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Abstract - The power feedback (PFB) is used in the dynamics model of the IBR-2M reactor instead of
the temperature feedback. The PFB is significantly influenced to operation and stability of the reactor.
This replacement allowed the PFB structure and parameters to be experimentally estimated through the
mathematical processing of the recorded power transition processes caused by deliberate change in the
reactivity. Experimental and model studies of the parameters of the PFB on power as a function of the average
power of the IBR-2M have been performed in 2015-2016. The model of the IBR-2M with the power feedback
parameters which correspond to one series of experiments is investigated for stability by the frequency method.
In this work we present results of the stability analysis of the IBR-2M reactor at different level of the average
power in the self-regulating regime (i.e., without an automatic regulator).

I. INTRODUCTION

The IBR-2M pulsed reactor of periodic operation (up-
graded version of IBR-2 reactor) was commissioned with an
average power of 2 MW at the Frank Laboratory of Neutron
Physics in 2012. The reactor generates short neutron pulses
(200 µs at half width) with period 0.2 s and amplitude of 1830
MW. In the IBR-2M reactivity pulses are produced by the
reactivity modulators rotating near the core. When the two
reflectors pass the core simultaneously, a reactivity pulse de-
velops and for a short time (450 µs) the reactor stops being in
a super-critical state with prompt neutrons. As the reflectors
move away from the reactor core, the reactor becomes deeply
sub-critical. The controlled parameter of the reactor is the
deviation of the power pulse amplitude Pm from its basic value
P0

m in relative units (∆pm = (Pm − P0
m)/P0

m) [1]. The basic
value is the average amplitude corresponding to the stationary
regime, i.e., the regime in which the reactor average power is
generally constant [2]-[4].

Shown that a power feedback (PFB) is significantly influ-
enced to operation and stability of reactor, on the experience
of the IBR-2 reactor. The PFB parameters are changed in the
process of reactor operation. Therefore, it is necessary peri-
odically to record transient processes caused by square wave
reactivity. The automatic regulator generates the waves when
taken out of the control loop. And at time the reactor is oper-
ated in a self-regulating regime. The PFB parameters of the
IBR-2M reactor were estimated at average power ranging 0.5,
1.0, 1.5 and 2.0 MW [5]. In this work we present results of the
stability analysis of the IBR-2M reactor in the self-regulating
regime (i.e., without an automatic regulator).

II. BRIEF DESCRIPTION OF THE IBR-2M REACTOR

In contrast to stationary reactors characterized by a con-
stant neutron flux, the IBR-2M reactor generates periodic
neutron pulses whose duration at half maximum is shorter
than the interval between pulses by three orders of magnitude.
The reactor core is shaped as an irregular hexahedral prism
positioned vertically. Two rotating movable reflectors, repre-

senting a reactivity modulator (MR), pass beside one of the
prism faces. Stationary reflectors, used for emergency protec-
tion (EP) and control of the reactor, adjoin five other faces.
The schematic representation of the IBR-2M reactor is shown
in Fig. 1.

Fig. 1. Schematic of the IBR-2M reactor: 1 - core,2 - auxiliary
movable reflector, 3 - main movable reflector.

The main (MMR) an auxiliary (AMR) movable reflectors
are coaxially positioned and kinetically connected to one an-
other. The MME rotates at a rate of 600 rpm, and the AMR
rotates at a rate 300 rpm. As the movable reflectors rotate, they
generate periodical reactivity pulses in the IBR-2M reactor
(Fig. 2). Every second reactivity pulse has peak amplitude. It
is generated when the MMR and AMR simultaneously pass
beside the core.

The reactor controls are set in such a position that the
reactor reactivity caused by every second pulse of the reactiv-
ity modulator periodically (with period Tp = 0.2 s) becomes
prompt-neutron positive for a short time (450 µs). As a result,
the reactor generates powerful neutron pulses (power pulses)
with a frequency of 5 Hz (Fig. 2). At time instants when
only the MMR passes beside the core, the reactivity of pulses
generated by it remains negative. This results in the formation
of spurious neutron pulses of insignificant amplitude (three
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Fig. 2. Reactivity (ε), power (P) and intensity(S ) of delayed
neutron sources of the IBR-2M reactor as function of time
(t) under operating conditions with a power pulse frequency
of 5 Hz; Tp is the power pulse repetition interval, εm is the
maximum reactivity achieved over the time of the reactivity
pulse, Ep is the energy of power pulse

and half orders of magnitude lower than the power pulse am-
plitude). In the intervals between pulses, i.e., when there are
neither MMR nor AMR in front of the core, the reactor power
(background) is approximately four orders of magnitude lower
than the power pulse amplitude. Due to such a principle of the
pulsing reactivity formation, almost the total energy released
in the reactor is released during power pulse (92%), and the
fraction of pauses is as low as 8% of the total energy.

