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Abstract - For best-estimate system thermal-hydraulics codes like TRACE, significant uncertainties come
from the closure laws which are used to describe transfer terms in the balance equations. The accuracy and
uncertainty information of these correlations are usually unknown to the code users, which results in the
user simply ignoring or describing them using expert opinion or personal judgment during uncertainty and
sensitivity analysis. The purpose of this paper is to replace such ad-hoc expert judgment of the uncertainty
information of TRACE physical model parameters with inverse Uncertainty Quantification (UQ) based on
OECD/NRC BWR Full-size Fine-Mesh Bundle Tests (BFBT) benchmark steady-state void fraction data.

Inverse UQ seeks statistical descriptions of the physical model random input parameters that are consistent
with the experimental data. Inverse UQ always captures the uncertainty of its estimates rather than merely
determining point estimates of the best-fit input parameters. Bayesian analysis is used to establish the inverse
UQ problems based on experimental data, with systematic and rigorously derived surrogate models based on
Sparse Grid Stochastic Collocation (SGSC). Several adaptive Markov Chain Monte Carlo (MCMC) sampling
techniques are investigated and implemented to explore the posterior probability density functions. This
research solves the problem of lack of uncertainty information for TRACE physical model parameters for the
closure relations. The quantified uncertainties will be useful for future uncertainty and sensitivity study of
TRACE code in nuclear reactor system design and safety analysis.

I. INTRODUCTION

Within the BEPU (Best Estimate plus Uncertainty)
methodology [1] uncertainties must be quantified in order
to prove that the investigated design remains within accep-
tance criteria. For best-estimate system thermal-hydraulics
codes like TRACE and RELAP5, significant uncertainties
come from the closure laws which are used to describe trans-
fer terms in the balance equations. The accuracy and uncer-
tainty information of these correlations are usually unknown
to the code users, which results in the user simply ignoring
or describing them using expert opinion or personal judgment
during uncertainty and sensitivity analysis. Inverse uncertainty
quantification (UQ) can be used to replace such ad-hoc expert
judgment.

Inverse uncertainty quantification (UQ) is the process of
quantifying the uncertainty in input parameters given relevant
experimental measurements and code simulation results [2]
[3] [4]. It is same with Bayesian calibration when Bayesian
inference methodology is used. Within the Bayesian frame-
work we seek the posterior distributions of the model uncertain
input parameters, which is updated from our prior knowledge
given relevant experimental data.

In this paper, we focus on the TRACE [5] uncertain phys-
ical model parameters, and use BFBT benchmark steady-state
void fraction data [6] to inversely quantify the uncertainties
in these parameters. Markov Chain Monte Carlo (MCMC)
algorithms [7] [8] [9] are needed to explore the posterior dis-
tribution. And our focus in this paper is to investigate and
compare various adaptive MCMC sampling algorithms. Be-
cause MCMC sampling typically requires thousands of sam-

ples which is impractical for expensive computer codes, we
implement the Sparse Grid Stochastic Collocation (SGSC)
surrogate model during the MCMC sampling to greatly reduce
the computational cost.

II. THEORY

1. Inverse UQ formulation under the Bayesian Frame-
work

Consider a forward model:

d ≈ G(m) (1)

where m is a vector of input model parameters and d is a
vector of observable quantities, or data. The forward model G
yields predictions of the data as a function of the input model
parameters. Define a posterior Probability Density Function
(PDF) for the input model parameters m, given observation of
the data d:

p(m|d) =
p(d|m)p(m)∫

p(d|m)P(m)dm
(2)

In the above equation, p(m) is the prior, p(d|m) = L(m)
is the likelihood function, p(m|d) is the posterior. Prior and
posterior probabilities represent degrees of belief about pos-
sible values of m, before and after observing the data d. The
likelihood function is the probability that observed outcome
will happen given the prior information.

