
M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Novel Core Physics Heuristics in Advanced Genetic Algorithms for In-Core Fuel Management

Ella Israeli & Erez Gilad

The Unit of Nuclear Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
ellaisra@post.bgu.ac.il , gilade@bgu.ac.il

Abstract - In this work, modern and improved genetic algorithms are implemented for the problem of the
in-core fuel management. This is achieved using state-of-the-art selection and crossover operators and novel
fitness function constructions, e.g., rank selection or tournament selection instead of the traditional roulette
wheel selection operator; improved crossover and mutation operators by considering the chromosomes as
permutations (which is a specific feature of the loading pattern problem); and the “stage fitness function” that
separates the different objectives of the optimization. Another novel feature of the algorithm is the consideration
of the geometric nature of the problem and the desired loading pattern solutions. A new geometric crossover is
developed to utilize this geometric knowledge and is used with good results. The new algorithm is implemented
and applied to two benchmark problems and used to study the effect of boundary conditions on the symmetry
of the obtained best solutions and the trade-off relationship between the studied objectives of the optimization,
e.g., keff and PPF.

I. INTRODUCTION

The majority of nuclear reactors are operated in cycles
with periodic complicated and expensive refueling outages.
The fuel in the reactor core is not homogeneously burned
and usually most depleted fuel assemblies (FAs) are replaced
during refueling. The loaded fresh FAs, together with the
remaining depleted FAs, are rearranged to form a new core
configuration (loading pattern, or LP). The new core configura-
tion must maximize the energy production until the subsequent
refuelling outage (long cycle) while still satisfying all safety
limitations and operational constraints. For example, the core
excess reactivity should be maximized to ensure a long cy-
cle and high fuel burn-up, while maintaining the ability to
control and shut-down the reactor within the required safety
margins [1, 2].

The in-core FAs LP optimization problem is of great im-
portance for electricity utilities as well as for research reactors
operating with limited nuclear fuel repository. This research
is inter-disciplinary in the sense that a unique combination of
expertise in both evolutionary algorithms and nuclear reactor
physics is required. Finally, this field of reasearch is active
and relevant and the successful application of modern evo-
lutionary algorithms for solving such problems is only just
beginning [1].

A well known method used for addressing the optimiza-
tion problem of in-core fuel management is the so called evolu-
tionary algorithm, specifically genetic algorithm [3]. However,
many studies dealing with this problem thus far use fairly ba-
sic and traditional implementations of the genetic algorithm,
disregard the geometrical structure of the core and impose
symmetry restrictions on the problem, e.g., [4–12].

In this work, genetic algorithms are implemented and
improved by using state-of-the-art selection and crossover
operators and novel fitness function (FF) constructions, e.g.,
rank selection or tournament selection instead of the traditional
roulette wheel (RW) selection operator; improved crossover
and mutation operators by considering the chromosomes as
permutations (which is a specific feature of the LP problem);

and the “stage fitness function” that separates the different
objectives of the optimization [13].

The new algorithm is implemented and applied to bench-
mark problems and used to study the effect of boundary condi-
tions on the symmetry of the obtained best solutions.

II. METHODOLOGY

Two different cores were considered for the different
stages of this study. The first core was used for the initial
development of the algorithm and some basic benchmarks,
hence it was chosen to be as simple as possible, yet not too
simple. The second core was used for more advanced stages
of the research, hence it is more realistic and complex.

1. Simplified PWR Core

This core is a simplification of a typical advanced PWR
with 17 × 17 rectangular lattice containing 257 FAs of three
different 235U enrichment levels. The axial composition of a
FA is assumed to be homogeneous and all FAs are assumed to
be fresh. Axial boundary conditions are assumed to simulate
the axial reflector whereas the radial boundary conditions are
either void or reflective. The number of FAs of each type is
assumed to be constant. This core was mainly used with a
single objective FF for optimizing keff. A schematic view of a
typical initial core layout is given in Fig. 1.

2. MOX PWR Core

This core is a 100% MOX PWR core designed in order to
maximize Pu consumption [14]. It is an optimized equilibrium
LP with optimized BP loading. It has 193 FAs, an 18-month
fuel cycle and a 3-batch fuel management scheme with five
fuel types: fresh fuel with 0, 16, and 24 WABA rods, once
burned and twice burned. The LP has 1/8 core symmetry. A
quarter core section is shown in fig. 1. Since this core is an
equilibrium core and contains once and twice burned FAs, a
three-dimensional spatial burnup distribution is accounted for
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during both the cross section generation stage and the full
core three-dimensional simulations. This core was used with
a double objective FF for optimizing keff and PPF.

