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Abstract - An original approach to uncertainty quantification (UQ) for radiation transport problems with
uncertain nuclear data is introduced in this paper. A novel dimension-reduction scheme is applied to the
nuclear data characterizing cross-section uncertainty. An adjoint-based sensitivity analysis is performed to
yield sensitivity coefficients for a quantity of interest (QoI) with respect to the multigroup cross sections and
then mapped to the reduced-dimensional space. Finally, response surfaces or emulators are constructed for the
QoI over the reduced-dimensional space. These surfaces yield information about the distribution of the QoI in
the original uncertain input space. This multi-step approach is applied to a radiation transport problem for
which traditional UQ methods are prohibitively expensive.

I. INTRODUCTION

The accurate modeling of complex phenomena such as
radiation transport in a laboratory experiment challenges the
limits of modern computing resources and motivate the design
of next-generation exascale computers. The efficient and ac-
curate propagation of uncertainty through these problems is
an area of ongoing research. Understanding and quantifying
uncertainty in quantities of interest (QoIs) that arise due to
uncertain material properties is a vital component of predic-
tive calculations. A response surface or emulator is one tool
that can be used to investigate the contribution of uncertainty
in input parameters to uncertainty in a QoI, but the cost of
constructing an accurate surrogate model grows exponentially
as the dimensionality of the uncertain input space increases.

Nuclear cross sections are one source of uncertainty in
neutron transport calculations. These cross sections define
the interaction probability of neutrons in a material. A deter-
ministic neutron transport problem may require thousands of
cross sections as input. Although tools exist to characterize
and quantify the uncertainty in these cross sections, the dimen-
sionality of this uncertain parameter space poses a significant
challenge for traditional methods of UQ analysis.

A novel dimension-reduction scheme for cross section un-
certainty is outlined in this work and applied to the modeling of
a laboratory experiment. This scheme combines a decomposi-
tion of the uncertain cross sections’ covariance matrix, forward
and adjoint-sensitivity transport calculations performed at var-
ious points in the uncertain-parameter space, and a first-order
sensitivity analysis. A decomposition of the covariance matrix
characterizing the uncertainty in the cross section data yields
a set of independent, unit-normal uncertain parameters and
establishes a mapping between this independent-parameter
space and the cross-section space. Samples of the uncertain
cross-section space are obtained by sampling the independent-
parameter space and mapping the samples to the cross-section
space. A pair of forward and adjoint calculations are per-
formed at each realization of the cross sections to calculate
the partial derivative of the QoI with respect to each cross sec-

tion. These cross-section sensitivity coefficients are mapped
to the independent parameters, yielding partial derivatives of
the QoI with respect to the independent parameters. Finally, a
first-order sensitivity analysis is used to estimate the relative
contribution of each independent parameter to the uncertainty
in the QoI. Important independent parameters are identified
based on these relative contributions to the total uncertainty in
the QoI.

The greatly reduced dimensionality of the important pa-
rameter space makes the construction of a surrogate model
tractable. Given a response surface that accurately models the
distribution of a QoI, the surface may be used as an emulator to
supplement or supplant the full code for some analyses [1]. A
Monte Carlo analysis may be performed by drawing hundreds
of thousands or millions of samples from the emulator to deter-
mine the distribution of the QoI over the uncertain-parameter
space. In order for a response surface to be useful for these
purposes, it must be both accurate and predictive. The con-
struction of a surface that satisfies both of these characteristics
is outlined in the following pages.

In the following sections we will outline the generation
of the data describing the uncertain cross sections, the deriva-
tion of the adjoint sensitivity method, the novel dimension
reduction method, and the construction of a response surface
in terms of these important parameters. Finally, results are
presented for a complex problem related to a laboratory exper-
iment being performed at Texas A&M University.

