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Abstract – The multigroup transport theory is the basis for many neutronics modules. A significant point of 

the cross-section generation procedure is constituted by the choice of the energy groups boundaries in the 

cross-section libraries, which must be carefully selected as an unsuitable energy meshing can easily lead to 

inaccurate results. However the decision can require considerable effort and is particularly difficult for the 

common user, especially if not well-versed in reactor physics. This work presents a tool based on a genetic 

algorithm which selects an appropriate cross-section energy structure specific for the considered problem, 

to be used for the condensation of a fine multigroup library. The procedure is accelerated by results 

storage and fitness calculation acceleration and can be easily parallelized. The extension is applied to the 

coupled code SIMMER and tested on the ESNII+ ASTRID-like reactor system. The results show that, when 

the libraries are condensed based on the energy structures suggested by the algorithm, the code actually 

returns the correct multiplication factor, in both reference and voided conditions. The computational effort 

reduction obtained by using the condensed library rather than the fine one has been assessed and is much 

higher than the CPU time required to perform the energy structure search. 

 

I. INTRODUCTION 

 

SIMMER (1, 2) is a multi-velocity-field, multiphase, 

multicomponent, Eulerian fluid-dynamics code coupled 

with a space-dependent neutron transport kinetics model, 

primarily developed for safety studies on liquid-metal-

cooled fast reactors. During the simulation, the neutronics 

module of SIMMER employs macroscopic cross-sections 

(XSs) with a broad-groups energy structure (ES) as input 

libraries, which are originally obtained from the point-wise 

libraries or by collapsing the reference libraries at several 

hundreds of energy groups available at KIT with a 

weighting function (neutron spectrum) specified by the user. 

A code extension that allows including the collapsing 

procedure inside SIMMER has already been proposed (3). 

In this way the energy discretization of the XSs actually 

used in the transport calculation (referred as broad-groups 

libraries, BL) can be coarser than the one of the input 

libraries (hence denoted fine-libraries, FL). The XSs 

obtained from these libraries are collapsed at each time step 

with the advantage that the collapsing is done with neutron 

spectra obtained for the transient conditions in each core 

sub-region. 

A particular difficulty for the user is the choice of the 

optimal broad-group ES to be used, which might have a 

significant impact on the results (3). Since no automatic 

tools are available to fulfill this goal, the choice of the 

optimal broad-group ES is left to the user, who must have 

good knowledge on neutronics and has often to perform 

investigations of the different options to avoid non-optimal 

or misleading solutions. 

Having this in mind, the employment of an 

evolutionary genetic algorithm (GA) in the SIMMER 

environment is proposed in the paper in order to compute 

the most “proper” broad energy group discretization for 

transient analyses. Similar approaches, focused on swarm 

algorithms, have been followed in the past by Mosca et al. 

and by Yi and Sjoden for both single pins in thermal 

reactors (4, 5) and infinite homogeneous problems in fast 

systems (6). 

The computational expense required by the GA is fully 

compensated by its advantage: by using the optimal ES for 

the XS collapsing it is possible to perform neutronics 

calculations having nearly the same accuracy as using the 

FL and the computational time of the BL. This advantage 

proves particularly important if the transport calculation 

must be repeated for a large number of times, as in the case 

of transient computations with SIMMER. Moreover, since 

the optimal ES is not expected to change significantly if the 

system geometry is not deeply altered, the GA must not be 

performed for each simulation of the same system. This 

work presents a complement to the XS collapsing extension 

for SIMMER (3), aiming to solve the ES search problem 

with a GA. The extension is then applied to the ESNII+ 

ASTRID case to demonstrate its effectiveness and to study 

the physics behind the results, also in case of voided 

conditions. Finally the computational expense is assessed 

and compared with the time reduction owing to using the 

BL rather than the FL. 

 

II. DESCRIPTION OF THE ACTUAL WORK 

 

GAs (7) are a widely used type of metaheuristics for 

search and optimization, based on the principles of 

Darwinian selection and evolution (on which the wider set 

of evolutionary algorithms is founded). 

The starting point of a GA is a collection (using the 

analogy of biology, denoted by population) of possible 

solutions (individuals), characterized by a set of properties 

(genes), usually randomly generated; the members of the 
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population are tested and used to produce a new population 

(next generation), based on a measure of their adequateness 

as problem solution called “fitness”. As the iterations go on 

the solution space is explored and the quality of the 

population grows, eventually approaching the optimal (or at 

least a reasonably reliable) solution, similarly to natural 

evolution.  

