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Abstract - Several techniques have been developed in the radiation transport community for the calculation of
sensitivities in Monte Carlo simulations. We have been investigating application of these techniques to coupled
electron-photon transport building on recently developed single-scattering electron-transport algorithms in
the Integrated TIGER Series (ITS) codes. Our efforts have focused specifically on the differential-operator
and correlated-sampling methods. In a simplified problem, we verify the accuracy of the two methods used
in conjunction by comparison with semi-analytic results. We present sensitivity results from the differential-
operator method for two test problems based on validation experiments. We verify the accuracy of the
sensitivities by comparison with approximate values calculated by the central-differencing approach. We have
found that the correlated-sampling method is generally unstable for electron transport, which we attribute to
the large interaction cross sections and lack of particle absorption.

I. INTRODUCTION

Sensitivity-estimation techniques in Monte Carlo radia-
tion transport have existed for more than 30 years [1] and are
valuable for uncertainty quantification, but they have not pre-
viously been extended to electron transport. Building on a re-
cently implemented single-scatter electron transport algorithm,
we are developing methods for calculating both sensitivities
to cross sections and finite perturbations in cross sections to
enable computationally efficient uncertainty quantification.

There are multiple uncertainty-quantification techniques
that can utilize gradients (i.e., sensitivities), and various meth-
ods and references are given in the Dakota user manual [2].
Reliability methods use gradient-based optimization solvers.
Gradient-enhanced polynomial chaos expansions (PCE) use
both function values and gradients to build a surrogate model.
These approaches are applied to a satellite-shielding applica-
tion with sensitivities from deterministic transport in Ref. [3].

The differential-operator method has been extensively
investigated for calculation of sensitivities in neutron and pho-
ton transport [4, 5, 6]. Correlated sampling is an approach
less suitable for calculating sensitivities than for finite per-
turbations [4, 5]. Using this method to evaluate a transport
problem at multiple finite perturbations has previously been
investigated for constructing PCE models [7, 8].

To implement these methods, we are using a new electron
transport implementation in ITS based on the LLNL evaluated
data libraries [9, 10, 11]. This approach avoids the difficulties
of adapting the methods to a condensed history algorithm.
One possible challenge in applying both methods to electron
transport is the large number of interactions that electrons un-
dergo. Theoretical limitations of the methods were previously
explored by Rief [4]. Here we offer demonstrations of the
methods for simple problems, but the practical and theoreti-
cal limitations of the methods as applied to electron transport
remain to be explored in future work.

In Section II, we present the correlated-sampling and
differential-operator methods. In Section III, we describe a
semi-analytic benchmark and use it to test the combined meth-

ods for a simple monoenergetic problem. In Section IV, we
show sensitivities calculated using the differential-operator
method for electron-photon transport problems and demon-
strate the correctness of the results by comparison with central-
difference perturbations.

II. THEORY

In our Monte Carlo implementation we are interested in
applying both a correlated sampling method for evaluating re-
sults of perturbed problems and a differential operator method
for evaluating sensitivities. The correlated-sampling method
uses multiplicative particle-weight adjustments, like Monte
Carlo biasing methods. The differential-operator method accu-
mulates sensitivity weights through additive adjustments. The
particle weights affected by correlated sampling are used in
all tallies. The sensitivity weights affected by the differential
operator are used only in sensitivity tallies. The two types
of weights are accumulated independently and are multiplied
when tallying sensitivity for a response. In the following sec-
tions we discuss in more detail how the weights are used in
tallies and adjusted during the Monte Carlo simulation.

Because both the correlated-sampling and differential-
operator techniques do not change the random number se-
quence of the nominal problem, one can evaluate as many
correlated-sampling states and associated differential-operator
sensitivities as desired in a single Monte Carlo simulation.
However, it does require that the code accumulate the associ-
ated weights for each problem state. Every tally (for which
such results are desired) must also accumulate results for each
problem state and sensitivity.

