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Abstract – A high precision multiphysics point kinetics benchmark is presented to verify the point kinetics 
solvers in the Rattlesnake transport/diffusion code underdevelopment at INL.  Heat transfer from the fuel 
kernels to the graphite binder within the pebbles and from the graphite pebble to the coolant is included 
along with the associated reactivity feedback. Both Taylor series and backward Euler algorithms provide 
highly precise solutions to which the solution from solvers in Rattlesnake will be compared. 

 
I. INTRODUCTION 
 

We are all very aware of the importance of verification 
and validation (V&V) for multiphysics applications in 
nuclear engineering [1]; however, the lack of available high 
quality multiphysics benchmarks severely limits meaningful 
V&V.  In their absence, we must be satisfied with unit 
testing, which is generally inconclusive when simulating 
physical phenomena coupled at a variety of time scales. 

What we present here is the first installment of a semi-
analytical benchmark to be included in the Multiphysics 
Test Harness (MTH) for verification of the point kinetics 
option in the Rattlesnake transport/diffusion code.  The class 
of benchmarks, called semi-analytical, represent highly 
precise numerical solution evaluations, either directly, or by 
convergence acceleration of a numerical algorithm.  Usually 
the most precise semi-analytical benchmarks come from 
evaluations in closed form. Unfortunately, closed form multi 
physics solutions are virtually non-existent and one must 
therefore contend with solutions formulated from infinite 
series, finite difference or elements and/or Picard iteration. 
Recently, with the emergence of convergence acceleration, 
one can accelerate solutions based on discretizations or 
Taylor series to the true solution as the limit.  While not 
always guaranteed to converge to the correct result, more 
often than not, they indeed do.  In this way, a highly precise 
solution is obtained simply by rearranging iterates toward a 
limit in a systematic way to capture the asymptotic behavior 
of a sequence of numerical solutions toward their limit. 

For the multiphysics benchmark to be reported, we 
consider the HTR-10 PBM reactor [2,3], which was one of 
the first of its kind.  The reactor achieved full power in 
Tsinghua China in 2003.  The core is doubly heterogeneous, 
where the fuel pebble, roughly the size of a billiard-ball, 
contains fuel kernels, which themselves contain the fuel 
encased in pyrolytic carbon and silicon carbide coatings as 
shown in Fig. 1.  The graphite matrix of the pebble serves as 
the moderator as well as the kernel binder.  The pebbles 
then fill a cylindrical core and each slowly moves 
downward through the core to eventually drop out the 
bottom as another enters the top.  Table I gives the primary 
HTR-10 reactor design parameters. 

The multiphysics model to simulate the initial critical 
experiment [3,4] includes transient power variation from 
Doppler feedback from both fuel and moderator.  The first 
solution to the coupled set of dynamic equations comes 
from a Taylor series representation of the solution 
analogous to the CATS algorithm [5]. 
 

Table I. 10MW Reactor primary design parameters [2] 
Initial power N(0) 10MW 
Initial fuel temperature TF(0)  853°C* 
Initial moderator temperature TM(0) 827.6°C 
Constant coolant temperature T∞ 748°C 
Kernel radius r 0.00025m 
Pebble radius R 0.03m 
Fuel kernels/pebble nfp 8335 
Avg. fuel specific heat CpF 316.1063 J/kg°K 
Avg. moderator specific heat CpM 1855.9 J/kg°K 
Fuel/Moderator heat transfer 
coefficient** 

h 657.7343 W/°Km2 

Number of pebbles Np 16888 
Fuel to dummy pebble ratio ξ 0.57 
Fuel density ρF 10400 kg/m3 
Moderator density ρΜ 1730 kg/m3 

* All temperatures are in °C 
**It appears that in Ref. 3, the temperature used to specify h  
    is incorrectly taken as 748°K rather than 748°C. 
 

 
                    Fig. 1 Fuel particle. 
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II. THE REACTOR KINETICS/HEAT TRANSFER 
MODEL 
 

The reactor kinetics model begins with the point kinetics 
equations (PKEs) for the power and precursor 
concentrations ( )N t  and ( )lC t  
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

, ,

,   1,..., ,

m
F M

l l
l

l l
l l

dN t t T T
N t C t q t

dt

dC t
N t C t l m

dt

ρ β
λ

β
λ

=

− 
= + + Λ 

= − =
Λ

∑  
(1a,b)

 

 

for m delayed neutron groups, which will be either one or 
six.  The initial steady state power is ( )0N  to give the initial 
precursor concentrations 
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( ), ,F Mt T Tρ  is the reactivity, depending upon both fuel and 
moderator temperatures.  All other symbols have their usual 
meaning 
 

Λ   Neutron generation time 

l
β   Delayed neutron yield for group l 
 
β              
 

lλ   Delayed group decay constant. 
 