 

 
 

Fig. 1. GA flowchart. Repair block is specific for the current 

application due to the chosen chromosome representation. 

 

1. Chromosome representation 

 

The way of representing the individual genes set 

(chromosome) is highly problem-specific and is the first 

point to be addressed when setting a genetic algorithm up. 

The specific constraints applicable to this case are two: 

I. The gene pool is finite, i.e. the energy cuts of the 

BL can be set only just at the ones present in the 

FL; 

II. The number of energy cuts to be set, i.e. the 

number of energy groups of the BL, is fixed ab 

initio. 

A non-binary representation has been chosen, 

consisting of chromosomes with a number of genes FG-1; 

each gene can assume any integer value (allele) of the 

interval (1,MG], representing the first fine-group belonging 

to a broad energy group. It is implicit that the original and 

the collapsed libraries share the same starting energy. 

Constraint II can be enforced by making sure that each 

allele does not appear twice in the chromosome.  

 

 
 

Fig. 2. Example of 5-groups BL collapsed from a 10-groups 

FL based on a chromosome. 

 

Sorting of the genes based on their alleles has pros and 

cons; experience suggests that sorted chromosomes give 

better results. 

 

2. Fitness function 

 

As for any evolutionary algorithm, a fitness function 

(FF) is required to rank the solutions based on their 

suitability in solving the problem. This function represents 

in biological systems the reproductive success, at the base of 

natural selection and evolution. 

Different options are possible, but the required 

computational expense should be taken into account, as the 

FF must be evaluated for each individual of each generation. 

Similarly to Yi and Sjoden (4), a simple and suitable 

fitness function is considered to be  
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where the objective keff can be easily identified performing 

an eigenvalue calculation with the original uncollapsed FL. 

 

A. Computational expense reduction 

 

As the alleles are chosen from a discrete set, there is 

quite a chance of examining twice the same individual. The 

probability of this occurring is actually much higher than 

predicted by simple combination counting, as each 

generation depends on the previous one. Repeating the 

evaluation of the fitness, of course, must be avoided to the 

utmost, as it is the most expensive operation of the GA. 

Hence a binary tree storage is implemented, keeping track 

of all explored configurations and of their fitness; the tree is 

searched for each individual before performing the 

eigenvalue calculation, which can be skipped if the required 

fitness is already known. The time spent in creating, 

keeping and deallocating the tree is amply compensated by 

the spared calculations.  
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Fig. 3. Storage tree example for 9 to 5 groups collapsing. 

 

Also, fitness estimation itself is accelerated: the 

eigenvalue calculation with the FL produces, along with the 

objective keff, the neutron fluxes with the uncollapsed ES. If 

these fluxes are collapsed (following each individual 

chromosome), with the formula 
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they represent a well educated guess for the transport solver, 

which then is able to converge to the solution of the 

eigenvalue calculation within few iterations. 

Finally, as each individual of a generation is completely 

independent from the others, the algorithm is very suitable 

for an efficient parallelization. 

 

3. Genetic operators 

 

As selection operator, the tournament method (8) is 

chosen, mainly for being easily tunable. The individuals 

selected with this method constitute the mating pool, from 

which couples are randomly extracted to create two 

offspring through one-point crossover (XO). When the 

reproduction phase is finished, the parents are all discarded 

(non-overlapping population model), with the exception of 

the best-performing ones, which are passed to the next 

generation unchanged (elitism). 

Genetic diversity is improved by mutation: once the 

next generation is established, a fixed number of randomly 

chosen genes have their value replaced with another 

randomly chosen allele. This procedure improves the 

diversity of the genetic pool, may reintroduce extinct alleles 

and opposes to genetic drift. 

 

A. Chromosome repair 

 

The chosen representation stipulates that each allele 

appears in a chromosome at most once; nevertheless, after 

mutation or crossover such duplications can occur. Hence 

one requires a chromosome repair mechanism, which must 

not be too invasive, in order to avoid excessive perturbation 

of the natural selection process. 

Therefore, after the new generation has been created, all 

individuals are checked for duplication errors. If such errors 

are observed, a mutation of the genes with duplicated alleles 

is performed, until all damaged chromosomes are fixed.  