In order to estimate m based on observable outputs d, we
start with an assumption for the likelihood function. A simple
model for the likelihood assumes that independent additive
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errors [10] [11] account for the deviation between predicted
and observed values of d:

d = G(m) + e (3)

The components of e are i.i.d. random variables with
density pe . A typical assumption is ei ∼ N(0, σ2), in which
case p(d|m) becomes N

(
G(m), σ2I

)
. Taking these quantities

as Gaussian is convenient, and indeed might reflect some
forms of error, but generally there is no expectation that this is
accurate. Here σ is the standard deviation of the measurement
error. The likelihood function is thus:

L(m) = p(d|m) =
1(√

2πσ
)N exp

− N∑
i=1

[di −G(mi)]2

2σ2

 (4)

where mi is the set of input parameters correpsponds to the
data di.

And for the posterior PDF, we have:

p(m|d) ∝ p(m)·p(d|m) =
p(m)(√
2πσ

)N exp

− N∑
i=1

[di −G(mi)]2

2σ2


(5)

Note that in situations when one believes the measure-
ment data are correlated, σ2 needs to be replaced by an error
covariance matrix Σ. It is expected that the measurement er-
ror variances are provided along with benchmark data. The
posterior PDF p(m|d) is the Bayesian solution to the inverse
problem. Compared with most of deterministic inverse meth-
ods, it results in not just a single value, but a PDF. Various
moments and marginal densities can be computed from the
posterior PDF. However, posterior PDF is often non-standard
and impliit, not normalized. We need numerical sampling
method to explore posterior PDF. MCMC sampling is com-
monly used to explore the posterior PDF based on the above
formulation.

2. Adaptive Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) [12] methods are
commonly used to numerically approximate integrals of the
following form:

I( f ) =

∫
f (x)π(x)dx (6)

where π(x) is the target probability density function, and the
objective is to produce a set of random samples (xi)N

i=1 from the
target distribution π and approximate the integral of I( f ) by
1
N

∑N
i=1 f (xi). (xi)N

i=1 is called a Markov chain, with π defined
as the unique invariant distribution.

MCMC is widely used to sample from complicated distri-
butions without explicitly knowing the normalizing constant.
The most popular algorithm is the Metropolis-Hastings (MH)
algorithm [12], which defines a family of possible transitions
from one Markov chain state to the next from a proposal distri-
bution (e.g. Gaussian). Algorithm 0 shows a popular choice of
MH algorithm in which the symmetric random walk Metropo-
lis algorithm (SRWM) is used to produce transitions [9].

Algorithm 0 Metropolis-Hastings (MH) algorithm

1: Initialize x0
2: Choose appropriate proposal distribution g(x∗|x)
3: for iteration i + 1, i ≥ 0, given xi do
4: Proposal a sample ξ ∼ g(ξ|xi)
5: Calculate the acceptance probability α =

min
[
1, π(ξ)·g(xi |ξ)

π(xi)·g(ξ|xi)

]
6: Sample η ∼ uniform(0, 1)
7: if α ≥ η then
8: Accept the proposed sample, xi+1 = ξ
9: else Reject the proposed sample, stay at the current

location, xi+1 = xi

10: end if
11: end for

Although the symmetric random-walk MH algorithm
is simple in design and widely applicable (even in high-
dimension problems), the convergence is usually very slow
and special attention is required to adjust the acceptance rate.
Adaptive methods are useful in tuning critical parameters that
are necessary for efficient mixing. One approach for an adap-
tive method is to optimally adjust the variance of transition
probability, however without care the adaptive process will
lose its ergodic properties (consistency of estimates and con-
vergence to the target distribution). Therefore, rules must be
defined to provide acceptable approximate sampling methods
of optimizing the transition probability to ensure that ergodic-
ity is maintained asymptotically.

Andrieu and Thoms (2008) [9] outlined several algorithms
that incrementally implement adaptive MCMC techniques,
and in the current study three adaptive algorithms have been
implemented to examine their practical capabilities.

The first algorithm, called the “Adaptive Metropolis”
(AM) algorithm, uses the classical multivariate Gaussian as
the proposal distribution and recursively updates the distribu-
tion covariance to converge to the optimal choice of the true
covariance of the target distribution. In this algorithm, the
covariance matrix of the proposal distribution is scaled by λ.
It is shown [12] that the “optimal” covariance matrix for the
normal symmetric random walk MH algorithm is 2.382/Nx ·Σπ
where Σπ is the true covariance matrix of the target distribution
π and Nx is the dimension of the input space. This value is
later used as the “optimal scaling factor” in AM algorithm
by [8]. In this way, the true covariance matrix Σπ is learned
“on-the-fly”. Note that in Algorithm 1 the value of the scaling
factor is not updated.