II. NUCLEAR DATA AND MULTIGROUP CROSS
SECTION PREPARATION

The transport of neutrons through a laboratory experiment
or nuclear reactor is described by the linear Boltzmann equa-
tion, commonly referred to as the radiation transport equation.
The interaction of neutrons in a bulk material is character-
ized by the material’s macroscopic cross section, which is the
product of isotope-specific microscopic cross sections and the
atom densities of the isotopes present in the bulk material.
The microscopic cross sections are analyzed as the uncertain
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parameters of interest in this work.
Cross-section data is generated by theoretical calculation

and by direct experimentation, each of which give rise to un-
certainties in the cross sections. The process of collecting data
from various experiments and calculations and producing a co-
hesive nuclear data set is called evaluation. Evaluated nuclear
data is collected in data sets called the Evaluated Nuclear Data
Files (ENDF) [2]. These files contain both the best estimate
of the energy-dependent cross sections and an estimate of the
uncertainty in these cross sections. The ENDF contain both
extremely fine pointwise data and resonance parameters that
describe the resolved- and unresolved-resonance regions of
the cross sections.

The continuous energy cross-section data is discretized
in energy by the multigroup method. The multigroup method
approximates the cross sections as a collection of piecewise
constant step functions in energy. The code NJOY 2012 [3]
was used to process the ENDF/B-VII.1 data to produce multi-
group cross sections and their associated uncertainty.

NJOY 2012 processes the ENDF/B-VII.1 data and pro-
duces the zeroth and first moments of the multigroup cross sec-
tions. The zeroth moment ~xµ is the best estimate of the value of
the cross sections. These will be referred to as the mean value
of the cross sections. The first moment of the cross-section dis-
tribution describes the uncertainty in the cross-section values
as well as the correlations that exist across energy and across
different reactions. This is contained in a covariance matrix
Σx . Given ~xµ and Σx , the multigroup cross sections ~x may be
approximated as a multivariate Gaussian distribution,

~x ∼ N(~xµ, Σ x). (1)

Drawing from this distribution generates realizations Ri of the
cross sections ~xRi that reflect both the recorded uncertainty
in the data and the correlations across energy groups and
interactions.

NJOY produces covariance data for all reactions that re-
sult in the removal of a neutron from an energy group, includ-
ing absorptive reactions such as (n,γ) and (n,α), and the total
scattering probability from each group g, that is, the sum of
the scattering cross sections from group g to all groups g′.
Realizations of the group-to-group scattering cross sections
are generated by assuming that the ratio of scattering from
group g to each group g′ is constant across all realizations of
the cross sections.

For a given isotope, the multigroup cross sections are
correlated across energy groups for a given reaction and may
be correlated across nuclear reactions. Although covariances
may be observed across isotopes (as in the related work [4]),
these are only generated by NJOY in the case in which only
the total, scattering, and fission cross sections are generated;
at present, if specific absorptive reactions are desired, NJOY
2012 will not report cross-isotope covariances. For this reason
cross-isotope terms were not considered in this work.

The mean value of the multigroup cross sections and re-
alizations drawn from the multivariate Gaussian distribution
defined by ~xµ and Σx are formatted as nuclear data files to
be read by the deterministic neutron transport code PDT (de-
scribed in the following Section).

III. THE NEUTRON TRANSPORT EQUATION

The behavior of neutrons in a background material is
accurately described by the linear Boltzmann equation for
sparse gases, which is also known as the radiation transport
equation [5]. The principal unknown is the neutron angular
flux ψ, which has units of neutrons per second per steradian per
energy per centimeter squared. The angular flux depends upon
independent parameters in time t, space r, angle Ω, and energy
E. The steady state form of this equation in non-multiplying
media is

~Ω · 5ψ(~r, E, ~Ω) + Σt(~r, E)ψ(~r, E, ~Ω) = (2)∫
4π

∫ ∞

0
Σs(~r, E′ → E, ~Ω′ → ~Ω)ψ(~r, E′, ~Ω′)dE′d~Ω′+

s(~r, E, ~Ω, t).

Here Σt and Σs are the macroscopic total and scattering
cross sections, respectively, with units of 1/cm, and s is a
source term with units of neutrons per cm2 per second per
steradian.

1. Discretization of the Neutron Transport Equation

This equation must be discretized in space, angle, and
energy. The discretization schemes used in this work through
the research code “PDT” under development at Texas A&M
University are mentioned here. The angular flux variable is
discretized in angle using the discrete ordinates (SN) approxi-
mation with a product Gauss Legendre Chebyshev quadrature
set [6][7], in energy using the multigroup approximation [3],
and in space with the piece-wise linear discontinuous (PWLD)
spatial discretization [8][9].