Monte Carlo radiation transport can be described as
solving a Fredholm-type integral equation of the second
kind [5, 12]:

χ(x) =

∫
R

K(x← y)χ(y)dR + Q(x), (1)

where χ is the collision density, K is the transport/collision
transition kernel, R is the integration space, and Q is the
source.
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The Monte Carlo random-walk process can be interpreted
as solving this integral equation by evaluating the terms of a
Neumann series:

χ(x) =

∞∑
n=0

χn(x), (2)

χ0(x) = Q(x), (3)

χn(x) =

∫
R

K(x← y)χn−1(y)dR, n > 0. (4)

In abbreviated notation, this process is

χ(x) =

∞∑
n=0

∫
R
· · ·

∫
R

 n∏
j=0

dy jK(y j+1 ← y j)

 Q(y0)

≡

∞∑
n=0

∫
R
· · ·

∫
R

 n∏
j=0

dy jK j

 Q(y0), (5)

where yn+1 = x. In an analog simulation, particle weights
are unity, but in a biased simulation particle weights will vary.
In correlated sampling, the process can remain the same, but
weight adjustments are used to evaluate an alternative problem
with a different solution. In this process we can separate
particle-weight adjustments from the associated process as

χ̂(x) =

∞∑
n=0

∫
R
· · ·

∫
R

 n∏
j=0

w j


 n∏

j=0

dy jK j

 Q(y0), (6)

where the w j are multiplicative weight adjustments. For cor-
related sampling these are determined by a likelihood ratio,
K̂ j/K j.

Similarly, the sensitivity of the solution can be expressed
as

pi
∂χ(x)
∂pi

=

∞∑
n=0

∫
R
· · ·

∫
R

 n∑
j=0

βi, j


 n∏

j=0

dy jK j

 Q(y0), (7)

where the sensitivity weights are

βi, j =
pi

K j

∂K j

∂pi
, (8)

and the partial derivatives of K j with respect to simulation
parameters pi are defined by the differential-operator method.

In practice, the accumulated product of sensitivity weights
is maintained during the simulation:

Wn =

n∏
j=0

w j. (9)

Likewise, a running summation of sensitivity weights is main-
tained:

γi,n =

n∑
j=0

βi, j. (10)

A sensitivity, S i, can be estimated in a process with bias-
ing or correlated-sampling weight adjustments as

S i ≡
pi

χ̂(x)
∂χ̂(x)
∂pi

=
1

χ̂(x)

∞∑
n=0

∫
R
· · ·

∫
R

Wnγi,n

 n∏
j=0

dy jK j

 Q(y0).(11)

1. Correlated-Sampling Method

The correlated-sampling method is described in detail
by Lux and Koblinger [5] and Rief [12]. Rief examined the
stability limits of the method for infinite medium problems [4].
We have previously implemented the method for use with the
stochastic-collocation method and examined stability limita-
tions in our implementation [7]. The method is especially
limited for problems with scattering ratios near unity and in-
sufficient leakage. Electrons have very large scattering cross
sections and no absorption cross section per se. However, elec-
trons have a finite range in material, and in practice are only
tracked until they fall below a cutoff energy. For some select
problems, the cutoff energy may provide sufficient removal of
particles from the problem.

Particles begin with a particle weight of unity (unless
source biasing is used). Particle weights may also be adjusted
during the simulation due to any biasing games applied to
the simulation, but here we discuss only the weight adjust-
ments for cross-section perturbations. As particles are tracked
according to the cross sections of a nominal problem, the
particle-weight adjustments are made according to a likeli-
hood ratio

w j =
ppert, j

psim, j
. (12)

That is, the particle-weight adjustment multiplier w j of the
particle at the end of segment j is the weight at the end of the
previous segment times the ratio of the probability ppert, j of
the track occurring in the alternative “perturbed” state of the
problem to the probability psim, j of the track as it was actually
simulated in the nominal state of the problem. For accuracy
each event outcome in the perturbed state must be possible
in the nominal state, and for stability and good convergence
behavior the probability ratio must not be too large.