3. The Core Simulator

The core simulator used is DYN3D [15], which is a three-
dimensional core model, developed at Helmholtz Zentrum
Dresden-Russendorf (HZDR), for dynamic and depletion cal-
culations in light water reactor cores with quadratic or hexago-
nal FA geometry. The two- or multi-group neutron diffusion
equation is solved by nodal expansion methods. In this work,
the code is used only for static (i.e., eigenvalue) calculations
without thermal-hydraulic feedback.

Figure 1. Schematic layout of a typical LP of a simplified
PWR core (left) and MOX PWR core [14] (right). Different
colors represent different enrichment (left) or burnup levels
(right).

III. ALGORITHM

The evolutionary algorithm (EA) developed in this study
is based on a standard EA with the required modifications.
The essentials of the basic EA are summarized in Algorithm 1.

Algorithm 1 basic evolutionary algorithm
1: procedure EA
2: Generation zero: gen = 0
3: Create an initial random population pop of size N
4: Calculate its variance popVar
5: Calculate fitness for every individual
6: while popVar > threshold AND gen < maxGen do
7: Store the best individual for later reinsertion
8: Select N

2 pairs of individuals for crossover
9: Crossover chosen pairs to generate N offsprings

10: Randomly mutate a fraction of the population
11: Reinsert best individual from previous generation
12: Store new population as newPop
13: gen = gen + 1
14: Calculate the newPop variance popVar
15: Calculate fitness for every individual
16: end while
17: end procedure

An LP of a nuclear reactor core is simply an array of cells
that contain materials of different types, e.g., fuel, absorber,

reflector. It is a two dimensional matrix as shown in Fig. 1.
It is represented by a core vector whose entries represent the
different locations of the FAs in the core. The core vector
entries are integers representing the corresponding fuel types.

The chromosome is a vector of the core’s length and is
logically divided into n segments, where n is the number of
fuel types. Each segment is as long as the number of FAs of
that type. The chromosome is a permutation of the core vector
entries and the location of a core index in the chromosome
determines the fuel type it holds: The core indices in the first
part of the chromosome are of the first fuel type, the ones in the
second part contain fuel number two, etc. This chromosome
structure is chosen in order to preserve the predetermined
quantities of the different materials and elements of the core.

In order to begin the evolutionary process an initial popu-
lation of solutions is needed. This initial population is created
randomly in order not to affect the search with unintentional
bias. An example LP from a random initial population can
be seen in Fig. 2. The algorithm terminates the search when
most of the population has converged to a single solution, that
is, when the population’s variance has gone under a chosen
threshold, or after a set number of generations if not converged.
The population’s variance is calculated using a function that
estimates how different the chromosomes in the population are
from one another. It counts chromosomal differences through-
out the population, i.e., for every chromosome in the popu-
lation it counts the number of differences from subsequent
chromosomes. Approximately:

population variance =
number o f di f f erences

number o f genes compared
. (1)

Figure 2. A random LP from a first generation of an evolution-
ary process.

1. The Fitness Function

Through the process of genetic evolution, the population
of solutions migrates toward an optimal LP. But in order for
that to be possible there must be a way of grading the LPs. For
that purpose a function that determines a solution’s "fitness" is
constructed, namely the FF. The FF grades the solutions of the
current solution population so the ones that fit the purposes
better can be selected to act as parents for the next generation
of solutions and carry on their superior genetic data.
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A. The Single Objective FF

The algorithm is initially tested using a simplified PWR
core (Sec. 1.) and a simple single objective of maximizing keff.
This objective is chosen for its relative simplicity, which allows
for an estimation of the approximate optimal solution. Such an
approximation can be seen in Fig. 3. The configuration seen
in the estimated LP maximizes keff by positioning the fissile
material as far away from the core’s boundaries as possible,
minimizing neutron leakage.

Figure 3. An estimation of the optimal keff maximizing LP.

One example of the many single objective keff FFs is one
that grades LPs according to the distance of their keff’s from
some pre-set upper limit:

FF =
1

1.5 − keff + FF parameter
. (2)

where FF parameter is used to regulate the scale of FF and
control the selection pressure. Higher FF parameter values
result in weaker dominance of the best chromosomes. The
value of 1.5 is chosen as the upper limit for the keff of the LP
in order to prevent an LP keff from exceeding the limit.