The discretization of the transport equation in space, an-
gle, and energy yields a collection of coupled equations. For
convenience these coupled equations are often written in op-
erator or matrix form. In this notation the fully discretized
angular flux is represented as the vector ~ψ. The streaming

and total interaction terms are collected into the matrix L , the
anisotropic scattering operator is represented S , and the in-
homogeneous neutron source is represented as ~q. Combining
these, and neglecting the matix and vector notation for com-
pactness, the radiation transport equation can be succinctly
written

Lψ = Sψ + q. (3)

This compact notation for the fully discretized transport equa-
tion will be used from this point forward.

2. The Adjoint Sensitivity Method

The adjoint sensitivity method is an extremely efficient
means by which sensitivity coefficients for a problem con-
taining a large number of parameters of interest and a small
number of quantities of interest may be calculated [10]. A
brief overview of the derivation of the adjoint sensitivity equa-
tions for the radiation transport equations is presented here,
following the work of [11], [12], and [13].
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An inner product is required for this derivation. Let us
define the inner product of vectors ~a and ~b as the integral over
all phase space of these two vectors,

〈a, b〉 =

∫
4π

dΩ

∫
D

dV
∫ ∞

0
dEa(~r, ~Ω, E)b(~r, ~Ω, E). (4)

As these inner products will be applied to the operator form
of the transport equation, we neglect the vector notation for ~a
and ~b within the angle brackets.

For vectors of the discretized angular flux, this integration
is accomplished by summing the cell-averaged values acA and
bcA over the energy groups g, discrete angles d with associated
quadrature weights wd, and spatial cells c with volumes Vc.
This summation is

〈a, b〉 =
∑

d

wd

∑
c

Vc

∑
g

acA,d,gbcA,d,g. (5)

The quantities of interest Q examined in this work are re-
action rates, which are integral quantities of the scalar flux and
the macroscopic cross section corresponding to the reaction
of interest in a region of interest such as a detector volume, Σr.
The QoI Q may be expressed as the inner product

Q = 〈Σr, ψ〉 . (6)

The derivation of the adjoint sensitivity equations begins
by forming a Lagrangian system L by taking an inner product
of the discretized radiation transport equation Eq (3) with an
as-of-yet undefined adjoint function ψ† and subtracting it from
the QoI, Eq. (6),

L =
〈
ψ, q†

〉
−

〈
ψ†, Lψ

〉
+

〈
ψ†, Sψ

〉
+

〈
ψ†, q

〉
. (7)

We will see that the as-yet-undefined ψ† is a Lagrangian
multiplier. As long as ψ satisfies the forward problem, the
Lagrangian is identically equal to the QoI. The derivative of L
with respect to an uncertain parameter p is obtained through
the chain rule,

dL
dp

=
∂L

∂p
+
∂L

∂ψ

∂ψ

∂p
+
∂L

∂ψ†
∂ψ†

∂p
. (8)

Applying the chain rule to Eq. (7) and carefully organizing
terms eventually yields

dL
dp

=

[〈
∂

∂p
ψ,−L†ψ† + S †ψ† + q†

〉
(9)

+

〈
∂

∂p
ψ†,−Lψ + Sψ + q

〉
+

〈
ψ,

∂

∂p
q†

〉
−

〈
ψ†,

(
∂

∂p
L
)
ψ

〉
+

〈
ψ†,

(
∂

∂p
S
)
ψ

〉]
+

[〈
−L†ψ† + S †ψ† + q†

〉] ∂ψ
∂p

+
[
〈−Lψ + Sψ + q〉

] ∂ψ†
∂p

The difficult- or impossible-to-calculate terms ∂ψ
∂p and ∂ψ†

∂p
are isolated as multipliers of the forward transport equation
and the familiar adjoint radiation transport equation,

L†ψ† = S †ψ† + q†. (10)

If the forward and adjoint transport equations are satisfied then
the expression for the partial derivative of the QoI with respect
to parameter p is

dQ
dp

=

〈
ψ,

∂

∂p
q†

〉
−

〈
ψ†,

(
∂

∂p
L
)
ψ

〉
+

〈
ψ†,

(
∂

∂p
S
)
ψ

〉
. (11)

From this expression it is clear that for each QoI, two
solutions of the radiation transport problem (one forward and
adjoint) will yield any number of sensitivity coefficients at
the cost of several inner products per parameter of interest.
These inner product evaluations are inexpensive compared to
the cost of solving the forward and adjoint radiation transport
equations.