We assume Doppler feedback reactivity from both the 
fuel and moderator in the form 
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where Fα  and Mα  are known temperature reactivity 
coefficients.  Table II provides the reactor kinetics 
parameters for our investigation. 
 

            Table II. Precursor yields and decay constants 
l β l λ l(s) 

1 0.000285 0.0127 
2 0.0015975 0.0317 
3 0.001410 0.115 
4 0.0030525 0.311 
5 0.00096 1.40 
6 0.000195 3.87 

Total yield β 0.0075 
Neutron life time Λ 0.00168s 
Fuel reactivity coefficient [2] αF −1.9.10-5/°K 
Moderator reactivity coefficient [2] αΜ −15.7.10-5/°K 

The fuel and moderator temperatures obey the following 
heat balance equations for constant specific heats: 
 
−− between the fuel and moderator 
 

( ) ( ) ( ) ( )F
F pF F M

dT t
m C N t U T t T t

dt
= − −    (2) 

 

−−between the moderator and flowing helium coolant 
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M pM F M M

dT t
m C U T t T t hA T t T

dt ∞= − − −        (3) 

 
respectively.  The total contact area between all pebbles and 
coolant is 
 

24 pA R Nπ= ,     (4a) 
 

where pN  is the total number of pebbles.  The fuel and 
moderator masses are 
 

3 34 4,  .
3 3F F pf p M p Mm r n N m R Nπ ρ ξ π ρ= =  (4b,c) 

 

The only properties left to determine are U and hA for 
the given initial power N(0) and temperatures 

( ) ( )0 , 0F MT T  and the number of pebbles.  One most 
easily finds these by noting that transient initiation occurs at 
thermal equilibrium to give, in terms of the initial power and 
temperatures, 
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Finally, given h, one finds the total number of pebbles, Np 
using Eq(4a) since 
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which we round to the nearest integer. 

We are now ready to describe the first solution 
algorithm, called HTRCATS. 
 
1. Taylor Series (TS) Formulation 
 

We recast the model equations as a vector ODE in the 
time interval 1j jt t t− ≤ ≤  
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The Jacobian, A j, of size m+3, is 
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and the initial condition vector is 
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The proposed solution is the following (vector) Taylor 
series in the time interval 1 :j jt t t− ≤ ≤  
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If, in addition, one expresses the Jacobian matrix as its 
matrix Taylor series 
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and notes 
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when we introduce all Taylor series into the PKEs, the 
following recurrence for the power coefficients results for 

1n ≥ : 
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and for precursors and temperatures 
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2. Limit of Taylor Series 
 

Thus, from the initial conditions (j = 0), we find all 
subsequent Taylor series coefficients and the solution is 
analytical, but not in closed form, however analytical 
nevertheless.  Therefore, the true analytical solution is the 
limit 

( ) ( ), 1 1
0

lim
N n

j n j jN n
t t t− −→∞

=

= −∑y y .  (10) 

 

Using the concept of convergence acceleration in the form 
of the Wynn-epsilon (W-e) extrapolation [6], one can realize 
the limit to high precision.  This we accomplish by 
considering the limit as a sequence of solutions and 
rearranging the sequence using W-e acceleration to capture 
the asymptotic approach to the limit more rapidly than the 
original sequence.  Richardson acceleration [6] also enters 
into the overall evaluation. 
 
