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Abstract - Xenon oscillations are very important for designing nuclear reactors operating in the thermal 
energy spectrum. The nature of the power oscillations depend on the size of the reactor and the flux level of 
operation. The larger the size of reactor and higher the flux level of operation, more the reactor is 
susceptible to xenon oscillations. Control strategies have to be designed in order to suppress the growth of 
xenon oscillations. One possible choice of modeling a control function can be "clipping" at some threshold 
level. The effect of "clipping" cannot be included in the linear stability analysis since it is a discontinuous 
function and hence the estimation of the Jacobian is difficult. However, the "clipping" can be modeled 
using "sigmoid" functions. Also, the selection of sigmoid function and its parameters will affect the 
evaluation of the stability of the system. The nonlinear analysis for control of xenon oscillations using 
sigmoid functions has been performed in this work. The hyperbolic tangent function (a type of sigmoid 
function) has been used for modeling of the control action to suppress the growth of the perturbation. The 
method has been applied to a one dimensional homogenous slab reactor to present a “proof of principle”. 
The effect of different parameters of the sigmoid function on the stability of xenon oscillations has been 
studied.  

 
I. INTRODUCTION  
 
1. Background  
 

Oscillation in reactor power due to the variation of 
xenon has been of deep interest for reactor physicists from 
the beginning. The effects of xenon are a potential source of 
instability in nuclear reactors operating in thermal spectrum. 
The instantaneous production rate of Xenon-135 depends 
upon the Iodine-135 concentration, and, hence upon the 
local neutron flux history. On the other hand, the removal of 
Xe-135 depends on the instantaneous flux through the 
neutron absorption process and upon the flux history 
through the Xe-135 decay process. Xenon oscillations are 
produced by the delay between xenon burnup and xenon 
buildup from iodine decay. An oscillatory regime in reactor 
power can be established which can cause the power limits 
to exceed the allowable limits. A lot of work has been done 
in the study of these oscillations and different control 
strategies have been designed for suppressing these 
oscillations.  

The assessment of stability of xenon oscillations 
generally is carried out by numerical solution of the model 
equations under different reactivity perturbations and core 
irradiations as discussed by Chernick [1], Lellouche et.al[2], 
Kobayashi et.al [3], Parhizhari et.al [4],  Gyorey [5].  

 
2.  Importance of Non linear Stability Analysis 
 

Linear stability analysis of xenon oscillations has been 
carried out by Stacey [6], Canosa et.al [7]. Linear Stability 
analysis is valid for "small" perturbations and the system 
behaviour for "large" perturbations cannot be predicted by 
the linear stability analysis. The system might exhibit 
"unstable" periodic solutions on the stable side of the 

stability boundary and "stable" periodic solutions on the 
unstable side. Hence, a detailed bifurcation analysis is 
required to estimate the "global" stability characteristics of 
the system. In the "hard" or sub-critical Hopf region, the 
equilibrium point is linearly stable but due to the existence 
of an unstable limit cycle about this point growing 
oscillations might be observed for large perturbations. This 
means that for a "sub-critical" Hopf bifurcation, the points 
which lie on the stable side of the linear stability boundary 
may become unstable for "large" perturbations. But for 
"soft" or supercritical Hopf bifurcations, the stable region of 
the stability boundary is globally stable but there exist stable 
limit cycles on the unstable side. Both types of bifurcations 
may exist for a system in different regions of parameter 
spaces, and hence the point where the cross-over takes place 
needs to be identified which can be only done by non-linear 
analysis methods. 

The problem of space independent xenon oscillations 
was revisited by Rizwan-uddin [8] using the same model 
equations used by Chernick [1] with nonlinear analysis 
techniques. The existence of Hopf Bifurcation (both 
supercritical and subcritical) was observed in different 
parameter spaces. Expansion methods for estimating 
nonlinear stability domains were analyzed by Yang et.al [9]. 
The studies performed by Rizwan-uddin, Chernick and 
Yang deal with space independent xenon oscillations. 

 
3. Objective of the Present Analysis 
 

A possible model for control of these oscillations was 
demonstrated by Gyorey [10] where it is modeled as 
"clipping" of the amplitudes of the different higher 
harmonics above a certain threshold value. The effect of 
"clipping" cannot be included in the linear stability analysis 
since it is a discontinuous function and hence the estimation 
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of the Jacobian is difficult. "Clipping" can be modeled using 
"sigmoid" functions. However, the selection of sigmoid 
function and its parameters will also affect the evaluation of 
the stability of the system. In this paper, the effect of this 
kind, for out of phase xenon oscillations, in a homogeneous 
slab reactor has been carried out with the bifurcation code, 
"BIFDD"[11]. 