IV. A NOVEL DIMENSION REDUCTION SCHEME

The dimension-reduction scheme introduced in this sec-
tion is notable for identifying a set of independent, unit-normal
(Gaussian) parameters which preserve the correlations in the
multigroup cross section data and give rise to the uncertainty
in the QoI.

1. Identification of Independent, Unit-Normal Parame-
ters

The multigroup cross sections produced from the
ENDF/B-VII.1 data and NJOY 2012 are approximated as a
multivariate Gaussian distribution with mean ~xµ and covari-
ance matrix Σx . Let us denote the vector of multigroup cross
sections ~x and use the subscript x to denote terms correspond-
ing to the cross-section data,

~x ∼ N(~xµ, Σx ). (12)

A computationally efficient method to sample a multivariate
Gaussian distribution is presented in [14] and outlined here.
To sample the cross-section distribution we must compute a
matrix Ax such that

Ax Ax
T = Σx . (13)

A Cholesky factorization is often used to construct Ax . How-
ever, the covariance matrices generated from the evaluated
nuclear data files with NJOY are not always symmetric pos-
itive definite, which can cause a Cholesky decomposition to
fail. Instead let us take an eigenvalue decomposition of the
covariance matrix

Σx = Ex Λx ET
x . (14)

The matrix Λx is diagonal and contains the eigenvalues of Σx .
The matrix Ex contains the right eigenvectors corresponding



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

to the eigenvalues in Λx . Rewriting the matrix of eigenvalues
Λx as Λx

1/2 Λx
1/2 shows that we can form a transform matrix

Ax that satisfies Eq. (13) as

Ax = Ex Λx
1/2. (15)

Given the transform matrix Ax calculated from the eigenvalue
decomposition, we next define a vector ~z containing indepen-
dent normal members zi with mean zero and variance one,

zi ∼ N(0, 1). (16)

We refer to the N(0, 1) distribution as the “unit-normal” distri-
bution and the parameters zi as the “independent parameters.”
Denoting samples of the cross sections ~x and samples of the
independent parameters ~z with a subscript Ri for “the i-th real-
ization,” samples of the cross-section space are produced as
the product of Ax and samples of ~z,

~xRi = Ex Λ1/2
x ~zRi + ~xµ. (17)

The covariance matrix’s eigenvalues may span tens of orders of
magnitude. The entries in Λ x may be truncated after capturing
the largest eigenvalue and all eigenvalues within several orders
of magnitude of the dominant eigenvalue. In this work we
retained the largest eigenvalue and all eigenvalues within eight
orders of magnitude of the largest eigenvalue. The number of
non-zero columns of the matrix A x (and therefore the number
of meaningful entries in the vector ~z) is equal to the number
of retained eigenvalues in Λ x. In practice, we have found that
the number of non-zero rows of A x to be significantly smaller
than the number of multigroup cross sections.

We note that the existence of these ~z parameters is not
new to this work. Rather, these parameters are normally encap-
sulated within a third-party library used to sample multivariate
Gaussian distributions. By performing this sampling ourselves
these parameters are exposed for analysis. The significance
of these ~z parameters is this: points in the multigroup cross
section space may be uniquely defined as points in the smaller
independent-parameter space and variations in the correlated
multigroup cross-section space may be described by variations
in these individual, independent, unit-normal parameters.