 

4. Test configuration 

 

The aim of the test procedure is finding an ES with 11 

energy groups starting from the 72-groups XS data libraries 

developed at KIT for SIMMER analyses (9) able to 

reproduce the reference results with respect to the criticality 

level and the Doppler and coolant reactivity feedbacks in a 

fast reactor system. The number of groups of the final ES, 

which can be defined by the user, has been chosen as most 

of the mechanistic calculations with SIMMER at KIT are 

performed using an 11-groups library (10). 

 

A. Algorithm configuration 

 

While for most applications a sub-optimal solution is 

probably sufficient to achieve good results, in this case the 

algorithm is configured with very tight parameters in order 

to achieve refined results, more suitable for the study of the 

position of the energy cuts. 

Each generation is composed of 500 individuals, a large 

number intentionally chosen to limit the genetic drift effect. 

The selection pressure is kept to a low level by using 

100 tournaments without replacement (all individuals of the 

population participate in exactly one tournament) of the 

stochastic type, i.e. all participants of the tournament are 

included in the mating pool with a number of copies  
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with p=0.1. 

Finally, 5% of the chromosomes of the next generation 

are mutated and the top-2% of each generation passes to the 

next one with the elitist mechanism. 

Fifty generations are always examined, with anticipated 

interruption in case no improvements are obtained for 20 

consecutive generations. 

In order to reduce the stochastic effect in the results, the 

GA is carried out 5 times. The calculation has also been 

repeated 2 times more with the core in voided condition, in 

order to study the effects on the energy discretization on the 

feedback effect. 

 
B. Test system description 

 

The test system is the Advanced Sodium Technological 

Reactor for Industrial Demonstration (ASTRID) (11) at End 

of Cycle (EOC), studied at KIT in the framework of the 

European Sustainable Nuclear Industrial Initiative 

(ESNII+). 

The considered ASTRID core is a 1500 MWth with two 

fuel zones (Fig. 4), including 177 and 114 fuel Sub-

Assemblies, with different enrichment of the (U, Pu)O2 fuel. 
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The core voided configuration is obtained removing the 

cooling sodium from all the fuel zones and from the 

intermediate fertile zone, the coolant in the inter-SA gaps 

being not removed. 

 

 
 

Fig. 4. ASTRID-like core map and vertical section at EOC, 

based on (11). 

 

III. RESULTS 

 

The results show that the employment of the GA in the 

SIMMER framework does make the code able to find a 

broad ES which can reproduce the reference structure. It is 

interesting analyzing the results shown in Fig. 5-7 and 

investigating the physical reasons that guide the evolution. 

From Fig. 5 it is clear that a pattern associated with a 

good match of the keff with the objective one exists. The 

figure is particularly effective in showing the groups that 

should not be separated, namely the ones between ~20 keV 

and 500 eV; this energy range, as shown in Fig. 7, exactly 

corresponds with the largest resonance of sodium. Many 

other groups are formed around the resonances of the 

sodium (250-150 keV and 60-30 keV) or of the oxygen 

(1.3-0.8 MeV, 800-250 keV). 

 

 
 

Fig. 5 Best found ESs associated with calculation ID and 

corresponding fitness. 

Fig. 6 shows more clearly the tendency of the best 

solutions not to have energy cuts in the region of the main 

sodium resonance, and indicates the positions of some 

important energy cuts which are recurrent in most of the 

solutions (including the best one, Table I). The first one is 

placed between groups 9 and 10, at about 900 keV, and it 

represents a sort of boundary between the fast and the 

resonance spectrum zone, mainly related to the U
238

 fission 

XS; the other 4 cuts are all in the lower energy region, with 

the first one at 500 eV. The calculations show that these 

cuts, in particular the ones in the lower energy region, 

emerge in the first generations of the GA, and persist 

throughout the calculation; on the contrary, solutions not 

employing them succumb to selection and in-between 

alleles tend to extinction. One may suppose that they are 

just the results of the genetic drift without any physical 

meaning, also considering that the lower energy zone is not 

expected to be relevant for a fast reactor, but the fact that 

they appear in most of the calculation runs opposes to this 

hypothesis. Nevertheless, Fig. 6 and Fig. 7 show that energy 

cuts tend to concentrate in the energy regions where the 

neutron flux is high (between 300 keV and 2 MeV); this 

means that the ESs that invest more groups to describe 

zones with less neutrons are penalized in the selection 

process, i.e. they have worse fitness. As the energy cuts in 

the lower energy region look like an exception to this rule, 

they must be somehow useful to the energy space 

description. One possibility is that they are necessary to 

adequately represent the resonances in heavy nuclides XSs, 

like U
238

 and Pu
239

, appearing in that energy range. 