 
 

II. MODEL EQUATIONS FOR XENON 
OSCILLATIONS  
 

The model is based on that used by Gyorey [2] where 
modal expansion method is used for the solution of space 
time dependent neutron kinetics equations coupled with 
xenon and iodine equations. The neutron flux, iodine 
concentration and xenon concentration at any time are 
assumed to be written as summation of the steady state 
value and a small perturbation term, 

 
),r()r()t,r( 0 t     (1) 

),r()r()t,r( 0 tIII     (2) 

),r()r()t,r( 0 tXXX     (3) 

 
Equations (1),(2) and (3) can be substituted in the space 

time dependent neutron, xenon and iodine equations. The 
perturbation is expanded in terms of modes. Neglecting 
intermodal interaction terms, the final set of equations for 
each mode can be written as: 
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The details of these equations  are given in Gyorey [2]. 
 
For a 1D homogenous bare slab reactor of width "H", 

the basis functions and the corresponding integrals become 
as follows: 
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x
H

   and (max)0


x

x . 

 
III. MODELING OF SPATIAL CONTROL 
 

The spatial control mechanism in principle is designed 
to suppress the growth of these higher harmonics which 
would give distortions to the flux shape in the reactor core. 
As mentioned earlier, the control action can be modeled 
using "sigmoid" functions. Hyperbolic tangent function 
(tanh) has been used as a sigmoid function in this analysis. 

Since, 1mN , the form of the control function, CF, is 

as follows: 

 ))_(tanh())_(tanh(
1
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The value of C1 is such that CF=1 at Nn = 0 
The plots of the control functions CF1 and CF2 for 

different values of D, C1 and n_c are given in Fig.1 and 
Fig.2 respectively. This function is multiplied with the 
R.H.S. of equation (4). 

 
 

 
 

Fig. 1 CF1 with D = 18, n_c =0.8, C1 = 2.0. 
 

 

 
 
 

Fig. 2 CF2 with D = 5, n_c =0.5, C1 = 1.97. 
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IV LINEAR STABILITY BOUNDARY - 
EIGENVALUE APPROACH 
 

The equations (4)-(6) may be compactly represented in 
the form, 

 

)n,S(t),YF(
dt

(t)Yd
     (12) 

 
where  n,Xn,InNY   is a three component vector. 

The fixed points or the equilibrium points of the system 
satisfy the equation 
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The stability analysis involves a slight perturbation of 

the system around a chosen equilibrium point. Let dY  be 
the perturbation around it, then equation (12) leads to the 

following equation in perturbation variable dY . 
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Expanding (14) in Taylor series and neglecting higher 

powers ( 2 ) of dY  (i.e., for small values of dY ), the 

linearized version of the basic evolutionary equation is 
arrived at. 
The eigenvalue spectrum of the associated Jacobian matrix 
evaluated at the equilibrium points gives the nature of the 
system behaviour in the neighborhood of the equilibrium 
point. 

The values of parameters at which the eigenvalue(s) of 
the Jacobian become purely imaginary are chosen as the 
stability boundary. Pij, Fij and Ψij are functions of Ω. Here, 
Sn and   are chosen as the bifurcating parameters and the 
values at which the eigenvalues become purely imaginary 
are found out. Basically, Sn depends on the geometry and 
  depends on the flux level of operation. For a 
homogeneous slab reactor, Sn can be written as [10] 
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Bifurcation analysis has been performed using the code 

"BIFDD" for first and second harmonic with control. The 
stability of these periodic solutions is governed by the 
parameter β (different from the delayed neutron fraction) 
which can be expanded in the powers of a small parameter ε 
as follows ( Rizwanuddin [12]) 
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The value of β1 is found to be zero, hence the value of 
β2 indicates the stability of the periodic solutions. β2>0 
indicates subcritical Hopf Bifurcation, β2<0 indicates 
supercritical Hopf Bifurcation. β2 has been estimated by the 
code "BIFDD. If the oscillations on the stable side of the 
stability boundary die down for "small" perturbations and 
grow for "large" perturbations, then it is called sub-critical 
Hopf Bifurcation. If the oscillations grow and settle down 
on a limit cycle on the unstable side then it is called a 
supercritical Hopf Bifurcation. This can be seen from Fig.3. 

 
 

 
(a) Sub critical Hopf  
 

 
(b)Super critical Hopf 
 

Fig. 3 Subcritical and Supercritical Hopf Bifurcation 
 
V RESULTS  

. 
For a given geometry, the value of Sn is fixed.   depends 
on the operating flux level, and the integrals Fij , ijm and 

Pij are functions of   as shown in Eqns (10), (11) and (12) . 
Hence,   is varied from 0.25 to 30 and the stability 
boundary is estimated for first harmonic (2nd mode) and 
second harmonic (3rd mode). The stability boundaries for the 
second and 3rd mode are given in Figs. 3 and 4, 
respectively. It is worth mentioning that with this choice of 
control functions, the stability boundary remains unchanged. 