2. Mapping Between Cross Sections and Independent
Parameters

A mapping can be defined for the transformation between
the multigroup cross-section space and the independent pa-
rameter space by taking a derivative of Eq. (17) with respect
to ~z,

d~x
d~z

=
d
d~z

(
Ex Λ1/2

x ~z + ~xµ
)
, (18)

yielding
dx
dz

= Ex Λ1/2
x . (19)

A similar mapping can be defined for the derivatives of the
QoI and the two spaces. The derivative of the QoI with respect

to the parameters of interest is related to the derivative of the
QoI with respect to the cross sections by the chain rule,

dQ
dz

=
dQ
dx

dx
dz
. (20)

Accounting for the vector notation (and shapes) assumed thus
far in the paper, this expression is

~dQ
dz

=
dx
dz

T
~dQ
dx

. (21)

Substituting Eq (19) for the transform matrix dx
dz and transpos-

ing the diagonal matrix of eigenvalues, this yields

~dQ
dz

= Λ1/2 Ex
T
~dq
dx
. (22)

Finally, for clarity let us replace the vectors of sensitivity
coefficients ~dQ

dx and ~dQ
dz with ~S x and ~S z, respectively,

~S z = Λ1/2
x Ex

T ~S x. (23)

The sensitivity coefficients ~S x are efficiently calculated using
the adjoint sensitivity method outlined previously. This map-
ping from the partial derivatives of the QoI with respect to
the multigroup cross sections to the partial derivatives of the
QoI with respect to the independent parameters allows us to
estimate the relative importance of each of these underlying
parameters to the variance in the QoI.

3. Identification of Important Independent Parameters

The first-order sensitivity analysis (FOSA) method, or the
“propagation of error” or “propagation of moments” equation,
is commonly applied to estimate variance in a QoI σ2

Q due to

some variables v given the covariance matrix Σv and vector of
sensitivity coefficients ~S v [10],

σ2
Q = ~S v

T
Σv ~S v. (24)

From this equation we see that the uncertainty in a quantity
of interest depends both on the sensitivity of that QoI to each
uncertain variable S v and the variances in and covariances
between the variables v. Note that a variable with a large sen-
sitivity does not necessarily give rise to a large variance in the
QoI—if that variable is exactly known, it will not contribute
any variance to the QoI. Alternatively, a variable with a large
amount of uncertainty may contribute significant uncertainty
to the QoI even if the sensitivity of the QoI to that variable is
small.

The variance in the QoI can be estimated at each real-
ization Ri of the cross section space by Eq. (24) using either
the sensitivities and covariance matrix corresponding to the
multigroup cross sections,

σ2
Q

∣∣∣
Ri

= ~S x

∣∣∣∣
Ri

Σx ~S x

∣∣∣∣
Ri
, (25)
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or the independent parameters,

σ2
Q

∣∣∣
Ri

= ~S z

∣∣∣∣
Ri

Σz ~S z

∣∣∣∣
Ri
. (26)

Because the z parameters are unit normal, the covariance ma-
trix for the independent parameters Σz is the identity matrix.
Let us denote the number of z parameters as Nz. This means
that Eq. (26) for the variance in the QoI reduces to the sum of
the Nz squared sensitivity coefficients ~S z,

σ2
Q

∣∣∣
Ri

=

NZ∑
j=1

S 2
z j

∣∣∣∣
Ri
. (27)

An average variance in the QoI σ̂2
Q can be computed by aver-

aging the local estimates of the variance computed at each of
the M realizations of the cross section,

σ̂2
Q =

1
M

M∑
i=1

NZ∑
j=1

S 2
z j

∣∣∣∣
Ri
. (28)

The average contribution of the j-th independent parameter z j

to the variance in the QoI σ̂2
Q is denoted δ j and is computed

δ j =
1
M

M∑
i=1

S 2
z j

∣∣∣∣
Ri
. (29)

The fraction of the total variance contributed by each
independent parameter z j is easily calculated from Eq. (28)
and Eq. (29). The independent parameters can be ordered
from most important to least important by their contribution
to the variance in the QoI δ j. We denote the ordered average
contributions to the average total variance by each z-parameter[
δ j

]ranked
and indicate the index in this list with a subscript k.