III. MODEL DYNAMICS OF THE IBR-2M PULSED
REACTOR OF PERIODIC OPERATION

This model is designed to simulate the transient processes,
calculate the frequency characteristics of the reactor for the
system as a whole and the constituent components, and assess
the stability of the reactor. The block diagram of the IBR-2M
dynamics model is shown in fig.3. The units of the block
diagram correspond to the dynamic equations.
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Fig. 3. Block-scheme of the dynamics model of the IBR-2M
reactor in the self-regulating regime. ε0

m is the basic value of
the maximum reactivity achieved over the time of the reactiv-
ity pulse; εmn, εFn and εTn are the reactor reactivity, external
(excitation) and power feedback reactivity, respectively; ∆en

and ∆epn are the deviation of the total and energy of power
pulse from their basic values, respectively

To begin with, known equations of the kinetics of a one-

point model of the reactor are taken[6]:

dn
dt

=
ρ − β

τ
n +

6∑
i=1

λiCi (1)

dCi

dt
=
βi

τ
n − λiCi (2)

where n is the neutron density; t is the time; ρ is the reactivity
β =

∑
i βi is the total fraction of delayed neutrons (βi is the

fraction of delayed neutrons in the ith group, τ is the effective
lifetime of prompt neutrons; i = 1, . . . , 6 is the index of the
delayed neutron group); Ci, λi are the concentration and the
decay constant of the sources of delayed neutrons of the group
i, respectively;

After we go ower from the neutron density to the power
and from the intensity of the neutron to the normalized inten-
sity in units of power, kinetic equations (1) and (2) take the
form:

τ

β

dP
dt

=
ε

β
+ S (3)

S =

6∑
i=1

S i (4)

1
λi

dS i

dt
+ S i = µiP (5)

where P is the power, ε is the reactivity on prompts neutrons; S
and S i are, respectively, the total number of delayed neutrons
and the neutrons in the ith group (expressed in units of power);
µi = βi/β is the relative fraction of delayed neutrons in the ith
group;

The following values of parameters have been used in
equations: µi = 0.038, 0.28, 0.216, 0.328, 0.103, 0.035;
λi = 0.0129, 0.0311, 0.134, 0.331, 1.26, 3.21 s−1 [6];
β = 2.16 × 10−3; τ = 6.5 × 10−8s [7].

The relative amplitude of the power pulse was taken as a
controllable parameter of IBR-2M. This parameter is actually
equal to the energy of power pulse Ep, scaled to the prescribed
(base) value E0

p. The energy of power pulse is expressed by
the relation [8]

Ep = MS , (6)

where S is the total intensity of delayed neutrons prior to the
growth of the reactivity pulse; M is the pulse transfer coeffi-
cient, which is a nonlinear function of the maximum reactivity
in a pulse εm [9]. In the working range, the dependence of M
on εm can be approximated by an exponential function to a
good of accuracy.

As a result, from equations (3)–(5) we obtain equation (7)
corresponding to the nth power pulses:

En

E0 =
Epn

E0 +
Ebn

E0 ;
Epn

E0 =
Epn

E0
p

E0
p

E0 ;
Ebn

E0 = kbn
S n

S 0 ;

kbn =
Ebn

S n

S 0

E0 =
βTp

∆kMR − εmn

S 0

E0 ;

Epn

E0
p

=
S n

S 0

Mn

M0 =
S n

S 0 exp
(
ln Mn − ln M0

)
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S n

S 0 =

6∑
i=1

S in

S 0 ;
S in

S 0 =

(
S in

S 0 + µiλi
E0

S 0

En−1

E0

)
exp

(
−λTp

)
(7)

where, Ep, Eb and E = Ep + Eb are the energy of the power
pulse, the energy of interval between power pulses (back-
ground energy), and the total energy for period of pulses Tp,
respectively; kb is the fraction of the background energy over a
period in the total energy over the same period; ∆kMR = 0.027
is the movable reflector efficiency. Here and below the base
values of the parameters are labelled by the index 0.