B. The Multi-Objective FF

The FF can have more than one objective. The objectives
chosen for this research are the maximization of keff and the
minimization of PPF. The two core parameters, keff and PPF,
are reciprocally interrelated. That is, a core that is character-
ized by high keff value is most likely to exhibit high PPF value,
and vice versa. This can be easily confirmed by considering
the physical meaning of each of these parameters.

The effective neutron multiplication factor, keff, is the av-
erage number of neutrons generated from a single fission event
that eventually induce another fission event. Therefore, the
configuration for keff maximization concentrates high enrich-
ment fuels together to create areas reach in fissile material and
increase the chances for fission. another geometrical quality of
the keff maximizing core is minimizing neutron leakage from
the core, keeping as much of the neutron population in the
core, taking part in the reactor chain reaction. In the case of
void boundary conditions, for example, the estimated best LP
positions as much fissile material at core center, as far away
from the boundaries as possible, reducing neutron leakage.
The PPF is defined as the ratio between the local power den-
sity at the reactor hotspot and the average power density in the

reactor core. Hence, the configuration for PPF minimization
distributes the different fuel enrichments more evenly through-
out the core, in an attempt to create a flat power density profile.
As is evident from the aforementioned physical reasoning, the
two objectives have trade-off relations.

So, taking both objectives into consideration in the con-
struction of the FF is no simple feat. Some implementations
take the form of the weighted composite FF, creating a single
FF and giving each objective a weight in it. Some optimize
one objective and put constraints on the others. In this study,
it has been chosen to examine the idea of optimizing the differ-
ent objectives in stages. That is, optimizing one while keeping
the other in check, and then doing the same for the other. This
is done in order to try and decrease the complexity of the
multi-directional search, by limiting it to one clear direction
at a time.

The first attempt at this form of FF is the "zigzag" FF.
The zigzag FF switches between the two objectives every few
generations. The number of generations between FF swaps
is dubbed a stage. The original idea behind this approach is
optimizing the population in regards to one objective, as much
as possible for the current population, before switching to the
other objective. The problem with this method is that if the
population at the end of a stage is completely converged to a
relative optimized solution, it has no genetic variance. Ergo, it
is incapable of further optimization.

Improving upon this idea, the stages’ lengths are con-
trolled, limiting the premature stage convergence by simply
cutting it off. The stage length is a definable parameter of
the algorithm. Limiting stage length alone, though, is not
enough. In a stage of optimizing one objective, the other is
being limited to a "neighborhood" of allowed values in the
vicinity of the best one in the current population. The size of
the neighborhood is also an adjustable parameter and can be
decreased through the progression of the evolution. The limit
for the silent one of the two objectives in each generation is
set by the following formula:

ε =
max(FF) − min(FF)

FF limit
, (3)

FF limit = a ×
(

gen num
max gens

)b

, (4)

where a and b are controlled parameters of the algorithm,
gen num is the number of the current generation and max gens
is the maximum number of generations allowed in the evolu-
tion. The variable ε is then the margin that we allow the silent
FF to move in. That is, when keff is the silent objective the
minimum keff allowed is max(keff) − ε, and when PPF is the
silent one the maximum PPF allowed is min(PPF) + ε. We
can see that as the evolution progresses, the size of the allowed
environment diminishes and reaches 1/a of the max-min dif-
ference of that stage’s silent FF.

The cons of this method are that it restricts the search very
much to the search space area arrived at at the end of the first
stage. It simply does not allow for a wide enough search. So a
more compact form of the zigzag approach is being tested. It is
the stage approach, in which the objective switch is performed
only once during the evolution. Once the population reaches a
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search space region rich enough in one objective’s optimized
solutions, a limit can be set for it and the other can be improved.
This method is different from simply setting a constraint upon
one of the objectives. Setting a constraint too early on in
the evolution limits the optimization of the non constrained
objective. With this method, the problem is averted.