The K important independent parameters are chosen such that

K∑
k=1

[
δ j

]ranked

k

σ̂2
Q

≥ 1 − ε. (30)

These K parameters are the important independent pa-
rameters that describe the variance in the QoI. In this work ε
was set to 0.01, that is, parameters collectively responsible for
approximately 99% of the variance were retained. This step
tremendously reduces the number of dimensions that must
be considered while retaining the dimensions responsible for
almost all of the variance in the QoI.

In summary, the reduction of the multigroup cross-section
space is accomplished in two distinct steps. First, an eigen-
value decomposition of the cross sections’ covariance matrix
is used to define a mapping between the cross-section space
and a new, unit-normal independent-parameter space. This
step is incidentally responsible for a decrease in the problem
dimensionality. Second, sensitivity coefficients are mapped be-
tween the cross-section space and the independent-parameter
space and and a first-order sensitivity analysis is performed at
various points in the input space. From this FOSA, the rela-
tive contribution of each of the independent parameters to the
variance in the QoI is estimated, allowing the identification of
the important independent parameters. This importance-based
ranking results in a very large reduction in the dimensionality
of the problem of interest.

V. CONSTRUCTION AND USE OF A RESPONSE
SURFACE WITH DAKOTA

A response surface or surrogate model is a mathematical
model built to emulate the behavior of a complex computa-
tional model. These emulators are often constructed using
evaluations of the full model at various points in the input
space. These evaluations may include only the QoI at each
point in the input space or may include local partial derivatives
of the QoI with respect to the uncertain parameters. Many
methods exist to construct a response surface from a collec-
tion of data, including Polynomial Chaos Expansions (PCEs),
Gaussian Process Models (GPMs), kriging methods, Multi-
variate Adaptive Regression Splines (MARS) algorithms, and
Bayesian MARS algorithms. In general, as the dimensional-
ity of the input space increases, the difficulty of computing a
response surface grows exponentially.

A response surface that accurately models the QoI as a
function of the uncertain input parameters is useful for a vari-
ety of purposes [1]. As sampling the emulator is extremely ef-
ficient a Monte Carlo analysis may be performed using enough
particles to thoroughly sample the uncertain parameter space.
Local and global maxima and minima are easily identified for
any range of the uncertain parameters.

The code package DAKOTA was used to construct a surro-
gate model given the QoI and sensitivity coefficients calculated
at various points in the uncertain input space. A developmental
branch of DAKOTA supports the construction of PCEs and
GPMs using derivative information.c For this reason, these
two models were utilized in this analysis. Further details on
the implementation of these methods is available in the Dakota
user’s manual [15].

Even after reducing a problem’s dimensionality by the
identification of important parameters it may be computation-
ally prohibitive or impossible to construct a response surface
from only evaluations of the QoI at various points in the space.
The availability of partial derivatives of the QoI with respect
to each parameter at each sample of the input space may allow
the construction of surrogate models for problems in which
the dimensionality is otherwise prohibitive. The rate at which
the PCE and GPM surrogates converge to an estimate for the
mean and variance in the QoI with and without derivative
information is examined in the following section.

VI. TEST PROBLEM AND RESULTS

The dimension reduction scheme introduced in this work
was applied to a variety of test problems in [16]. A single
problem modeling an ongoing laboratory experiment is pre-
sented in this section. The goal of the UQ analysis performed
in this work is to calculate the quantity of interest and variance
in the QoI for realistic neutron transport calculations using
a gradient-informed response surface. The number of data
points required to construct an accurate, predictive response
surface is not known a priori. Therefore, for each test problem,
the QoI’s mean and variance are plotted versus the number of
data points available to construct the surface.

The response surfaces are constructed in the independent-
parameter space using an increasing pool of evaluations of
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the forward and adjoint transport equations, starting with an
evaluation at the mean value of the cross sections (which
corresponds to all of the independent parameters being equal to
zero). As the response surfaces are quick to generate compared
to the cost of the forward and adjoint solves of the transport
problem and the inner product evaluations, the surfaces could
be constructed as QoI and sensitivity data is slowly generated.