The constants S 0/E0 and E0
p/E

0 in equation (7) are cal-
culated by the following formulas:

S 0

E0 =

6∑
i=1

µiλi

exp
(
λiTp

)
− 1

;

k0
b =

E0
b

E0 =
βTp

∆kMR − ε
0
m

6∑
i=1

µiλi

exp
(
λiTp

)
− 1

; (8)

E0
p

E0 = 1 − k0
b

where, ε0
m = 0.001 is the basic value of the maximum value of

reactivity achieved over time of reactivity pulse.
The model intended for investigating the dynamics of

IBR-2M uses the deviations of the variables from their base
values:

∆Ep = Ep − E0
p; ∆E = E − E0;

∆S i = S i − S 0
i ; ∆S = S − S 0 (9)

and relative deviations of the variables:

∆ep = ∆Ep/E0
p; ∆e = ∆E/E0;

∆si = ∆S i/S 0
i ; ∆s = S/S 0. (10)

For the sake of convenience, reactivity in the model is
expressed both in absolute units (ε) and in fractions βp (r =
ε/βp) [10]. The expression of the pulsed reactor reactivity is
analogous to the expression of the stationary reactor reactivity
in fractions of β. For the IBR-2M reactor, βp = 1.54 × 10−4.

By analogy with the IBR-2 reactor, the IBR-2M PFB
reactivity corresponding to the n-th power pulse is a sum of
three components [2]-[5]:

rTn =

3∑
j=1

rT jn;

rT jn =

(
rT jn−1 + ∆En−1

kT j

TT j

)
exp

(
−

Tp

TT j

)
(11)

where, kT j and TT j are the transfer coefficient of the PFB
and the time constant of the PFB jth component ( j = 1, 2, 3),
respectively.

Linear equations relate discrete values of the variables
associated with the neighboring power pulses. Therefore, in
the model used following discrete transfer functions:

1. For the equation of the kinetics (7),

Ws(z) =
∆s(z)
∆e(z)

=

6∑
i=1

Wsi(z),

Wsi(z) =
∆si(z)
∆e(z)

= bsi
z−1

asi − z−1 (12)

where,
asi = exp

(
λiTp

)
bsi =

µiλi∑6
i=1 µiλi

exp(−λiTp)
1−exp(−λiTp)

2. For the equation of the PBF (11),

WT j(z) =
rT j(z)
∆E(z)

= bT j
z−1

aT j − z−1 (13)

where,
aT j = exp

(
Tp/TT j

)
,

bT j =
kT j

TT j
.

To study the feedbacks of a reactor in fast processes, a
sequence of the energy of the power pulses under the action
of periodic modulation of external reactivity was recorded.
To estimate the dependence of the feedbacks on the average
power of the reactor, a series of experiments was conducted at
power ranging 0.5, 1, 1.5 and 2 MW. In addition, the noise of
the energy in the power pulses was investigated to analyse the
stability of the reactor. In the course of the experiments, the
reactivity in the reactor operating in a self-regulation regime,
i.e., without an automatic regulator tour, was modulated. The
reactor was taken out of the regulation loop and used as a
generator of periodic square oscillations of reactivity. To elim-
inate any effect of energy production on the parameters, the
power feedbacks were estimated in one cycle of measurements.
The experiments were performed under identical conditions:
the coolant flow rate through the core 100 m3/h, period of
power pulses 0.2 sec, the number of power pulses over a pe-
riod of square reactivity fluctuations 80-160, driving reactivity
amplitude from ±0.0325 to ±0.0565. One transient process
of power variation over a modulation period of the reactivity
is displayed in Fig. 4. The parameters of power feedback,
which are introduced into the model of the reactor dynamics,
were determined by analyzing these processes using a special
search program (Table 1) [5].