Perturbations in an interaction cross section, density, or
material composition can be accounted for by particle-weight
adjustments during interactions and during particle streaming,
either to a collision or to a boundary. The particle-weight
adjustment after the particle interaction is

w j =
Σ∗i (E′)/Σ∗t (E′)
Σi(E′)/Σt(E′)

, (13)

where Σi divided by Σt is the probability of sampling interac-
tion type i in the nominal problem, and the asterisk denotes
the perturbed problem. The particle-weight adjustment in
streaming to an interaction is

w j =
Σ∗t (E) exp(−Σ∗t (E)λ j)
Σt(E) exp(−Σt(E)λ j)

, (14)

where Σ∗t is the perturbed interaction cross section, Σt is the
simulated interaction cross section, and λ j is the streaming
distance. The particle-weight adjustment in streaming to a
boundary is

w j =
exp(−Σ∗t (E)λ)
exp(−Σt(E)λ)

. (15)
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2. Differential-Operator Method

The differential-operator method is described by Lux and
Koblinger [5] and Rief [12], and a derivation is given by
Hess [6], of which we only note a few key points. To cal-
culate the sensitivities we need the sensitivity weights (i.e., the
partial derivatives, βi, j) defined in Eq. 8. These are given by

βi, j = δi,a −
Σi(E′)
Σt(E′)

− Σi(E)λ j +
Σi(E)
Σt(E)

, (16)

where Σt is the total macroscopic cross section, “a” is a sam-
pled interaction type, and λ j is a sampled particle streaming
distance.

Particles begin with a sensitivity weight of zero.
Sensitivity-weight accumulations may be either positive or
negative, and they are additive rather than multiplicative. Af-
ter any collision tallies, the contribution is incremented by
unity only for sensitivity to the sampled interaction, then con-
tributions are accumulated as −Σi(E′)/Σt(E′). For each parti-
cle streaming event, whether to an interaction or a boundary,
contributions due to sensitivity to cross sections Σi, whether
total or specific interaction cross sections, are each accumu-
lated as −Σiλ j. For sensitivity to a specific interaction cross
section, the contributions are accumulated at the collision as
Σi(E)/Σt(E).

This explanation is simplified but consistent with our
implementation, in which, for example, we are examining
sensitivity to each cross section across all energies. The refer-
ences provide details that arise in accounting for sensitivities
as a function of energy, sensitivities in the tally response, and
other complications.

III. SEMI-ANALYTIC BENCHMARK COMPARISON

To test the approach of combining the correlated-sampling
and differential-operator methods, we use a simple monoener-
getic problem with isotropic scattering. The source is normally
incident (µ0 = 1) on a semi-infinite slab, and we compare the
angle-integrated flux at the incident boundary.

The angular flux exiting the slab boundary is ex-
pressed [13]:

ψ(0,−µ) =
c
2

µ0

µ + µ0
H(µ0)H(µ), (17)

where H is Chandrasekhar’s H-function and c is the scattering
ratio, σs

σt
. The H-function can be evaluated approximately

as [14]

H(µ) = 1 + µ

N∑
i=1

ai

1 + siµ
(18)

in terms of si and ai, which are solved using N-order Gauss-
Legendre quadrature with nodes and weights µi and wi:

1− c
N∑

i=1

wi

1 − µ2
i s2

;
N∑

i=1

ai

1 − siµk
= µ−1

k , k = 1, . . . ,N. (19)

The derivative of the H-function is given in Ref. [15] as

dH(µ)
dc

=
µH(µ)

c

N∑
i=1

aiH
(
s−1

i

)
1 + siµ

. (20)

The derivative of the angular flux with respect to the scattering
ratio is therefore:

dψ(0,−µ)
dc

=
µ0

2(µ + µ0)

[(dc
dc

H(µ0)H(µ)
)
+

c
(dH(µ0)

dc
H(µ) + H(µ0)

dH(µ)
dc

)]
. (21)

The derivative of the angular flux with respect to any quantity
B can then be defined using the chain rule, i.e., dH

dB = dH
dc

dc
dB , as

long as dc
dB is known:

dψ(0,−µ)
dB

=
µ0

2(µ + µ0)
dc
dB

[
H(µ0)H(µ)+

c
(

dH(µ0)
dc

H(µ) + H(µ0)
dH(µ)

dc

)]
. (22)

The value of dc
dB is given for two quantities B and two different

definitions of the scattering ratio in Table I. The physics is
that c := σs

σs+σa
, with σt = σs + σa.