The goal of this research is to produce accurate estimates
of the mean and variance of a QoI for a complex problem with
relatively few evaluations of the physics code at points in the
input space. It is therefore desirable that the response surfaces
converge rapidly as the number of data points is increased.
Finally, it will prove interesting to compare the QoI and the
variance in the QoI estimated by the first-order sensitivity
analysis (FOSA) performed at the mean value of the cross
sections to the results predicted by the response surfaces as
the number of data points increase.

1. Problem Description

This research project was originally conceived to quan-
tify the uncertainty in a predicted detector response due to
uncertainty in the cross section data for an experiment being
performed in the Nuclear Engineering Department at Texas
A&M University. The Center for Exascale Radiation Transport
(CERT) project, funded by the Predictive Science Academic
Alliance Program II (PSAAP-II), seeks to predict the response
of a detector placed in and around an complex graphite struc-
ture driven by a pulsed neutron source placed at one end of
the structure. One series of experiments performed for this
project, referred to here as the CERT experiment, involved the
analysis of individual bricks of graphite.

The CERT experimental geometry involved an americium-
beryllium (AmBe) neutron source located at the center and
near the bottom of the large cylinder of high-density polyethy-
lene (HDPE) on top of a wooden table. A graphite brick
was placed on top of the HDPE cylinder. The HDPE ther-
malizes the neutrons before they enter the graphite brick. A
BF3 neutron detector was positioned above the graphite brick.
Borated aluminum shielding was positioned around various
components of the experiment.

The CERT experiment was modeled as a one-quarter ge-
ometry with reflecting boundary conditions. The spatial mesh
contained on the order of 250,000 brick cells. A 49-group
energy discretization was employed. The angular quadrature
was specified with 12 polar and 6 azimuthal angles. The cross
section data included a total of 14 isotopes and 17 nuclear
reactions. The forward, adjoint, and inner product calculations
required about six hours on 3,456 processors (216 nodes) on
the supercomputer Vulcan, the open access version of Sequoia,
at Lawrence Livermore National Laboratories to complete
using this discretization scheme.

2. Test Results

The CERT problem was run at the mean value of the cross
sections, ~xµ (alternatively expressed as ~z = 0), and at one hun-
dred samples of the input space drawn from uniform random
distributions of the independent parameters. The independent

Non-Zero Multigroup Cross Sections 3,287
Independent Parameters 1,344

Important Independent Parameters 4
TABLE I. Number of multigroup cross sections in the IM-1
problem, independent parameters revealed by the decompo-
sition of the covariance matrix, and important independent
parameters identified by the first-order sensitivity analysis.

parameters were sampled from uniform distributions in the
range [−3, 3]; as each independent parameter is unit normal
this corresponds to sampling a range about the mean of plus
or minus three standard deviations.

The 101 IM-1 calculations collectively required about two
million CPU hours on Vulcan to complete. The problem con-
tained a total of 3,287 non-zero multigroup cross sections. The
decomposition of the covariance matrices yielded 1,344 inde-
pendent parameters. Finally, the dimension-reduction scheme
identified four important independent parameters. These re-
sults are summarized in Table I.

Analysis of the transformation matrices used to map the
independent z-parameters to the multigroup cross sections
identified the cross sections which correspond to each impor-
tant parameter. The most important parameter, responsible for
more than 91% of the estimated total variance in the QoI, corre-
sponded to elastic scattering and radiative capture in hydrogen
in the HDPE. The remaining three important parameters were
associated with the elastic, inelastic, and radiative capture
cross sections of both hydrogen in the HDPE and carbon in
the graphite. These results are summarized in Table II.

The QoI calculated at the 101 samples of the input space
is plotted against the four important independent parameters
in the top row of Figure (1). The partial derivative of the QoI
with respect to the four important independent parameters is
plotted in the bottom row of that figure. Note that the QoI
appears to vary approximately linearly with respect to the first
(and most important) independent parameter but does not seem
to depend upon the other parameters. Also note that while
the partial derivative of the QoI with respect to parameters P2,
P3, and P4 is very nearly constant across the range of those
variables, the partial derivative of the QoI with respect to P1
appears to vary linearly over the range of that variable.