III. NUMERICAL IMPLEMENTATION AND  
VERIFICATION: CONSTANT SPECIFIC HEAT 
CAPACITIES 
 

1. Numerical Implementation 
 

Numerical implementation begins with the input 
including the desired edits te by defining intervals [te-1,te].  
Since each edit interval is treated sequentially in time, each 
is independent and is to be converged relative to a sub-grid 
within the interval as now described.  We begin with the 
first interval between time zero and the first edit [0,t1].  One 
constructs the interval sub-grid by continually halving the 
original interval.  In this way, a sequence of solutions at the 
interval end point [t1(l)] is generated based on the sub-
discretization (1/2l, l=1,…,12), whose convergence (in l) is 
accelerated by Richardsons acceleration.  If the 
discretization exceeds 12 subdivisions (212), the original edit 
interval [0,t1] is halved and the process restarts.  This 
continues until 212 subdivisions of the original interval; after 
which, the program terminates indicating failure to 
converge. Recall that for all evaluations, a converged Taylor 
series solution from Eq(8a) is necessary. We require 
convergence to be within a fixed number of terms with help 
from the W-e algorithm.  If unsuccessful, the calculation 
jumps to the next sub-grid (l+1) of the interval [0,t1] and 
continues until convergence of the interval end point 
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solution or failure as described above.  If the interval end 
point solution has converged in l, we go on to the next 
interval [t1,t2] with a highly converged initial condition 
reducing the propagation error. We remark that the 
convergence acceleration just described enables such a high 
quality benchmark. 
 

2. Initial Demonstration 
 

The four benchmarks we consider are those found in 
Ref. 3 for step reactivity insertions of ρ0 = 0.05$, 0.25$, 
0.50$ and 1.0$ assuming constant specific heats and the 
10MW design parameters of Table I. 

 
Fig. 2. Reactor response for 0.05$ reactivity insertion 
           (a) [N(t)-N(0)]/N(0), (b) ∆TF, ∆TM. 
 

Figure 2 shows the relatively quiescent response of the 
HTR-10 reactor for a 0.05$ step reactivity insertion.  
Similarly, Fig. 3 shows correspondingly larger power spikes 
for stronger insertions never exceeding four times N(0). 

 
Fig. 3. Reactor power response for reactivity insertions 
           of 0.25, 0.5 and 1$. 
 

We now observe the difference between one- and six- 
group delayed neutron models.  For an insertion of 0.05$, 
the power, fuel and moderator temperature transients are  
 

  

 

 
    Fig. 4. Comparison of one and six groups of delayed  
               neutrons for (a) Power, (b) Fuel temperature, 
               (c) Moderator temperature for 0.05$ insertion. 
 
shown in Fig.4 for both one and six delayed neutron groups.  
For a consistent one delayed group using the kinetic 
parameters of Table II, we calculate λ as 
 

6

1
/ 0.0784l

l l

sβλ β
λ=

= =∑  

 
since β is known. 
 

It seems the 6-group model gives a higher maximum 
power and shifted temperatures in time.  Apparently, more 

Fuel 

Moderator 

ρ0 = 0.25$,0.50$,1.00$ 

(a) 

(b) 

(a) 

(b) 

(c) 
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neutrons are available after the peak from the one group 
approximation thus shifting the temperature peaks to higher 
times. Interestingly however, the asymptotic steady state 
powers for both cases are theoretically (and numerically) 
identical.  One can show this theoretically since to achieve 
asymptotic steady state, the reactivity must be zero as time 
approaches infinity, implying from Eq(1d) 
 

( ) ( )00 0 0F F F M M MT T T Tρ α α∞ ∞= + − + −       . (11a) 
 

In addition, the derivatives of both TF and TM in Eqs(2) and 
(3) must vanish 
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( )F MN U T T∞ ∞= −


, 
 
which depend only the heat transfer parameters and 
reactivity.  Thus, the steady state power is independent of 
the delayed neutrons as one would expect for steady state. 
 

Table III gives 9-place power and temperatures for 
benchmark comparison purposes. It should be noted that the 
 
Table III. Benchmark values for 0.05$ insertion from 
                HTRCATS for uniform specific heat 

t N TF TM 
 1.0000E-01  1.018125306E+07  8.532930142E+02  8.276007592E+02 
 1.0000E+00  1.056325348E+07  8.544755043E+02  8.276630729E+02 
 1.0000E+01  1.078209325E+07  8.560334558E+02  8.286504435E+02 
 1.0000E+02  1.025902824E+07  8.557145498E+02  8.296566325E+02 
 5.0000E+02  1.025875839E+07  8.557169439E+02  8.296596976E+02 
 1.0000E+03  1.025875988E+07  8.557169787E+02  8.296597286E+02 
 1.5000E+03  1.025875988E+07  8.557169788E+02  8.296597287E+02 
 
last value in the table corresponds exactly to the theoretical 
results of Eqs(12). 
 