The second algorithm (“Rao-Blackwellized AM”) [9]
takes the Rao-Blackwell approach and adjusts the estimator
to update the covariance matrix depending on weighted aver-
ages using the current acceptance probability. The adjusted
recursions for the mean and variance are explicitly defined as:

µi+1 = µi + γi+1
[
α(xi, ξ) · (ξ − µi) + (1 − α(xi, ξ)) · (xi − µi)

]
(7)

Σi+1 = Σi + γi+1
[
α(xi, ξ) · (ξ − µi)(ξ − µi)ᵀ+

(1 − α(xi, ξ)) · (xi+1 − µi)(xi+1 − µi)ᵀ − Σi
]

(8)
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Algorithm 1 Adaptive Metropolis (AM) algorithm

1: Initialize x0, µ0 and Σ0
2: for iteration i + 1, i ≥ 0, given xi, µi and Σi do
3: Proposal a sample ξ ∼ N (xi, λΣi)
4: Accept the proposed sample with probability α(xi, ξ),

xi+1 = ξ; otherwise keep the current sample, xi+1 = xi

5: Update:

µi+1 = µi + γi+1(xi+1 − µi)

Σi+1 = Σi + γi+1
[
(xi+1 − µi)(xi+1 − µi)ᵀ − Σi

]
6: end for

We define the short notation:

xi+1 = α(xi, ξ) · ξ + (1 − α(xi, ξ)) · xi (9)

(xi+1 − µi)(xi+1 − µi)ᵀ = α(xi, ξ) · (ξ − µi)(ξ − µi)ᵀ+
(1 − α(xi, ξ)) · (xi+1 − µi)(xi+1 − µi)ᵀ (10)

Then Algorithm 2 can be defined as follows:

Algorithm 2 Rao-Blackwellized AM algorithm

1: Initialize x0, µ0 and Σ0
2: for iteration i + 1, i ≥ 0, given xi, µi and Σi do
3: Proposal a sample ξ ∼ N (xi, λΣi)
4: Accept the proposed sample with probability α(xi, ξ),

xi+1 = ξ; otherwise keep the current sample, xi+1 = xi

5: Update:

µi+1 = µi + γi+1(xi+1 − µi)

Σi+1 = Σi + γi+1

[
(xi+1 − µi)(xi+1 − µi)ᵀ − Σi

]
6: end for

The third algorithm (“AM with global adaptive scal-
ing”) [9] attempts to adjust the scaling of proposal covariance
matrix to adjust the sampling to a target acceptance probabil-
ity, rather than using a pre-set constant for the scaling factor
. Specifically, the log of the scaling parameter is adjusted
recursively to the predefined “optimal acceptance rate” αopt

(e.g. 0.234 is recommended) [8]. This allows the algorithm to
control its rate of exploration by adjusting the scale if the ac-
ceptance rate is lower or higher than the optimum acceptance
rate. The advantage of this algorithm is that one might expect
a more rapid exploration of the target distribution following a
poor initialization.

There are many other adaptive methods available, such
as “Component-wise AM” [9]. Component-wise adaption
addresses the issue that adaptive scaling may not be efficient
in all directions simultaneously, and strategizes to use “timid”
moves to initiate sampling. However, in our experience these
adaptive methods will not capture the correlation between
different input parameters well enough, since the chains for
highly correlated parameters usually do not mix well. An-
other issue is that most component-wise adaptive algorithms
require posterior evaluation for every dimension when a new
sample is proposed. In this case, the algorithm will be at

Algorithm 3 AM algorithm with global adaptive scaling

1: Initialize x0, µ0 and Σ0
2: for iteration i + 1, i ≥ 0, given xi, µi and Σi do
3: Proposal a sample ξ ∼ N (xi, λΣi)
4: Accept the proposed sample with probability α(xi, ξ),

xi+1 = ξ; otherwise keep the current sample, xi+1 = xi

5: Update:

log(λi+1) = log(λi) + γi+1

(
α(xi, ξ) − αopt

)
µi+1 = µi + γi+1(xi+1 − µi)

Σi+1 = Σi + γi+1

[
(xi+1 − µi)(xi+1 − µi)ᵀ − Σi

]
6: end for

least times more expensive than Algorithms 1-3 listed above.
Therefore, component-wise adaptive method is not considered
appropriate for this study.