Response surfaces were constructed with Dakota using
data from the 101 adjoint sensitivity calculations performed
on Vulcan. GPM and PCE surrogate models were constructed
using increasing pools data from the calculations. Surrogates
were constructed using only the QoI information (PCE and
GPM models) and using both the QoI and derivative infor-
mation; these “gradient-enhanced” models are referred to as
the GE-PCE and GE-GPM models. The mean and standard
deviation calculated with each of these surrogates are plotted
in Figure 2 against the number of data points that were used
in the construction of the surrogate model.

Both the GPM and PCE surrogate models converge to
a QoI of approximately 4.35 counts / second in the detector
volume and a standard deviation of approximately 0.09 counts
/ second, or approximately 2.1%. Both models demonstrated
similar behavior as a function of the number of data points
available to construct the response surfaces. The inclusion
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z-Parameter Contribution to σ2
Q Isotope Reaction(s)

P1 91.7% H-1 in HDPE (n,el), (n,γ)
P2 6.1% C-nat in Graphite (n,el), (n,in), (n,α)
P3 1.0% H-1 in HDPE (n,el), (n,γ)
P4 0.6% H-1 in HDPE (n,el), (n,γ)

TABLE II. Relative contribution to the total variance and physical meaning of each of the four important independent parameters.
Here (n,el) refers to elastic scattering and (n,in) refers to inelastic scattering.

Fig. 1. QoI and partial derivatives of the QoI with respect to the four most important parameters for the IM-1 problem. Each data
point represents one forward or adjoint-sensitivity calculation performed at a point drawn randomly from uniform distributions
of all of the independent parameters over the domain [−3, 3] and plotted as a function of one parameter at a time.

of derivative information in the gradient-enhanced models
appears to slightly accelerate the convergence of the PCE and
GPM models, although this effect is not pronounced for this
problem. The GE-GPM model demonstrated some instability
in the standard deviation between about 75 and 90 data points
that was not present in the GPM model.

As the GPM and PCE models are essentially free to con-
struct when compared to the cost of solving the forward and
adjoint transport problems it is worth constructing both the
point-only and gradient-enhanced models for comparison. As
the derivative information was calculated for use in the dimen-
sion reduction analysis it may be included in these models
at no additional cost, so even minor improvement in surro-
gate model convergence is beneficial. The oscillations in the
GE-GPM model for standard deviation with large numbers
of sample points may indicate that the GPM model is more
stable without gradient information for this problem.

The QoI calculated at the mean value of the cross sections
very closely matches the QoI as calculated with the surrogate
models constructed with large pools of data points. This means
that a single evaluation of the forward transport problem yields
an accurate prediction of the mean value of the QoI for this
problem. The standard deviation of the QoI, as estimated by a
first-order sensitivity analysis performed at the mean value of
the cross sections, similarly matched the standard deviations
calculated from the surrogate models with a large number of
data points. This result should be unsurprising given second
row of plots in Figure (1); that is, three of the four impor-

tant parameters have partial derivatives that are approximately
constant over their range, and the fourth (and most impor-
tant) parameter’s derivative varies slowly and approximately
linearly over its range. The fundamental assumption of the
first-order sensitivity analysis that the sensitivity coefficients
are constant over the input space is nearly satisfied. For this
particular problem, then, this analysis suggests that a single
forward and single adjoint calculation provide excellent esti-
mates of the QoI and the uncertainty in the QoI.

VII. CONCLUSIONS

The dimension-reduction scheme introduced in this work
was demonstrated to identify a very small subset of indepen-
dent, unit-normal parameters which account for most of the
uncertainty in a quantity of interest due to uncertain cross-
section data. These parameters capture the correlations present
in the nuclear data and are selected based on both the uncer-
tainty in the parameters and the sensitivity of the QoI to these
parameters. The original dimensionality of the problem of
interest precluded the construction of a surrogate model, but
the small subset of important dimensions allowed a variety
of response surfaces to be constructed and analyzed. This
dimension-reduction technique shows great promise for uncer-
tainty quantification analysis of radiation transport problems
with uncertain nuclear data.
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Fig. 2. Mean and Standard Deviation for the CERT Problem as calculated with Dakota using Gaussian process models (top row)
and polynomial chaos expansions (bottom row).
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