 

  
 

Fig. 6 Frequency of groups as new-groups starters in the 

top-30 solutions. 
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Fig. 7 ASTRID neutron spectrum in a fuel cell (in reference and voided conditions), relevant nuclides total XSs and best ES 

found.

Table I. Upper energy boundaries of the BL. Best estimated 

ES groups for the reference configurations are in bold. 

Gr. BL groups Gr. BL groups Gr. BL groups 

1 2.000E+07 25 1.228E+05 49 3.355E+03 

2 6.703E+06 26 1.111E+05 50 2.747E+03 

3 3.679E+06 27 9.482E+04 51 2.249E+03 

4 3.012E+06 28 8.230E+04 52 2.035E+03 

5 2.466E+06 29 6.738E+04 53 1.722E+03 

6 2.019E+06 30 5.517E+04 54 1.507E+03 

7 1.653E+06 31 4.748E+04 55 1.434E+03 

8 1.353E+06 32 4.087E+04 56 1.234E+03 

9 1.108E+06 33 3.698E+04 57 1.010E+03 

10 9.072E+05 34 2.928E+04 58 7.485E+02 

11 8.209E+05 35 2.739E+04 59 5.545E+02 

12 7.065E+05 36 2.479E+04 60 4.540E+02 

13 6.081E+05 37 2.029E+04 61 3.043E+02 

14 5.502E+05 38 1.662E+04 62 2.040E+02 

15 4.979E+05 39 1.503E+04 63 1.367E+02 

16 4.505E+05 40 1.273E+04 64 9.166E+01 

17 4.076E+05 41 1.114E+04 65 4.552E+01 

18 3.508E+05 42 9.119E+03 66 1.945E+01 

19 3.020E+05 43 7.466E+03 67 9.906E+00 

20 2.732E+05 44 6.320E+03 68 5.043E+00 

21 2.472E+05 45 5.531E+03 69 2.130E+00 

22 2.128E+05 46 5.005E+03 70 1.020E+00 

23 1.832E+05 47 4.166E+03 71 4.850E-01 

24 1.500E+05 48 3.527E+03 72 1.890E-01 

 

1. Feedback coefficients 

 

The feedback coefficients are key parameters for the 

reactor design; hence it is very important that the new ESs 

provide correct estimates of the keff also in conditions which 

are not those used for the GA run, so that the transient 

results are reliable at least until core degradation starts. For 

analyzing the next accidental phases, characterized by full 

core degradation, a new run of the GA may be necessary. 

In order to verify this, the reference coefficients (i.e. 

calculated with all 72 available groups) are compared with 

the ones obtained using the GA best solution. As a further 

proof, the GA has been applied to the voided core, and the 

corresponding best solution has also been used to calculate 

the feedback coefficients. Table II summarizes the results. 

 

Table II. Impact of ES on the feedback coefficients. 

 

 

FL  Best ES 

(Ref. conf.) 

Best ES 

(Void conf.) 

keff 

Reference 0.99919 0.99920 0.99932 

Voided core 1.00995 1.00980 1.00996 

Tfuel+1000K 0.99633 0.99651 0.99669 

Feedback coefficients (pcm) 

Core void +1066 +1051 +1054 

KD -560 -527 -515 

 

Both reference and voided-conditions solutions provide 

excellent results for both coolant void and Doppler feedback 

coefficients, with errors on the keff in the order of 20-30 

pcm. The important values, i.e. the feedback coefficients, 

present even lower errors, acceptable for most applications. 

This means that the reference conditions ES is not 

expected to lead to incorrect results in accidental conditions. 

However the small difference could be the effect of 

compensation among different energy groups. 
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2. Time performance 

 

For the purpose of this study it is important to evaluate 

the time performances of both the genetic algorithm and 

SIMMER with the XS collapsing. Thus one can 

demonstrate that the time spent for the ES determination can 

be entirely covered by the corresponding reduction of the 

XS collapsing. The latter procedure can indeed be used 

without ES search, but this approach should be discouraged 

as results can be affected by large errors if the chosen ES is 

inappropriate. 

The time performance measurement has been carried 

out using the Intel
®
 VTune™ Amplifier 2015 profiler on a 

node with exclusive access of the InstitutsCluster II (IC2) 

(12), with processor Intel
®
 Xeon

®
 5 (2.6 GHz).  