After the mathematical processing of the relevant data
from the series of experiments performed at the IBR-2M reac-
tor the pulsed transition characteristic of the PFB (a change in
the PFB reactivity caused by a power pulse of unit area) was
calculeted. For illustration and convenience of further analysis
we pass onto feedback pulse characteristic which is a change
with time t(t = Tp · n) of the feedback reactivity rT caused by
a single power pulse with energy of 1 MJ.

rT (t) =
∑

j

(
kT j

TT j
) exp

(
−

t
TT j

)
(14)
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Fig. 4. Transient process caused by square wave reactivity r0
(1) at average power 0.5 MW(a) and 2 MW(b). ∆ep and ∆epA

are recorded (2) and approximated (3) relative deviation of
the pulse energy, respectively. n is number of pulses

TABLE I. Power feedback parameters of the IBR-2M reactor
of periodic operation [5].

Power Parameter j
1 2 3

0.5, MW kT j, βp/MW −6.54 - -
TT j, s 5.98 - -

1.0, MW kT j, βp/MW −5.61 1.16 −1.09
TT j, s 6.90 0.40 0.37

1.5, MW kT j, βp/MW −5.87 1.31 −0.96
TT j, s 8.20 1.33 1.13

2.0, MW kT j, βp/MW −5.91 1.59 −0.82
TT j, s 7.60 1.02 0.46

where TT is the time constant and kT is the corresponding
feedback transfer coefficient, j = 1, 2, 3.

The sum kT =
∑

j kT j is an asymptotic value of the fast
power coefficient of reactivity. It is obvious that the necessary
condition for stability is kT < 0. A most probable scenario
of feedback weakening as well as a sufficient condition for
stability can be determined by direct modelling of pulse charac-
teristics. The sufficient condition for stability can be a negative
pulse characteristic, rT (t) < 0. The characteristic behaviour of
rT (t) calculated from power transients measured in different
level of average power of the IBR-2M reactor are shown in
Fig.5.
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Fig. 5. Reactivity versus time at the output of linearized power
feedback for a unit power pulse at the input with different
values of average power. 1 − 0.5 MW, 2 − 1.0 MW, 3 − 1.5
MW, 4 − 2.0 MW,
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Fig. 6. A linearised model of IBR-2M in the self-regulation
regime, represented as a single-loop closed system

IV. FREQUENCY CHARACTERISTICS

An IBR-2M reactor without automatic regulator is repre-
sented as a linearised closed single-loop system with negative
feedback (Fig.6). The reactivity deviation ∆rn = (εm − ε

0
m)/βp

is taken as the input signal of the closed system, and the
relative deviation ∆epn of the energy of the power pulses
from the basic value is taken as the output signal. The main
dynamic properties of a pulsed reactor can be determined
if its amplitude-phase-frequency characteristics (APFCs), or
Nyquist plots, are known. The APFC is a plot of the pulse fre-
quency transfer function of a reactor W( jω) = U(ω) + jV(ω)
on the complex plane. The transfer function W( jω) is given in
the next equation:

W( jω) = WE( jω)
(
E0W∗T ( jω) −W∗S

)
(15)

where ω is the dimensionless frequency; WE( jω), W∗T ( jω) and
W∗S ( jω) are given the following equations.

WE( jω) =
1 − kb

1 − kbW∗S ( jω)
,

W∗S =

6∑
i=1

Wsi( jω),

W∗T =

3∑
j=1

WT j( jω).

where,Wsi and WT j are defined in the equations (12) and (13),
respectively.

To this characteristic there corresponds the pulse trans-
fer function W(z), where z = exp( jω). The oscillation fre-
quency varies from 0 to 0.5 fp, where fp = 1/Tp is the power



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

pulse frequency, and the dimensionless frequency ω = 2π fpTp
varies from 0 to π. The length of the vector from the ori-
gin of coordinates to the point with frequency ω (|W( jω)|)
is the amplitude–frequency characteristic (gain), and the an-
gle of rotation of the vector from the real positive semi axis
ϕ(ω) = arctan[V(ω)/U(ω)] is the phase–frequency character-
istic of the reactor. For example, for the pulsed reactor APFC
(this characteristic will be considered in more detail below,
Fig. 7) the length of the vector drawn from the origin to any
point on the curve corresponding to frequency ω is equal to
the ratio between the amplitude of the sine power pulse energy
oscillation in relative units of ∆ep = (Ep − E0

p)/E0
p (output

value) and the amplitude of the sine reactivity oscillation (in-
put value) expressed in terms of parts of βp. Here Ep and