3. Sparse Grid Stochastic Collocation

One significant issue with MCMC sampling is that every
sample involves an evaluation of the forward model G(m) ,
which is computationally prohibitive for expensive computer
codes as thousands of samples are required. In this current
study, a single TRACE simulation takes about one minute,
which is not expensive if we only needs tens to hundreds of
simulations. However, a typical Markov chain needs 104 or
more samples, which makes the sampling time too lengthy.
Many computer codes are much more expensive than TRACE
and can take hours to days to finish one simulation. In this
case, surrogate models that are significantly cheaper than the
original model can alleviate the computational burden, as long
as they can accurately represent the input-output mapping
of the original simulation. Carefully constructed surrogate
models can reduce the computational effort by orders of mag-
nitude compared with full model. In the current study we
implemented the SGSC surrogate model for TRACE.

The basic idea of the Stochastic Collocation (SC) tech-
nique [13] [14] is to approximate the multi-dimensional
stochastic space of the problem f (x) with interpolation func-
tions at a set of collocation points {xi}

d
i=1. Deterministic so-

lutions of the problem at each point xi are used to construct
an interpolant of f (x) by using linear combinations of f (xi).
There are two choices for such multi-dimensional interpo-
lation; full tensor product of one-dimensional interpolation
rules or sparse grid interpolation rules based on the Smolyak
algorithm [15].

Suppose we want to approximate smooth functions f :
[−1, 1]d → R, using a finite number of function values. For a
one-dimensional problem we use:

Ui( f ) =

mi∑
j=1

f (xi
j) · α

i
j (11)

where i ∈ N denotes that the rule is in the ith dimension. mi is
the number of nodes. {αi

j}
mi
j=1 are the Lagrange polynomials for

interpolation and {xi
j}

mi
j=1 are nodes in the ith dimension. Finally,
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{ f (xi
j)}

mi
j=1 are evaluation of function at these interpolation

nodes. We assume that a sequence of formulas is given for
{i = 1, 2, ..., d}. For the multivariate case d > 1 we first define
tensor product formulas:(
Ui1 ⊗ · · · ⊗ Uid

)
( f ) =

mi1∑
j1=1

· · ·

mid∑
jd=1

f
(
xi1

j1
, · · · , xid

jd

)
·
(
αi1

j1
⊗ · · · ⊗ αid

jd

)
(12)

which serves as building blocks for the Smolyak algo-
rithm [15]. The above product formula needs

(∏d
j=1 mi j

)
func-

tion evaluations. If we have the same number of nodes mi in
each dimension then the total number of nodes will be (mi)d.
The number of nodes grows exponentially as the number of
dimensions d increases and quickly exceeds the available com-
putational power. This is called "curse of dimensionality".

The Smolyak algorithm A(q, d), where q is called the
level of the sparse grid that is independentof the dimension
d, is a linear combination of product formulas in one dimen-
sion with the following key properties. Only products with
a relatively small number of nodes are used and the linear
combination is chosen in such a way that the interpolation
property for d = 1 is preserved for d > 1 [13] [16] [17].

For i ∈ N, define the difference operator:

U0( f ) = 1 (13)
∆i( f ) = Ui( f ) −Ui−1( f ) (14)

Moreover, define |i| = i1 + i2 + . . . id for i ∈ Nd. Then, the
Smolyak algorithmA(q, d) is given by:

A(q, d)( f ) =
∑
|i|≤q+d

(
∆i1 ⊗ · · · ⊗ ∆id

)
( f ) (15)

Another form of the Smolyak algorithm is:

A(q, d)( f ) =∑
q+1≤|i|≤q+d

(−1)q+d−|i|
(

d − 1
q + d − |i|

)
·
(
Ui1 ⊗ · · · ⊗ Uid

)
( f ) (16)

To computeA(q, d)( f ), one only needs to know function
values at the “sparse grid” defined as:

H(q, d) =
⋃

q+1≤|i|≤q+d

(
Xi1 ⊗ · · · ⊗ Xid

)
(17)

where Xik =
{
xik

j1
, xik

j2
, . . . , xik

jd

}
⊂ [−1, 1] denotes the set of

interpolation nodes used byUik .
To build the sparse grid, one should start from one-

dimensional interpolation/integration rules (for example,
Gauss rules and Clenshaw-Curtis rules). Figure 1 shows
the comparison of full tensor grids and sparse grids using
Clenshaw-Curtis rule for isotropic grids of level 4 and 5. Full
tensor grids include 289 and 1089 nodes for levels 4 and 5
respectively, while sparse grids only need 65 and 145 nodes
respectively. The sparse grid is more advantageous with in-
creasing number of levels, as the reduction of nodes becomes
significant.
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Fig. 1: Comparison of full tensor grid and classical isotropic
sparse grid based on Clenshaw-Curtis rule.

III. TRACE AND BFBT BENCHMARK

TRACE [5] has been designed to perform best-estimate
analyses of loss-of-coolant accidents (LOCAs), operational
transients, and other accident scenarios in pressurized light-
water reactors (PWRs) and boiling light-water reactors
(BWRs). It can also model phenomena occurring in exper-
imental facilities designed to simulate transients in reactor
systems. TRACE version 5.0 Patch 4 includes options for
user access to 36 physical model parameters from the input
file. For forward uncertainty propagation, the users are free to
perturb these parameters by addition or multiplication accord-
ing to their personal or expert judgment. The work presented
in this paper will inversely quantify the uncertainties of the
parameters relevant to the considered experimental data using
SGSC surrogate model by MCMC sampling. All quantified
uncertainties will be multiplicative factors of the nominal val-
ues.

The international OECD/NRC BWR Full-size Fine-Mesh
Bundle Tests (BFBT) [6] benchmark, based on the Nuclear
Power Engineering Corporation (NUPEC) database, was cre-
ated to encourage advancement in sub-channel analysis of
two-phase flow in rod bundles, which has great relevance to
the nuclear reactor safety evaluation. In the frame of the BFBT
test program, single- and two-phase pressure losses, void frac-
tion, and critical power tests were performed for steady-state
and transient conditions.

The facility is full-scale BWR assembly, with measure-
ment performed under typical reactor power and high-pressure,
high-temperature fluid conditions found in BWRs. The full-
scale fuel assembly inside the pressure vessel corresponds to
the General Electric 8 by 8 assembly rod design, where each
rod is electrically heated to simulate an actual reactor fuel
rod. The heated length of the bundle corresponds to 3.7 m.
Five different types of bundle assembly design with different
combinations of geometries and power shapes were tested in
the void distribution experiments.

Two types of void distribution measurement systems were
employed: an X-ray computer tomography (CT) scanner and
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Fig. 2: BFBT benchmark void fraction measurement structure.

an X-ray densitometer (DEN). Under steady-state conditions,
fine mesh void distributions were measured using the X-ray
CT scanner located 50 mm above the heated length (i.e. at the
assembly outlet). The X-ray densitometer measurements were
performed at three different axial elevations from the bottom
(i.e. 682 mm, 1706 mm and 2730 mm) under both steady-
state and transient conditions. For each of the four different
axial locations, the cross-sectional averaged void fraction was
also measured. Figure 1 shows the void fraction measurement
facility and locations. The void fraction data will be used
in the current study, and they will be referred to respectively
from lower to upper positions as VoidF1, VoidF2, VoidF3 and
VoidF4 in the following.

The benchmark contains 392 steady-state void distribu-
tion test cases. For the current study, it is not practical to use
all the test cases (each test case consists of 4 measurements, 1
at each of 4 axial elevations). Starting from the 86 test cases in
assembly 4, we select the test cases by the following criteria:

1. Remove all the tests with negative void fraction data;
2. Remove all the tests that have lower void fractions at

higher elevations;
3. Only keep one set of any duplicated tests;
4. Only keep measurements performed at high pressure and

high power (above 7 MPa and 3MW), as these combina-
tions will produce high void fractions thus more accurate
surrogate model.

5. Remove all the tests that have low void fraction (less than
1%) at low elevations;

Only 8 test cases satisfy these criteria and are selected for
inverse UQ, their process conditions and void fraction data are
included in Table 1.