2. Selection Operator

Each chromosome has a probability to be selected ac-
cording to its fitness. In this study, both fitness proportionate
(FP) and linear ranking (LR) selection probabilities are con-
sidered. With FP, the probability of a chromosome c to be
chosen (in the selection process) is determined according to
P(c) = FF(c)/

∑
FF(c). It is an outdated selection method,

hardly used any more in GAs, for its inherent flaws, hereby
explained. The ramification of this probability equation is that
each chromosome gets a selection probability proportional to
its FF value relative to the current population. The problem
with this lies in the selection pressure caused. Since the selec-
tion probability the FP selection method gives to the different
solutions is proportional to their respective FFs, the selec-
tion pressure is also dependent upon the relative differences
between those FFs. That is, big differences cause complete
convergence of the population; prematurely, if the high FF
solution is not necessarily the best solutions possible but only
better relative to the current population. On the other hand, dif-
ferences that are too small do not impress upon the population
enough selection pressure for a progression in any direction,
and result in a search dead end. This effect results from the fact
that solutions that have very high FF values relative to the cur-
rent population are much more likely to be selected as parents
for the next generation and thus take over the gene pool and
cause convergence, while weaker solutions are not selected at
all and disappear from subsequent generations. On the other
side of the selection pressure scale, in a population comprised
of solutions of very similar FF, as is usually the case in the first
generation of the evolution, the better (albeit slightly) ones do
not receive any substantial selective advantage and are given
a selection probability very close to the others; a situation
that renders the evolutionary process powerless to gain any
progress in any direction.

A possible solution is the LR selection. With LR, the
chromosomes are ranked according to their relative FFs and
given a selection probability linearly according to their rela-
tive rank. The selection probability for every chromosome c
is calculated using a parameter, expVal, that represents the
expected number of copies of c in the selection table. The
parameter expVal is calculated according to

expVal(c) = 2 − m +
2(m − 1)(rank − 1)

groupS ize − 1
, (5)

where m is the maximum expected number of copies for the
best individual and is in the range of 1 < m 6 2. According
to its definition (Eq. 5), higher values of m result in greater
selection pressure on the best solution. The groupS ize param-
eter is the size of the group of chromosomes. It can be the
entire population, or a smaller group within it, as in the case of
tournament selection, seen hereafter. The selection probability

for chromosome c is then P(c) = expVal(c)/groupS ize. So,
with LR the probability of a chromosome to be selected is pro-
portional to the expected number of its copies in the selection
table, which is proportional to its relative rank in the popu-
lation. This method eliminates the convergence pressure’s
dependence upon the FF differences between the solutions of
the population by basing the selection probability on the ranks
rather than directly on the FFs themselves.

The selection method is either RW or Tournament, where
one chromosome is selected from each tournament. The se-
lected chromosome is either the best of the tournament group
or it is chosen with a selection probability as described above,
either FP or LR. Tournament size is adjustable and allows the
algorithm control over the selection pressure, which influences
the convergence rate, as does the value of m in expVal.

3. Crossover Operator

The crossover is the genetic operator responsible for the
creation of new solutions out of the selected parent solutions.It
swaps segments of entries between two chromosomes, mixing
the genetic data of the parents and creating their offspring. The
crossover operator used in this study is of geometrical nature,
and consists of a geometric crossover mechanism, developed
to manipulate the genetic data given by the chromosome in a
way that allows control over the swapped core segment shape
and size. The segment’s shape has never before been used as a
variable of the algorithm, even though it may have significant
impact due to the geometric nature of the problem. It can be
chosen as one of the following:

1. Chromosome consecutive segment – A set of indices
in the chromosome between two randomly chosen cut
points. Since the chromosomal indices are not directly
translated to core locations, it is a random collection of
fuel locations in the core.

2. Core consecutive segment – A set of indices between two
randomly chosen indices.

3. Rectangle of core neighbours – A set of indices forming
a rectangular shape.

4. Square of core neighbours – A set of indices forming a
square shape around a randomly chosen index.

Decreasing the swapped segment’s size along the evolu-
tion serves the purpose of controlling the amount of genetic
information exchange along the evolution. On the one hand,
it allows the unoptimized chromosomes of the early popula-
tions to exchange large segments of genetic information in
search of the best solutions. On the other hand, the gradual
decrease of the segment size allows for finer, rather than large
and crude, genetic alterations in the good solutions found. The
segment size is controlled using slightly different formulae,
each adapted for its crossover form. A representative example
is the formula for the case of the square of core neighbours:

recS ide = f loor
(
maxRec ×

I + J
2

×
crossDecRate

crossDecRate + genDepend(g − crossGen)

)
,

(6)
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where maxRec is the maximum portion of the core diameter
size that the segment square side can reach; genDepend is a
boolean parameter that determines if the segment’s maximum
size decreases over the generations or remains constant; and
crossDecRate is a parameter that influences the decrease rate.
The larger crossDecRate is the slower the decrease.

a)

b)

Figure 4. Illustration of “square of core neighbours” crossover.