In order to verify the stability boundary, numerical 
simulations are carried out at three points (a, b, c) about the 
stability boundary for both the modes using ODE23s 
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package of MATLAB. The parametric values of these points 
are given in Table 1. 
 

 

 
 

Fig. 4 Stability boundary for 2nd mode (first harmonic) in 
the S2 - Ω plane. 

 
 

 
 

Fig. 5 Stability boundary for 3rd mode (second harmonic) in 
the S3 - Ω plane. 

 
Table 1 Parametric values at which simulations have 

been carried out 
 

  

First  
Harmonic 

Second  
Harmonic 

Ω=2.0 
S2,crit=0.187 S3,crit=0.1754 

Point a Unstable side S2 = 0.17 S3 = 0.16 
Point b Stable Side S2 = 0.195 S3 = 0.19 

Point c 
On the 

stability 
Boundary 

S2 = 0.187 S3 = 0.1754 

 
 

1.  Numerical Simulations without considering Control 
Function 
 
a) Simulation for First Harmonic 
 
The simulations at point "a" show growing oscillations since 
it lies on the unstable side of the stability boundary. This is 
given in Fig.6. 
 

 
 

Fig. 6 Numerical Simulation at Point a (Unstable focus) 
 
 
Similarly, solving the coupled ODEs at point "b", 
damped/decaying oscillations are observed since it lies on 
the stable side of the stability boundary as shown in Fig.6. 

 
 

Fig. 7 Numerical Simulation at Point b (Stable focus) 
 
Since, point "c" lies on the stability boundary, constant 

amplitude oscillations are observed as shown in Fig.8. 
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Fig. 8 Numerical Simulation at Point c  

(on the stability boundary) 
 
b) Simulation for Second Harmonic 
 
Numerical simulations at points "a" and "c" show similar 
nature as that for the first harmonic. However, point "b" acts 
as a "stable focus" for small perturbations but acts as an 
"unstable focus" for large perturbations. This can be seen 
from the phase space plot given in Fig.9 that the "unstable 
limit cycle " repels all trajectories away from it. 

Hence, there exists an unstable limit cycle about the 
stable fixed point which means that the equilibrium point 
acts as a stable focus for small perturbations and as an 
unstable focus for large perturbations. This is a 
characteristic of subcritical Hopf Bifurcation.  
 

 
 

Fig. 9 Numerical Simulation at point "b" 
 (on the stable side). 

(Blue color shows a stable focus,  
Red color shows an unstable focus) 

 
 

2.  Numerical Simulations considering Control Function 
 
Numerical simulations were carried out for the second 

harmonic using both the control functions CF1 and CF2 at 
points “b” (stable side) and "a" (unstable side). It can be 
seen from Fig.10 and 11 that the point "b" acts as a stable 

focus for small as well as large perturbations for CF1. 
Similar, behaviour is also observed for the control function 
CF2. 

 
 

Fig. 10 Numerical Simulation at Point "b" for small 
perturbations for CF1 (Stable focus) 

 

 
 

Fig. 11 Numerical Simulation at Point "b" for large 
perturbations for CF1 (Stable focus) 

 

 
Fig. 12 Numerical simulation at point "a" for second 

harmonic using control function CF1. 
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Numerical simulations were also carried out for the second 
harmonic at point "a" which lies on the unstable side of the 
stability boundary for both the control functions CF1 and 
CF2. Stable limit cycles were observed on solution of the 
coupled ODEs for both the control functions and are shown 
in Fig.12 and 13. 

This is a signature of supercritical Hopf Bifurcation. 
Using the Bifurcation code, BIFDD, the value of β2 was 
estimated for this range for both the control function (CF2) 
and also without control. The results are given in Fig.14. 

 

 
 

Fig. 13 Numerical simulation at point "a" for second 
harmonic using control function CF2. 
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Fig. 14 Variation of β2 with control function with different 

Ω for second harmonic. 
 