The X-ray densitometers can only capture the void frac-
tion between the rod rows, therefore the measured data only

shows the void fraction of a limited area of the subchannel.
However, void fraction in the subchannel is not equally dis-
tributed as pointed out in [18]. For example, at low void
fraction with bubbly flow, the void is concentrated in small
bubbles close to the heat surface, while at high void fractions
with slug flow, large bubbles are more likely to be located in
the subchannel center. Consequently, the void fractions are
under predicted at low void fractions and over predicted at
high void fractions with the present X-ray densitometers. To
resolve this issue, data correction has been suggested [18] and
applied [9]. The correction formulas are proposed in [18], and
the correction for assembly 4 data is shown in Equation 1.

αcorrected =
αmeasured

1.167 − 0.001 · αmeasured
(18)

All the void fractions are in (%) and Equation 1 is recom-
mended for measured void fractions between 20% and 90%
(note that VoidF4 is not corrected because it is measured by CT
scanner which does not have the aforementioned limitations
of an X-ray densitometer).
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Fig. 3: Comparison of void fractions from BFBT measurement
and TRACE simulation for all 86 test cases of assembly 4
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Fig. 4: Comparison of void fractions from BFBT measurement
and TRACE simulation for 8 selected test cases of assembly 4

Figure 2 shows a comparison of void fraction from BFBT
measurements (with and without correction) and TRACE simu-
lations. All 86 test cases are presented. Before data correction,
the majority of the void fractions are under predicted espe-
cially for VoidF1, VoidF2 and VoidF3. After data correction,
the data points are more concentrated close to the diagonal line,
meaning that the agreement between measurement (BFBT)
and calculation (TRACE) is improved. Figure 3 shows the
comparison of the 8 selected cases.
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TABLE I: Process conditions and void fraction data for 8 selected cases of assembly 4

Test ID Pressure Flow rate Inlet subcooling Power VoidF1 VoidF2 VoidF3 VoidF4
(MPa) (t/h) (kJ/kg) (MW) (%) (%) (%) (%)

4101-58 7.152 54.58 50.6 3.52 5.80 43.4 63.4 64.5
4101-59 7.190 54.57 52.1 4.88 17.4 56.7 73.5 73.7
4101-60 7.178 54.62 50.5 4.89 17.3 56.8 73.3 74.0
4101-61 7.180 54.65 52.5 6.48 29.0 66.7 79.8 80.7
4101-67 7.248 69.58 54.6 4.48 4.50 42.1 63.0 66.8
4101-68 7.275 69.56 56.0 6.22 14.9 56.5 72.7 75.1
4101-84 8.680 54.66 53.2 3.35 3.80 37.4 57.9 60.2
4101-86 8.705 54.59 54.2 4.62 13.5 52.8 69.7 69.8

IV. RESULTS AND ANALYSIS

1. Sensitivity Analysis

We first performed a sensitivity analysis to find the im-
portant physical model parameters. The motivation is that not
all of the 36 physical model parameters are active during the
simulation of BFBT benchamrk. Many of the closure models
are not relevant to the BFBT benchmark and will not be called
by TRACE. For example, stratified flow (parameter P1003 and
P1007) and reflooding (parameter P1034 and P1035) do not
occur in the BFBT benchmark experiment. After a prelimi-
nary centered parameter study, 8 parameters are identified as
potential important parameters, as listed in Table II.
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Fig. 5: Sobol’ indices (main and total effects) for 8 physical
model parameters.

We performed global sensitivity analysis by calculating
the Sobol’ indices using Polynomial Chaos Expansion (PCE)
method [19]. Sobol’ indices represent the part of output vari-
ance that can be attributed to each parameter. The detailed
process and results are presented in a companion paper [20].
Figure 5 shows the main and total effects Sobol’ indices for
the 8 selected physical model parameters. It can be seen that
P1009, P1013 and P1023 have very small Sobol’ indices, indi-
cating that all the four void fraction responses are not sensitive

to them. They are removed from the following inverse UQ
study.