TABLE I. Values of dc
dB for c := σs

σs+σa

Definition Evaluation
dc

dσa
−
σs

σ2
t

dc
dσs

−
σa

σ2
t

Scalar flux φ is solved by numerically integrating over
angle using Gauss-Legendre quadrature:

φ(0) ≈
N∑

n=1

ψ(0,−µn)wn. (23)

We use the same quadrature order N for the angular integration
as for the H-function evaluation, though this would not be
necessary. Similarly, the derivative of the scalar flux with
respect to quantity B is found by numerically integrating the
derivative of the angular flux:

dφ(0)
dB

≈

N∑
n=1

dψ(0,−µn)
dB

wn, (24)

which can expand to

dφ(0)
dB

≈
µ0

2
dc
dB

N∑
n=1

wn

µn + µ0

[
H(µ0)H(µn)+

c
(

dH(µ0)
dc

H(µn) + H(µ0)
dH(µn)

dc

)]
,

(25)

and can be shown to be equal to

dφ(0)
dB

≈
µ0H(µ0)

2
dc
dB

N∑
n=1

wnH(µn)
µn + µ0[

1 + µ0

N∑
i=1

aiH
(
s−1

i

)
1 + siµ0

+ µn

N∑
i=1

aiH
(
s−1

i

)
1 + siµn

]
. (26)
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1. Combined Sensitivities and Perturbations

Table II compares fluxes and sensitivities at the material
boundary for the semi-analytic solution (SA) and the Monte
Carlo results (MC). Sensitivities are shown for the scatter-
ing cross section (Σs) with finite perturbations in both the
scattering and total cross sections (Σt). Based on increasing
quadrature orders, the semi-analytic results were converged
to about 14 digits at quadrature order of N=100. All Monte
Carlo results were obtained in a single calculation using 2×109

particle histories. The Monte Carlo statistical uncertainties
(MC+-) and error in the Monte Carlo results (MC-SA) are
within reasonable statistical agreement.

We do not show results here for the absorption and total
cross-section sensitivities but have examined those as well.
The absorption cross-section sensitivities are the same mag-
nitude but opposite sign of the scattering cross-section sen-
sitivities. From the definition of the problem we know that
the result is the same for any value of the total cross section.
Therefore, we expect the sensitivity to the total cross section
to be zero (if the scattering and absorption are varied propor-
tionally). The Monte Carlo estimates of sensitivity to the total
cross section provide the expected results, with estimates that
are in statistical agreement with a value of zero and converging
toward zero with increasing histories.

It is known that the correlated-sampling approach can
become unstable for large scattering ratios [4]. The stability
depends on the choice of the nominal state from which the
perturbation is being evaluated. Using the cross section values
with the highest scattering ratio (c = 0.9333) as the nominal
case allowed all perturbations to be evaluated accurately, and
these results are shown in Table II. We found that using
the mid-point values for the cross sections (c = 0.5) caused
evaluation of the point with the highest scattering ratio to
be difficult to converge (i.e., it produced inaccurate results
with misleading statistical uncertainty estimates), and these
results are shown in Table III. To further explore the behavior,
we performed the same calculations with the nominal case
using the lowest scattering ratio (c = 0.24), and these results
are shown in Table IV. Comparison of the tables shows the
increasing errors and statistical uncertainties as the scattering
ratio of the nominal case is decreased. We also observed that
the statistical uncertainty estimates became less reliable.