 

A. CPU time required for the GA 

 

In order to have uniform results, in each run the GA 

performs 6 generations with 50 individuals each. The 

measurement has been repeated 4 times for better results 

precision. Nevertheless, due to the stochastic choices 

intrinsic to the GA, the number of actual FF to be evaluated 

changes; in addition the fitness of any already examined 

individual is just retrieved from the storage tree, an 

operation which is much faster than the actual FF 

calculation. The results are shown in Table III and averaged 

in Table IV. 

The final adjoint and real calculation, as expected, is 

longer than the doubled FF evaluation time as the flux 

acceleration described in §II.2.A is not applied. 

Except for the time invested in objective keff 

calculation, which depends only on the FL, the other CPU 

time values are representative only if ESs with 11 groups 

are searched. 

 

Table III. GA CPU time tests 

 Test 1 Test 2 Test 3 Test 4 

Individuals 300 300 300 300 

FF calculations 262 249 250 259 

Computational time per section (s) 

Total 1982.5 1945.9 1917.6 1951.2 

Objective keff 58.0 57.8 58.0 56.4 

Individuals FF 1899.2 1868.4 1837.3 1880.0 

Final keff and k
+
 24.6 19.1 21.7 14.2 

SIMMER frame 0.7 0.6 0.6 0.6 

 

Table IV. GA average CPU time results (s) 

 Average Corr. sample σ 

Objective keff 57.5 0.8 

FF calc. per individual 7.3 0.1 

Final keff and k
+
 19.9 4.4 

SIMMER frame 0.6 0.03 

 

 

 

B. XS collapsing time reduction 

 

A 10 s stationary approach calculation of the ESNII+ 

core has been used for the estimation of the computational 

time of a SIMMER simulation. Both the actual CPU time 

and the neutronics/fluid-dynamics time share, of course, 

strongly depend on the model (number of thermal-hydraulic 

cells, neutronic mesh fineness, transient type, reactor 

state…). In order to reduce measurement uncertainty, 

calculations have been repeated 3 times for each considered 

number of groups, with 3 different ESs, in the same 

conditions described in previous paragraph. 

 

  
 

Fig. 8 CPU time for 10 s of stationary approach calculation 

with different number of groups using best estimated ESs.  

 

Results in Fig. 8 show the CPU time dependence on the 

number of groups used: while thermal-hydraulics and XS 

processing time are not affected, the time required by the 

transport solver increases more than linearly with the 

number of groups. The time required by the XS collapsing 

procedure is almost negligible, being ~40 s in all cases, i.e. 

0.4% of the total CPU time at most (72→5 groups). The XS 

processing time is constant, as this procedure is performed 

on the FL, which has 72 groups in all considered cases. 

 

C. GA convergence speed 

 

Estimating the number of individuals to be examined 

before convergence to a reasonable ES is not an easy task: it 

requires sensitivity studies on all different GA parameters, 

such as initial population size, growth rate, mutation rate, 

selection pressure. Such tests would allow estimating the 

minimum number of individuals that, on average, are 

needed for convergence. These optimization studies are 

considered of interest for the future, along with the 

evolution of the GA to an Adaptive Genetic Algorithm (13), 

which would improve the convergence rate. 

A preliminary estimate of the number of individuals 

required for the 72→11 groups collapsing problem has 

anyhow been done. The GA has been run with 3 different 
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population sizes (twice each), keeping the selection pressure 

constant (5 individuals per tournament on average). The 

termination criterion is the achievement of a fitness value 

lower than 1, i.e a discrepancy on the multiplication factor 

in the order of 1 pcm; such difference is considered 

acceptable for most types of calculation. 

 

Table V. GA average CPU time results (s) 

Initial population 50 100 150 

Growth rate 1.0 1.0 1.0 

Mutation rate 5% 5% 5% 

Elitism rate 2% 2% 2% 

Number of tournaments 10 20 30 

Tournament parameter p 0.1 0.1 0.1 

Number of generations 16 

40 

39 

35 

20 

18 

Considered individuals 800 

2000 

3900 

3500 

3000 

2700 

Unique individuals 650 

1553 

3106 

2985 

2715 

2434 

 

  
 

Fig. 9 Population average fitness convergence speed.  