2. Build the SGSC Surrogate Model

In this work, we use the Sparse Grid module of the
Toolkit for Adaptive Stochastic Modeling And Non-Intrusive
Approximation (TASMANIAN) [21] [22], developed at Oak
Ridge National Laboratory to build the SGSC surrogate model.
Clenshaw-Curtis rule and a more recently developed R-leja
rule [23] are used as the one-dimensional building block. For
five-dimensional surrogate model, Leja rule of precision 4
requires 126 nodes, while Clenshaw-Curtis rule of precision
3 and 4 require 145 and 301 nodes, respectively. Here, “pre-
cision” means that the underlying one-dimensional rule can
exactly interpolates polynomials of a degree up to and includ-
ing the precision value. Figure 6 illustrates the adopted sparse
grids in two dimensions.
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Fig. 6: Demonstration of two-dimensional nodes for Leja
rule (precision 4), Clenshaw-Curtis rule (precision 4) and
Clenshaw-Curtis rule (precision 3)

The constructed SGSC surrogate models are then vali-
dated by evaluating their accuracy to predict the void fractions
at randomly sampled inputs. The detailed validation data will
not be reported here. All of the surrogate models are able to
reproduce the TRACE void fraction results accurately. Leja-4
sparse grid rule is used for the inverse UQ process, as it utilizes
the least number of TRACE runs for the construction of the
surrogate model.

3. MCMC Sampling

Non-informative uniform priors are used in this study to
reflect our ignorance with respect to the input parameters. In
the current study we assume uniform distributions over the
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TABLE II: List of 8 selected physical model parameters selected after centered parameter study

Parameter Description

P1008 Single phase liquid to wall heat transfer coefficient
P1009 Single phase vapor to wall heat transfer coefficient
P1012 Subcooled boiling heat transfer coefficient
P1013 Nucleate boiling heat transfer coefficient
P1022 Wall drag coefficient
P1023 Form loss coefficient
P1028 Interfacial drag (bubbly/slug Rod Bundle - Bestion) coefficient
P1029 Interfacial drag (bubbly/slug Vessel) coefficient

range [0, 5] for all the five selected physical model parameters:
P1008, P1012, P1022, P1028, P1029. Algorithms 1-3 are used
for MCMC sampling. All three adaptive MCMC algorithms
take about 72 core-minutes to produce 100,000 samples using
a current generation Intel CPU, which would otherwise take
about 1167 core-hours (48 core-days) using direct TRACE
simulation with the same processor. The first 10,000 sam-
ples are discarded as burn-in and then only every 20th sample
was kept for thinning of the chain, leaving us with 4500 sam-
ples. Thinning is performed to reduce auto-correlation of the
samples.
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Fig. 7: MCMC chain trace plots and auto-correlation functions

Figure 7 shows mixing for the five parameters and the
decay of the auto-correlation function of the Markov chain for
Algorithm 3 (Markov chains for Algorithm 1-2 show very sim-
ilar behavior). Note that all the five parameters are enforced
to be positive, as negative values would not be physical. Very
good mixing can be identified, and the auto-correlations for
all the five parameters decay quickly after thinning, indicating
that the Markov chain has converged.

Table III presents the statistics of MCMC chains for each
parameter. The mean values and standard deviations from dif-
ferent MCMC algorithms are very similar for each parameter.
In the following analysis the Markov chain from Algorithm
3 will be used, as it is representative of the other two Markov
chains.

TABLE III: MCMC chain statistics for different physical
model parameters. Chain 1 - 3 are from adaptive MCMC

Algorithms 1 - 3, respectively.

Parameter Chain 1 Chain 2 Chain 3

mean std mean std mean std

P1008 1.5359 0.1115 1.5315 0.1159 1.5384 0.1141
P1012 1.0005 0.0387 1.0015 0.0399 1.0000 0.0387
P1022 1.0113 0.6634 1.0478 0.6937 1.0095 0.6842
P1028 1.3000 0.6084 1.2861 0.6126 1.3046 0.6128
P1029 4.4053 2.0451 4.3410 2.0374 4.4119 2.0570

4. Posterior Distributions

Figure 8 shows the plot for pairwise joint density contours
and marginal densities for the five physical model parameters.
The marginal PDFs are evaluated using Kernel Density Es-
timation (KDE). This plot is useful for identifying potential
correlation between the parameters. Highly linear correlations
are observed between some parameters, such as P1008 (single
phase liquid to wall HTC) and P1012 (subcooled boiling HTC).
This indicates that in future forward uncertainty propagation
studies, these input parameters should be sampled jointly, not
independently, so that their correlation is captured. Table IV
shows the correlation coefficient matrix of all the parameters.
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Fig. 8: MCMC chain pairwise joint density contours and
marginal densities
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TABLE IV: Correlation matrix

