presented. 

The first examined the robustness of the algorithm with 

respect to algorithm performance and the ability of the 

optimization search to identify global optimum solutions. 

The second case expanded upon the first by incorporating an 

additional objective function and additional constraints, 

including realistic core design limits on reactivity, thermal 

margins, and fuel exposure. The performance results 

obtained are shown to be consistent with not only the 

problem specification but the expected physical behavior of 

the core design.  

 

APPENDIX A: CONSTRAINT ANNEALING 

ALGORITHM 

NOMENCLATURE 

 

LWR – light water reactor 

PWR – pressurized water reactor 

HZP – hot zero power 

BOC – beginning of cycle 

EOC – end of cycle 

FdH – hot channel peaking factor (2D) 

FQ – total peaking factor (3D) 

MTC – moderator temperature coefficient 

AST – alternate source term 

SDM – shutdown margin 

CIPS – crud induced power shift 

GTRF – grid to rod fretting 

CILC – crud induced localized corrosion 
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Initialization Phase 

 

0. Assign randomly generated solution to each 

processor k 

1. For each processor k initiate independent 

Markov chains & analyze; continue until completed 

1a. perform sampling and evaluate solution 

objective and constraint values 

1b. accumulate statistics for each constraint i  

1c. accept solution, assigning as the new best 

solution 

2. Communicate best solution & constraint 

statistics from each processor k back to master 

3. Calculate initial constraint temperatures for 

each constraint i 

3a. calculate constraint value standard          

deviation based on Markov chain 

3b. calculate temperature as a multiple of 

standard deviation (e.g. 20x) 

4. Broadcast constraint temperatures to each 

processor k 

 

Optimization Phase  

(perform until converged) 
 

Parallel SA 

1. For each processor k initiate independent 

Markov chain & analyze; continue until all chains 

are completed 

1a. perform sampling and evaluate solution 

objective and constraint values 

1b. accumulate statistics for each constraint i 

1c. calculate constraint acceptance 

probabilities (Eq. 2)  

1d. accept/reject solution based on the minimum 

acceptance probability for all constraints; 

if accepted assign new best solution, 

otherwise restore previous best solution 

2. Communicate best solution & constraint 

statistics from each processor k back to master 

processor 

Optimization Phase (continued) 

 

Mixing of States 

3. Calculate pooled statistics from each 

processor 

3a. calculate std. dev. for each constraint i 

3b. calculate global acceptance ratio 

3c. Exit optimization if global acceptance 

ratio satisfied or detection of 

asymptotic convergence via constraint 

statistics 

4. Calculate updated constraint temperatures 

for each constraint i (Eq. 4 & 5) 

5. Broadcast constraint temperatures to each 

processor k 

6. Build pdf sampling distribution based on the 

set of current best solutions (Eq. 6 & 7) 

7. For each processor k, sample from the pdf 

and assign a new best solution 

8. Continue Parallel SA optimization 
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