It can be seen from Fig.14 that without the application 
of any control function, the value of β2>0, which implies a 

sub-critical Hopf Bifurcation. On the application of control 
function, CF2, the value of β2 is less than zero, which 
implies supercritical Hopf Bifurcation. The existence of 
supercritical Hopf Bifurcation on application of a control 
function has been verified earlier by numerically solving the 
equations. However, for the control function, CF1, the value 
of β2 is identical to that obtained for the case without any 
control function, even if the numerical simulations show a 
super critical Hopf bifurcation characteristic. This is due to 
the fact that the control function, CF1, is more “flat” than 
CF2. Hence, for capturing the effect of CF1, higher order 
terms have to be estimated (like β4, β6,…).  
Also, the amplitude of the stable limit cycles on the 

unstable side increase as one goes away from the stability 
boundary. For the second harmonic, for Ω=2.0, the 
S3,crit=0.1754. Hence, the simulations have also been carried 
out at S3=0.175, 0.171 and 0.165, respectively (lying on the 
unstable side) for both the control functions CF1 and CF2 
and the results are given in Fig.15 and 16 respectively. 
  

 
 
Fig. 15 Stable limit cycles on unstable side for CF1. 

 

 
 

Fig. 16 Stable limit cycles on unstable side for CF2. 
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VI CONCLUSIONS 
 
The nonlinear analysis for control of xenon oscillations 
using sigmoid functions has been performed using the tool 
BIFDD. The hyperbolic tangent function has been used for 
modeling of the control action to suppress the growth of the 
perturbation. This has been applied to a one dimensional 
homogenous slab reactor to present a “proof of principle”. 
The effect of different parameters of the sigmoid function 
on the stability of xenon oscillations has been studied. It has 
been found that the effect of a control function is to convert 
a “sub-critical” Hopf Bifurcation to a “super critical” Hopf 
Bifurcation for the second harmonic. This approach for 
analyzing the stability of xenon oscillations with control can 
be extended to multipoint reactor kinetics to study the actual 
reactor systems like Pressurised Heavy Water Reactors and 
Pressurised Water Reactors. 

 
NOMENCLATURE 

 
Nn     = Normalised coefficient of the expansion functions 

for the nth mode for neutron flux. 
Xn     = Normalised coefficient of the expansion functions 

for the nth mode for Xenon distribution. 
In         = Normalised coefficient of the expansion functions 

for the nth mode for Iodine distribution. 
Sn       = Sub-criticality associated with nth mode 
H      = Width of the slab. 
Ψn     = Orthogonal Basis Function for nth mode. 
n_c   = Cut off value of Nn.  
D      = Slope of the sigmoid function. 
C1    = Constant such that CF=1 at Nn = 0. 

eY      = Equilibrium point for Y. 

i       =The fission yield of Iodine -135 

x      = The fission yield of Xenon-135. 

 .      = The net yield of Iodine -135 and Xenon-135. 

xσ       = Microscopic absorption cross-section of Xe-135. 

iλ        = Decay constant of I-135. 

xλ       = Decay Constant of Xe-135. 

Λn        = Effective neutron generation time for nth mode. (s) 
CF        = Control Function 
 
REFERENCES 
 
1. CHERNICK, J. The Dynamics of a Xenon-

Controlled Reactor. Nuclear Science and 
Engineering 8, 233–243 (1960). 

2. LELLOUCHE, G. S. Space Dependent Xenon 
Oscillations. Nuclear Science and Engineering 12, 
482–489 (1962). 

3. KOBAYASHI, K. & YOSHIKUNI, M. Analysis of 

Xenon Oscillation by Coupled Reactor Model. 
Journal of Nuclear Science and Technology 19, 
107–118 (1982). 

4. PARHIZKARI, H., AGHAIE, M., ZOLFAGHARI, 
A. & MINUCHEHR, A. An approach to stability 
analysis of spatial xenon oscillations in WWER-
1000 reactors. Annals of Nuclear Energy 79, 125–
132 (2015). 

5. GYOREY, G. L. The Effect of Modal Interaction in 
the Xenon Instability Problem. Nuclear Science and 
Engineering 13, 338–344 (1962). 

6. STACEY, W. M. Nuclear Reactor Physics. (2007). 
doi:10.1002/9783527611041 

7. CANOSA, J. & BROOKS, H. Xenon-Induced 
Oscillations. Nuclear Science and Engineering 26, 
237–253 (1966). 

8. RIZWAN-UDDIN. Non-linear dynamics of space-
independent xenon oscillations. Dynamics and 
Stability of Systems 10, 33–48 (1995). 

9. YANG, C. Y. & CHO, N. Z. Expansion Methods 
for finding non linear stability domains of nuclear 
reactor models. Annals of Nuclear Energy 19, 347–
368 (1992). 

10. GYOREY, G. L. On the theory of xenon induced 
instabilities in neutron flux distribution. (The 
University of Michigan, 1960). 

11. HASSARD, B. Theory and Applications of Hopf 
Bifurcation. (Cambridge University Press, 1981). 

12. RIZWAN-UDDIN. Turning points and sub- and 
supercritical bifurcations in a simple BWR model. 
Nuclear Engineering and Design 236, 267–283 
(2006). 

 