IV. RESULTS AND ANALYSIS

In the results below we report sensitivities, S i, in a unitless
quantity as relative change in a response, R, per relative change
in a parameter, pi:

S i =
pi

R
∂R
∂pi

. (27)

For the full-physics simulations, we calculate sensitivity to
material density and eight cross sections. For photons, these
include photo-ionization, incoherent scattering, and coher-
ent scattering. For electrons, these include electro-ionization,
electronic excitation, bremsstrahlung, large-angle elastic scat-
tering, and small-angle elastic scattering. We divide electron
elastic scattering into large and small angles at µcut = 0.9 and
approximate the small-angle scattering with a single discrete

angle (as described in [9]).
To determine whether sensitivities are being evaluated

accurately by the differential-operator method, the central-
difference method was used:

S i ≈
pi

R(pi)
R(pi + ∆p) − R(pi − ∆p)

2∆p
. (28)

The calculations were performed with values of the cross
sections perturbed by ±10% (for the Dolan data) or ±1% (for
the McLaughlin data).

1. Photon-Electron Transport Sensitivities

The Dolan validation experiments [16] consisted of
bremsstrahlung photon spectra incident on slabs of mate-
rial and measured the forward and backward emitted elec-
trons. Calculations were performed with 1010 particle his-
tories. While energy spectra were also measured, here we
compare against only the integral quantities. The number of
forward-emitted electrons (per uncollided transmitted pho-
ton) measured for a 50 keV spectrum incident on 0.16 cm of
tantalum was 6.3E-3 ± 9E-4, and we calculate 5.860E-3 ±
1E-6. The number of backward-emitted electrons (per inci-
dent photon) measured for 0.16 cm of tantalum was 5.3E-3 ±
8E-4, and we calculate 4.5338E-3 ± 7E-7. The uncertainties
for calculated values reflect only the Monte Carlo statistical
uncertainty.

We also calculated sensitivities to density and interac-
tion cross sections. Results are given in Table V. As might
be expected, the electron emission is almost linearly sensi-
tive to the photo-ionization cross section. The next highest
sensitivities are electro-ionization, large-angle elastic scat-
tering, electronic excitation, and small-angle elastic scatter-
ing. Change in electron emission is positively correlated with
changes in the photon cross sections and negatively corre-
lated with changes in the electron cross sections. Reasonable
agreement was found between the sensitivities calculated by
the differential-operator and central-difference methods. Very
small sensitivities were found for photon coherent scattering,
photon incoherent scattering, and bremsstrahlung interactions,
and the central-difference technique did not achieve acceptable
statistical-uncertainty levels to evaluate the accuracy of these
sensitivities.

2. Electron Transport Sensitivities

The tests of McLaughlin [17] used normally incident, mo-
noenergetic electrons and measured energy deposition as a
function of depth through material slabs. We examine the case
of 100 keV electrons incident on polystyrene. For polystyrene,
we used a composition of 7.7418 weight percent hydrogen,
92.2582 weight percent carbon, and a density of 1.06 g/cm3.
The energy deposition profile calculated with ITS is compared
with the experimental data in Fig. 1. Sensitivities of the energy
deposition to the density and elemental weight fractions are
shown as a function of depth in Fig. 2. Sensitivities of the
energy deposition to selected interaction cross sections are
shown in Fig. 3. Each figure also includes the percent relative
statistical uncertainty in the associated quantities. Poor sta-
tistical convergence is achieved on most quantities beyond a
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TABLE II. Flux and Sensitivity Values from Semi-Analytic (SA) and Monte Carlo (MC) Solutions with the Nominal Monte
Carlo Simulation Using Σs = 0.7 and Σt = 0.75

Boundary Flux, φ(0) Sensitivity, Σs
φ(0)

d
dΣs
φ(0)