Option 1 is the standard crossover segment used, whereas
options 2-4 are novel and allow control over the segment shape.
Segments sizes are adaptive throughout the evolution. An
example is shown in Fig. 4, where FA #1 is chosen randomly.
Then, the algorithm randomly chooses the square size; in this
case, a 3×3 square. Some of the options allow segment size to
decrease as a function of generation, allowing the unoptimized
chromosomes of the early population to swap large segments
of genetic information in the search for the best solutions, but
gradually decrease the segment size to allow for finer genetic
alterations in the good solutions found.

IV. RESULTS

1. Adaptive Geometric Crossover

The influence of the adaptive geometric crossover, that
limits the segment’s size beyond a certain generation (recGen),
is manifested in the dramatic improvement of the results. An
evolution with recGen<50 leads to rapid convergence to bad
solutions. Good results start appearing above recGen=50 and
peak in the range 200<recGen<350, as shown in Fig. 5. The

graph presents the averaged results of several realizations.
Results refer to evolutions on core #1 and the optimization of
keff only.

Figure 5. The effect of an adaptive “square of core neighbours”
crossover on keff using the simplified PWR core.

2. Random versus Geometrical Crossover

When optimizing keff alone, the geometrical crossover
has proven most successful. When introducing the objective
of minimizing PPF as well, it was necessary to compare the
two crossover methods once again. The geometric, "chunk
swapping" crossover was initially created with the purpose
of assisting the algorithm in achieving the concentric circle
pattern of the keff optimizing core. This pattern is a non-
homogeneous one in which each of the circles is a different
region with different FA properties. Therefore, the geometric
crossover might not suit the PPF objective, the optimizing
core of which is very different in nature and structure. The
chunk swapping geometric crossover seems much too crude
to succeed in building the fine checkers like pattern of the
optimal PPF core configuration. It simply lacks the required
resolution. This is the reason for the introduction of the de-
creasing segment size into the crossover. It was done in order
to allow finer resolution changes toward the end of evolution,
when the LPs found are close to optimal and require small
improvements.

In that sense, the random crossover which swaps a random
set of cells might seem more suited for the purpose of PPF
optimization. The random pattern of the random crossover
cell segment is intuitively better fitting for creating homoge-
neous patterns. When tested, though, the random crossover
did not display any advantage over the geometric one in the
single objective optimization of PPF or in the multi-objective
optimization of both keff and PPF .

The results shown in Tab. I are a demonstration of the
consistent trend observed, suggesting the geometric crossover
is preferable. They are the averaged results of several real-
izations. As can be seen, the geometric crossover cores have
better values, i.e., higher keff and lower PPF values.
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Table I. Random vs. geometrical crossover.

Crossover Non geometric Geometric

keff 1.0076 1.0081
PPF 1.29 1.29

3. Population Variance and Selection Pressure

Higher m values in the expVal formula (Eq. 5) increase
the selection pressure (see Eq. 5), which dramatically affects
the convergence rate and the diversity of the population, as
shown in Fig. 6. When the variance of the population is 1 (0),
all chromosomes are completely different (identical). This has
significant implication on the ability of the algorithm to escape
local minima and sample larger areas of the search space.

Figure 6. Population variance convergence for different selec-
tion pressures (m values).

4. keff and Selection Pressure

It can also be noted that the selection pressure that increas-
ing or decreasing m in the expVal formula induces has a great
deal of influence over the results obtained. Greater selection
pressure causes greater pressure of convergence toward the
better solutions. Too great a pressure results in premature con-
vergence, to non optimal results, while too small a pressure
does not create convergence enough. This phenomena can be
seen in Fig. 7. It presents the averaged keff values of optimiza-
tions with different m values. Every point on the graph is the
average value of several realizations.

5. Symmetry and Boundary Conditions

The assumption of symmetrical loading patterns domi-
nantly underlies the entire field of loading pattern optimization
of nuclear power plants. This is of course for a good reason,
i.e., the primary coolant loops (and other components of the
steam supply system) are symmetrically arranged around the
reactor pressure vessel and the nuclear core within. Hence,
symmetry in the power and mass flow distribution is a real
necessity. Moreover, symmetrical loading patterns are much

Figure 7. The averaged keff for different selection pressures (m
values).

more intuitive, and nuclear engineers in charge of the plant
fuel management indeed rely to some extent on this intuition
and on their experience in designing core loading patterns.

However, the symmetry requirement imposed on the core
by coolant loops and steam supply systems is removed once
other types of reactors or critical facilities are considered, e.g.,
research reactors. In this section, and as an academic exercise,
it is demonstrated that in some cases the best loading patterns
are not symmetric and are very counter-intuitive.