Parameter P1008 P1012 P1022 P1028 P1029

P1008 1.00
P1012 -0.84 1.00
P1022 -0.73 0.39 1.00
P1028 0.52 -0.45 -0.06 1.00
P1029 0.29 -0.39 -0.02 0.27 1.00

To make the posterior samples more applicable to future
uncertainty and sensitivity analysis, we need to fit posterior
samples to well-known distributions, such as Normal or Log-
normal distributions, so that they will be more easily sampled.
From the marginal PDFs in Figure 8, it is obvious that for
P1008, P1012 and P1029, we can consider these parameters
as normal random variables. For P1022 and P1028, the PDFs
are more skewed toward 0. Natural choices for these distribu-
tions include Gamma and Log-normal. Gamma distributions
are chosen because Log-normal distribution has a longer tail
which results in a poor match with these samples.

Figure 9 and Table V show the fitted distribution for each
physical model parameter and the parameters associated with
each distribution, i.e. mean (µ) and standard deviation (σ)
for normal distribution, shape α and scale β parameter for
Gamma distribution. All the fitted distributions are accepted
by Kolmogorov-Smirnov test at the 5% significance level.
Figure 10 shows that good agreement can be achieved between
the empirical cumulative distribution function (CDF) and fitted
CDF for every parameter.
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Fig. 9: Fitted posterior probability densities

TABLE V: Fitted distribution for each physical model
parameter

Parameter PDF type PDF parameter 1 PDF parameter 2

P1008 Normal µ = 1.5377 σ = 0.1131
P1012 Normal µ = 1.0001 σ = 0.0386
P1022 Gamma α = 1.7581 β = 0.5767
P1028 Gamma α = 4.3106 β = 0.3027
P1029 Normal µ = 4.4080 σ = 2.0594

The fitted normal distribution for P1029 a has very large
standard deviation and a mean value that deviates significantly
from the nominal value 1.0. This is most likely because the
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Fig. 10: Comparison of empirical CDFs and fitted CDFs.

TRACE model for BFBT benchmark is insensitive to P1029
(as shown in Figure 5, P1029 only affects VoidF4), therefore
our ignorance with regards to P2019 cannot be reduced by
using observation data from this benchmark in our inverse
UQ process. More informative data or P1029-sensitive bench-
marks are required to better quantify its uncertainty.

V. CONCLUSIONS

In this paper, we applied inverse uncertainty quantification
under the Bayesian framework using a SGSC surrogate model
for TRACE physical model parameters. Inverse UQ aims
to quantify the uncertainty in input parameters such that the
discrepancies between code output and observed experimental
data is minimized. The inverse UQ problem is defined using
Bayesian inference theory and the solutions are the posterior
distributions of uncertain input parameters. Inverse UQ always
captures the uncertainty in its estimates rather than merely
determining point estimates of the best-fit input parameters.

A SGSC surrogate model was constructed for TRACE
based on selected BFBT test cases. The surrogate model was
used for the MCMC process, due to the fact that every MCMC
sample requires a model evaluation, which makes direct simu-
lation (using TRACE) impractical. Different adaptive MCMC
sampling methods were investigated; the AM algorithm, Rao-
Blackwellized AM algorithm and AM algorithm with global
adaptive scaling. Markov chains from each adaptive MCMC
algorithm reached convergence and produced similar statistical
information for the 5 input parameters (i.e. the mean values,
standard deviations, and PDFs). Lastly, Gaussian and Gamma
distributions were fitted for 5 physical model parameters and
the parameters for these distributions were reported.

This research addresses the problem of lacking uncer-
tainty information about TRACE physical model parameters,
which has been often ignored or described using expert opinion
or personal judgment in previous uncertainty and sensitivity
analysis work. The results of inverse UQ of TRACE physical
model parameters are important for future uncertainty and
sensitivity study of TRACE code for its application in nuclear
reactor system design and safety analysis.
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