Σs Σt SA MC MC+- MC-SA SA MC MC+- MC-SA
0.3 0.75 1.1833807 1.1833847 1.7E-5 4.1E-6 0.1249053 0.1249041 1.2E-5 -1.2E-6
0.3 1 1.1268444 1.1268455 1.3E-5 1.1E-6 0.0968566 0.0968580 8.9E-6 1.4E-6
0.3 1.25 1.0970673 1.0970686 1.1E-5 1.3E-6 0.078823 0.078831 7.8E-6 8.0E-6
0.5 0.75 1.404659 1.404675 3.2E-5 1.6E-5 0.180548 0.180565 1.9E-5 1.7E-5
0.5 1 1.2512596 1.2512649 2.3E-5 5.4E-6 0.149771 0.149781 1.6E-5 9.9E-6
0.5 1.25 1.1833807 1.1833846 1.9E-5 3.9E-6 0.124905 0.124915 1.4E-5 9.7E-6
0.7 0.75 1.98659 1.98664 5.8E-5 5.3E-5 0.152348 0.152373 5.0E-5 2.4E-5
0.7 1 1.444746 1.444768 3.6E-5 2.2E-5 0.184332 0.184363 2.4E-5 3.1E-5
0.7 1.25 1.299354 1.299366 2.8E-5 1.2E-5 0.162697 0.162724 2.0E-5 2.6E-5

TABLE III. Flux and Sensitivity Values from Semi-Analytic (SA) and Monte Carlo (MC) Solutions with the Nominal Monte
Carlo Simulation Using Σs = 0.5 and Σt = 1.0

Boundary Flux, φ(0) Sensitivity, Σs
φ(0)

d
dΣs
φ(0)

Σs Σt SA MC MC+- MC-SA SA MC MC+- MC-SA
0.3 0.75 1.183381 1.183359 2.4E-5 -2.1E-5 0.124905 0.124894 2.2E-5 -1.1E-5
0.3 1 1.126844 1.126827 1.7E-5 -1.8E-5 0.0968566 0.0968515 1.3E-5 -5.1E-6
0.3 1.25 1.097067 1.097055 1.4E-5 -1.3E-5 0.0788234 0.0788180 1.1E-5 -5.4E-6
0.5 0.75 1.4046586 1.4046647 6.2E-5 6.0E-6 0.180548 0.180526 1.3E-4 -2.2E-5
0.5 1 1.251260 1.251238 3.0E-5 -2.2E-5 0.149771 0.149784 2.5E-5 1.3E-5
0.5 1.25 1.183381 1.183362 2.4E-5 -1.9E-5 0.1249053 0.1249063 1.9E-5 1.0E-6
0.7 0.75 1.9866 1.9645 4.7E-3 -2.2E-2 0.1523 0.1416 6.6E-3 -1.1E-2
0.7 1 1.4447461 1.4447484 6.1E-5 2.2E-6 0.184332 0.184306 8.9E-5 -2.6E-5
0.7 1.25 1.299354 1.299335 3.7E-5 -1.9E-5 0.1626974 0.1627004 3.5E-5 3.0E-6

TABLE IV. Flux and Sensitivity Values from Semi-Analytic (SA) and Monte Carlo (MC) Solutions with the Nominal Monte
Carlo Simulation Using Σs = 0.3 and Σt = 1.25

Boundary Flux, φ(0) Sensitivity, Σs
φ(0)

d
dΣs
φ(0)

Σs Σt SA MC MC+- MC-SA SA MC MC+- MC-SA
0.3 0.75 1.18338 1.18353 6.2E-5 1.5E-4 0.12491 0.12501 5.9E-5 1.0E-4
0.3 1 1.12684 1.12692 2.8E-5 7.8E-5 0.096857 0.096913 2.2E-5 5.6E-5
0.3 1.25 1.09707 1.09712 2.0E-5 5.1E-5 0.078823 0.078859 1.7E-5 3.5E-5
0.5 0.75 1.40466 1.40472 6.2E-4 5.7E-5 0.1805 0.1821 1.6E-3 1.5E-3
0.5 1 1.25126 1.25150 7.3E-5 2.4E-4 0.14987 0.15002 1.6E-4 2.5E-4
0.5 1.25 1.18338 1.18349 3.9E-5 1.1E-4 0.124905 0.124971 4.8E-5 6.6E-5
0.7 0.75 1.987 1.905 1.5E-2 -8.1E-2 0.152 0.164 2.3E-2 1.2E-2
0.7 1 1.4447 1.4458 1.1E-3 1.0E-3 0.1843 0.1860 3.2E-3 1.7E-3
0.7 1.25 1.29935 1.29969 1.5E-4 3.4E-4 0.1627 0.1632 5.4E-4 5.3E-4