E0
p are the energy of the current power pulse and its basic

value. The angle of rotation of the vector with respect to the
real positive semi axis is a phase shift between the power and
reactivity oscillations.
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Fig. 7. Amplitude-phase frequency characteristic of the open
part of the system W( jω) in the complex plane (a). V(ω) is
shown on the expanded U(ω)-scale during 0.5 (b). Average
power level is: 0.5 MW (1), 1.0 MW (2), 1.5 MW (3) and 2
MW (4)

Assessment of the reactor stability using the Nyquist sta-
bility criterion is done as follows. The reactor is represented
as a closed one-loop system. While the open system is stable
or neutral, the closed system is stable on condition that the

APFC of the open system does not include the point with the
coordinates (−1, 0). The amplitude (gain) stability margin
shows how many times this coefficient must be increased to
bring the system from the stable state to the stability boundary
(−1, 0). The phase margin is defined as an angle of rotation
of the unit-length vector at which its end turns out to be at
the point with the coordinates (−1, 0) and the APFC of the
open system goes through this point, i.e., the closed system
reaches the stability boundary. In the Fig.7b using unit circle
(dashed) to define phase margin at the different level of the
average power. The phase margin reflects possible influence
of the additional neglected inertia of the system.

V. CONCLUSIONS

The dynamics of the reactor power feedback is signifi-
cantly influenced in the self-regulatory regime. Estimation of
power feedback parameters is obtained by the mathematical
treatment of recorded transients of power caused by square
wave reactivity. Oscillations reactivity performs automatic
regulator (AR) which output from the control loop and oper-
ating as the reactivity set point. Power feedback parameters
are established for different levels of average power and cal-
culated amplitude and phase frequency characteristics of the
open-loop system, which corresponds to the reactor operation
in the self-regulation regime.
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Fig. 8. The depends of stability margin in amplitude (a) and
phase (b) on the average power value of the IBR-2M reactor

Fig.7 shows that stability margin in amplitude (a = 1/0A)
and phase (∆ϕ) are less at the average power 2MW than the 0.5,
1 and 1.5 MW, but it is enough, especially as self-regulation
regime. Fig. 8 shows dependence of the stability margin in
amplitude and phase on the average power values of the IBR-
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2M reactor. Pulse characteristics corresponding to the nominal
power of 2 MW, demonstrates that the power feedback model
is necessary to describe three exponents, i.e. presented in the
form of three components.

VI. ACKNOWLEDGMENTS

We are thankful to A.V. Vinogradov for support our re-
search work.

REFERENCES

1. Pepelyshev Yu.N., Popov A.K. and Sumkhuu D., Model
of the IBR-2M pulsed reactor dynamics for investigating
transition processes in a wide range of power variation.
Annals of Nuclear Energy 85, pp. 488-493 (2015).

2. Pepelyshev Yu.N, Popov A.K, Sumkhuu D. and Sangaa
D., Dynamics model of the IBR-2M pulsed reactor for
analysis of fast transition processes. Physics of Particles
and Nuclei Letters 12(3), pp. 435-438(2015).

3. Bondarchenko E.A., Pepelyshev Yu.N., Popov A.K., Ex-
perimental and model investigations of the dynamic fea-
tures of the IBR-2 pulsed reactor of periodic operation.
Fiz. Elem. Chastits At. Yadra 35(4), pp.928-983, (2004).

4. Popov A.K. Fundamentals of Nuclear Reactor Control.
Handbook (Mosk. Gos. Univ., Moscow, 2012) [in Rus-
sian].

5. Pepelyshev Yu.N., Popov A.K. and Sumkhuu D., Estima-
tion of power feedback parameters of the IBR-2M reactor
by square wave reactivity. JINR Preprint R13-2016-17
(2016).

6. Keepin G.R. Physics of Nuclear Kinetics, Addison-
Wesley, 1965.

7. Dragunov Yu.G., Tretiyakov I.T., Lopatkin A.V. and et al.,
Modernization of the IBR-2 pulsed research reactor. At.
Energy, 113(1), pp. 29-34 (2012).

8. Shabalin E.P. Pulsed Reactors Operating on Fast Neutrons
(Moscow, Atomizdat, 1976)[in Russian].

9. Popov A.K. Pulse transfer coefficient of the IBR-2 reactor.
JINR Report R13-95-464, (1995).

10. Bondarenko I.I., Stavisskii Yu.Ya., Pulsed operation
regime of a fast reactor. At. Energ. 7 (5), pp. 417-420
(1959).