3. Comparison to Rattlesnake (RS) PKE solvers 
 

Figure 5 shows our first benchmark comparison for 
0.05$ insertion with two of the RS/PKE solvers for a time 
step of 0.05s indicating excellent agreement of the power at 
late times.  The BDF-2 multistep solver seems to slightly 
outperform the single step Implicit Euler solver. 
Interestingly, the imprecise powers at initial times do not 
contaminate later powers.  Indeed, the asymptotic values are 
essentially identical to the theoretical values shown in Table 
IV for coarser step sizes.  This is a consequence of the 

asymptotic values, computed by solving a nonlinear (in 
general) system of equations, which Rattlesnake solves to 
iterative tolerance independent of time step size. 
 

 
Fig. 5. Comparison or RS solvers to HTRCATS results for  
           0.05$ benchmark. 
 
                Table IV. Asymptotic comparison for 0.05$ 
                                insertion 

 (N∞-N(0))/ N(0)) ∆TF ∆TF 
HTRCATS   2.58759882E-02 2.716978724 2.059728625 

RS(1s) 2.5875988E-02 2.716978719 2.059728620 
   RS(0.1s) 2.5875988E-02 2.716978724 2.059728624 
   RS(0.5s) 2.5875988E-02 2.716978724 2.059728624 

 
IV. VARIABLE SPECIFIC HEAT CAPACITIES 
 

Of course, in a real simulation of the HTR10, the 
specific heat capacities of the fuel and moderator will 
depend strongly on their respective temperatures. Therefore, 
a proper simulation requires a model of the temperature 
dependence of the heat capacity of UO2 and graphite, which 
one finds to be 
 
−− for UO2 [8] with TF in the range [298.15°K, 3120°K] 
 

( )
2

3 4
2

52.1743  87.951  84.2411
  

31.542 2.6334
1000

0.71391267

  
1000

pF F

F

C T

T

ζ ζ

ζ ζ
ζ

ζ

+ −
=

 +
 
 + − −
  

≡

      (13) 
−− for graphite [2] with TM in the range [298°K, 1273°K] 
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and in the range [1273°K, 3273°K] 
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The Jacobian now becomes 
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      (15) 
with non-linear heat capacities included in the bottom two 
rows. A Taylor series solution is no longer possible because 
the heat capacities do not admit Taylor series in general.  
Hence, we turn to the BEFD solution algorithm [7]. 

The BEFD algorithm is one of the simplest solvers of 
ODEs.  It employs the backwards finite difference to 
implicitly solve Eq(7a) to high order.  Essentially, the 
numerical procedure is the same as for HTRCATS with the 
Taylor series replaced by the BEFD algorithm, which 
solves Eq(7a) including an iteration to accommodate the 
nonlinear Jacobian. More detail of the numerical 
implementation is found in Refs. [7] and [9]. 

We ran the BEDF algorithm for the 0.05$ transient with 
constant specific heats and found the identical values in 
Table III.  Such a comparison is a necessary verification of 
the BEDF algorithm. 

 
     Fig. 6. Variation of power with and without uniform 
                specific heats for 1$ insertion. 
 

Figure 6 shows the relative error with and without 
variation of the specific heats for a 1$ insertion.  For this 
strong transient the largest relative error is less than 1% for 

power and even less for temperatures  These low relative 
errors confirm using constant specific heats is a reasonable 
assumption, also a conclusion of Ref. [3].  Eventually, we 
will the RS/PKE solvers to the HTR-10 PBMR with 
temperature dependent specific heats. 
 
V. PRELIMINARY CONCLUSION 
 

It is clear that several high quality multiphysics 
benchmarks have been established for the HTR-10 PBMR.  
These are a Taylor series solution (HTRCATS) for constant 
specific heats and a backward Euler finite difference 
(BEFD) for variable specific heats.  A first test of two of the 
Rattlesnake solvers has shown excellent agreement at late 
times in the transient. The discrepancy at earlier time is 
under investigation.  The next step in the benchmarking of 
the Rattlesnake code will be to run Rattlesnake’s additional 
solvers for a variety of time steps to enable a meaningful 
qualitative assessment of all the ODE solvers in the 
RS/PKE option. 
 
NOTE IN CLOSING 

The results included in this work are based on the 
moderator mass computed by Eq. (4c).  Ref. [3] presents 
results that are in marked visual disagreement with ours– for 
both HTRCATS and RS/PKE, which were generated 
independently by two authors of this paper.  Trial and error 
showed that we can reproduce Ref. [3]’s results with a 
moderator mass three times as large as the one computed 
using Eq. (4c). Therefore, we suggest that there might an 
error in the computation of the moderator mass used in Ref. 
[3]. 
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