 

The results summarized in Table V suggest that a 

smaller initial population converges faster to the solution; 

anyhow Fig. 9 shows that the convergence of such 

populations is more erratic, being more susceptible to initial 

random sampling and genetic drift. Also, a faster 

convergence of the population average fit might not be an 

advantage, as the lower genetic variability would affect the 

exploration capability of the population, which could end up 

prematurely converging toward a local optimum. The 

convergence speed point should be studied more in depth, 

but the performed calculations provide a preliminary 

average number of unique individuals required to achieve 

convergence, being for the present case 2241±956. 

Based on results shown in Fig. 8, a calculation with 11 

energy groups would reduce the computational time with 

respect to the 72 groups BL case by 64 ks (80%) for the first 

10 s of simulation. Combining this result with Table IV 

data, the same computational time can be used to take into 

consideration more than 8500 unique solutions, more than 

double of the required estimate increased by 2σ. 

Moreover, the ES has to be calculated only once for 

each reactor system but can be used for different 

simulations, provided that the reactor conditions do not 

change excessively. Finally, the CPU time reduction has 

been calculated for 10 s of simulations, but much longer 

time spans (at least a few minutes of simulation) have to be 

considered when performing safety studies, making the time 

reduction in absolute terms extremely favorable. 

 

IV. CONCLUSIONS 

 

An automated tool aiming to the energy meshing 

selection for multigroup XS libraries has been presented. 

The procedure is based on a genetic algorithm and is 

coupled with the safety analysis code SIMMER. The tests 

performed on the ESNII+ ASTRID-like reactor system 

show that the GA is able to suggest energy structures for the 

considered problem which correctly predict the 

multiplication factor both in reference and out-of-nominal 

conditions. 

The problem constraints have been established and a 

non-binary chromosome representation able to respect them 

has been devised. The genetic operators have been chosen in 

order to respect the problem boundaries and to leave the 

user the freedom of both choosing the number of groups in 

the solution and easily tuning the GA parameters. 

The fitness function, i.e. the measure of the studied 

solution “goodness”, is based on the difference between the 

keff obtained with the considered ES and the objective one, 

calculated at the start of the GA with the FL. The fitness 

calculations are the operations employing most of the 

computational time, so the procedure has been accelerated 

using a binary tree, where new fitness are stored as they are 

calculated to be retrieved in case they are needed again, and 

by collapsing the flux calculated with the FL, which 

provides an educated guess to the transport solver and so 

faster convergence. 

The tests focus on the search of an 11-groups energy 

structure for the collapsing of the 72-groups fine-library. 

The energy structure determined by the GA adequately 

model the reactor in reference conditions, so demonstrating 

the effectiveness of the approach in the problem solution. 

The GA has also been applied to the reactor in out-of-

nominal conditions; the study is of interest to predict the 

effect of the ES on accidental transient simulations. The 

results show that the discrepancies of the feedback 

coefficients are acceptable in all considered cases, both 

when the ES is calculated with the reactor in its reference 

state and when a voided configuration is used. 

The computational time in a selected 10 s transient is 

dominated by the transport solver, so it can be strongly 

reduced by using XS libraries with less energy groups; 

results show that the link between CPU time and number of 

energy groups is quadratic. Based on the parabolic fit, XS 
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collapsing from 72 to 11 energy groups is able to reduce the 

CPU time by 80%. This, considering that accidental 

transient SIMMER calculations can take days or even 

weeks, makes the XS collapsing an extremely powerful tool, 

if one is able to use the correct energy structure. The GA 

cares for this last point. 

Preliminary results suggest that on average 2241 

individuals have to be examined before the discrepancy on 

the multiplication factor is reduced to the order of 1 pcm, 

acceptable for most applications. Considering that the 

fitness function evaluation takes 7.3 s per individual, the 

GA would converge within just a small fraction of the 

spared time; moreover one should consider that the energy 

structure can be used for all simulations related to the 

reactor, provided that the initial conditions do not change 

too much. 

Finally, the convergence speed can be improved by 

optimization of the parameters and by passing to Adaptive 

Genetic Algorithm, both activities considered of interest for 

future studies. Also, the methodology can be further 

improved by implementing other fitness functions, possibly 

taking into account the reaction rates and the neutron flux, 

which effect, as shown, plays a relevant role on the energy 

structure definition. 

 

NOMENCLATURE 

 

C = individual chromosome 

FG = number of groups in the coarse ES 

fI = fitness associated to individual I 

g = generic group of the FL 

G = generic group of the BL 

MG = number of groups in the fine ES 

RI = ranking of individual I in its tournament 
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