Consider a bare reactor core with void boundary condi-
tions, i.e., a neutron that crosses the core’s boundaries to the
outside does not return into the core. Using our intuition as
core physicists, the spatial arrangement of FAs that maximizes
keff is the one that minimizes the neutron leakage. This implies
the positioning of as much fissile material as possible away
from the core boundaries, i.e., in its center, as shown in Fig. 8a.
This is a good example where human intuition works well,
since this is only a very simple problem and the best solution
is the intuitive symmetrical one.

Now, consider the same reactor core with completely re-
flective boundary conditions. In this exercise, the best (i.e.,
keff maximizing) LP produced by our algorithm, shown in
Fig. 8b, is far from the immediately intuitive symmetric de-
sign. Given that modern LWR reflector designs minimize the
leakage to approximately 3%, this could imply that there may
be asymmetric LPs which are superior to the symmetric ones.

a) b)
Figure 8. Boundary conditions’ effect on the symmetry of the
best LP. Different colors indicate different enrichment, with
red (green) indicating high (low) enrichment.
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6. Stage FF

Fig. 9 features a histogram of the evolution of one of the
optimizations. It presents the population’s best individual in
every generation of the evolution in respect to keff and PPF
separately. In every generation there is both an LP that holds
the highest keff value and one that holds the lowest PPF value.
The histogram presented allows one to follow those values in
the population through the evolution.

Through this histogram the effect of the stage FF on the
evolution is plainly displayed. It is the result of an optimiza-
tion with a stage FF variation in which the objective change
takes place once half the population reaches the PPF thresh-
old. One can observe in the histogram the rather random
distribution in both values at the beginning of evolution, the
objective switch at the 169th generation, as well as the pro-
cess of convergence to a single parameter value (at around the
300th generation). These phenomena are apparent both in the
histogram and in the value graphs of the parameter values and
the population variance. One can see the evident shift to the
left (the lower PPF region) of the populations’ values during
the PPF minimization stage, and its swing back to the right
after the optimization moves to keff.

Another purpose the stage FF serves is allowing investi-
gation into the structure of the problem. It allows checking
the limits of the PPF of the LPs while still maintaining a criti-
cal core. To work with lower PPF thresholds, the population
must be allowed enough generations to migrate to a PPF opti-
mized area of the search space though. The averaged results
of several realizations can be seen in Tab. II.

Table II. Stage FF comparison of different stage lengths.

Stage 50 150 300 1001
PPF limit 1.29 1.27 1.22 1.29

keff 1.0069 1.0056 1.0014 1.001
PPF 1.28 1.27 1.22 1.20

V. CONCLUSIONS

Improved genetic algorithms are developed by using state-
of-the-art selection and crossover operators and novel FF
constructions. The algorithm is implemented and applied to
benchmark problems and used to study the effect of boundary
conditions on the symmetry of the obtained best solutions.

The conclusions arising from the theoretical debate and
from the results shown strengthen the claims as to the new al-
gorithm’s adaptability to the problem and the newly developed
genetic operators’ superiority over commonly used, "off the
shelf" ones. According to results, the new geometric crossover
proves better than the standard one. Even though the problem
at hand is of geometrical nature, it is often overlooked. Not
only for the simpler keff optimization does it produce better
LPs, but also for the dual objective optimization of both keff

and PPF.
The intuitive, yet untested, assumption as to the LP’s sym-

metry has been put to the test. In the modern GA optimization
world, advanced methods should discard, if possible, any po-
tentially “harmful” influences of human intuition. An example

Figure 9. A histogram of the population’s best individual in
every generation of the evolution in respect to keff and PPF
separately. The population’s size in this simulation is 500, the
number of generations is 1000, and the histogram describes
the evolution of the distribution of the population over the keff

and PPF values.

of the harm of such influences can be seen in the case of the
bare reactor core with void boundary conditions. It shows
that in some cases, placing synthetic symmetry restrictions
upon the LPs can prevent the creation of the optimal one. The
example shows also that the matter of symmetry in the LP
must be considered. It is not as inherently and immediately
justified to assume symmetry in all cases as one might think.
It is a question that promotes more research.

Lastly, the multi-objective optimization problem has been
tackled in a new way, in an attempt to simplify it and minimize
the objectives from interrupting one another. The stage FF has
made it possible to determine the desired direction of move-
ment through the search space of the problem with relative
ease, confining each objective to a stage of its own.
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