depth of about 17 mg/cm2, where very little energy deposition
is calculated. Depths greater than 17 mg/cm2 are beyond the
range of the incident electrons, and energy deposition at those
depths depends on bremsstrahlung and fluorescence photon
transport.

The results show expected trends, with greater sensitivity
to interactions with carbon than with hydrogen and the greatest
sensitivity due to the electro-ionization cross section of carbon.
In general, increasing one of the cross sections (proportionally
across all energies) will result in greater deposition at the

front of the slab and much less deposition near the maximum
electron range. Poor statistical convergence is also found for
sensitivities at a depth of about 8 mg/cm2, where the calculated
sensitivities are near zero.

The accuracy of the sensitivity for the carbon electro-
ionization is compared to results obtained using the central-
difference method in Fig. 4. Agreement is generally within
10% in regions where good statistical convergence was
achieved.
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TABLE V. Cross Section Sensitivities for Forward and Backward Electron Emission Using Differential Operator (DO) and
Central Difference (CD), with Integer Percent Relative Statistical Uncertainty in Parentheses

Backward Forward
Cross Section DO CD DO CD

Photo-ionization 9.89E-1 (0) 9.88E-1 (0) 9.74E-1 (0) 9.74E-1 (0)
Coherent 6.31E-3 (0) 7.37E-3 (15) 8.47E-3 (0) 5.39E-3 (25)
Incoherent 2.21E-3 (0) 3.26E-3 (33) 1.28E-3 (1) -8.41E-5 (99)
Electro-ionization -6.00E-1 (0) -6.01E-1 (0) -4.93E-1 (0) -4.94E-1 (0)
Excitation -1.36E-1 (1) -1.35E-1 (1) -1.10E-1 (2) -1.09E-1 (1)
Bremsstrahlung -2.08E-3 (1) -2.28E-3 (47) -1.86E-3 (1) -2.02E-3 (66)
Small Elastic -4.24E-2 (2) -4.20E-2 (3) -7.94E-2 (1) -8.26E-2 (2)
Large Elastic -2.25E-1 (0) -2.24E-1 (0) -3.15E-1 (0) -3.24E-1 (0)

V. CONCLUSIONS

We are investigating the differential-operator and
correlated-sampling methods to enable more efficient and
more rigorous uncertainty quantification for electron-photon
transport. Comparisons with a semi-analytic benchmark have
demonstrated the accuracy of the methods in combination.
Preliminary evaluations of test problems have demonstrated
the differential-operator method with electron and coupled
photon-electron transport. We intend to further develop and
test these methods within the ITS code. Further evaluation is
needed to assess whether the correlated-sampling approach
will be valuable for practical electron transport applications or
can be useful if applied only to photon cross sections.

A promising approach that we have not yet explored for
the calculation of sensitivities in these problems is adjoint-
weighted tallies in forward simulations. This approach has
been extensively developed for criticality calculations [18]. It
has only been demonstrated for fixed-source calculations in
limited regimes, using the Iterated Fission Probability method
for an adjoint estimator in problems involving multiplying
media [19] or in problems involving only uncollided radia-
tion [20].
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Fig. 3. (a) Sensitivity of energy deposition to selected electron
cross sections of hydrogen and carbon and (b) corresponding
relative statistical uncertainty.
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Fig. 4. (a) Ratio of sensitivities calculated by central difference
and differential operator methods for electron ionization of
carbon and (b) corresponding relative statistical uncertainty.


