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Abstract - Reduced order models are effective in reducing the computational burden of large-scale complex
systems. Proper Orthogonal Decomposition (POD) is one of the most important methods for such application.
Nevertheless, problems parametrized on high dimensional spaces require computations of an enormous number
of simulations in the offline phase. In this paper, the use of sparse grids is suggested to select the sampling
points in an efficient manner. The method exploits the hierarchical nature of the Smolyak algorithm to select
the sparse grid level based on the singular values of the POD basis. Then, a nonintrusive reduced order
model is built using Smolyak’s combination technique. The proposed method was tested and compared with
Radial Basis Functions in two nuclear applications. The first was a one-dimensional slab solved as a diffusion
eigenvalue problem and the second was the two-dimensional IAEA benchmark problem. In both cases, the
results showed that while Radial Basis Functions resulted in a faster reduced order model, Smolyak’s model
provided superior accuracy.

I. INTRODUCTION

Modeling nuclear reactors is a challenging task that in-
volves capturing the interaction between multi-physics phe-
nomena occurring at various scales. In the reactor design pro-
cess, high fidelity simulation tools are often used to provide
a comprehensive solution for the coupled inter-disciplinary
problem. Nevertheless, even with the increasing power of
today’s supercomputers, high fidelity models require a tremen-
dous amount of computational time and memory allocation.
For applications of design optimization, uncertainty quantifi-
cation and control, where many repeated model evaluations
are needed, such models are rendered extremely expensive.

Reduced Order Modeling is an effective technique to re-
duce the dimensionality of large-scale complex systems. The
reduction is achieved by replacing the high fidelity model with
a low-dimensional efficient model capturing the prominent
dynamics of the system. The reduced model can then be used
to provide fast solutions with a controlled level of accuracy.
Different reduced order modeling techniques can be found
in the literature. However, Proper Orthogonal Decomposi-
tion (POD) is the favoured method for nonlinear systems [1].
POD was first introduced as a statistical technique to extract
dominant characteristics from a set of data. The idea was to
represent the data with a set of basic principle components. As
a reduced order method, the method was later developed by
Lumely [2] to model coherent structures in turbulent flow. The
POD method is based on sampling the high fidelity model at
several points in the parameter space to construct the so-called
snapshot matrix. Then, a reduced basis is created through
a Singular Value Decomposition (SVD). The original high
fidelity model is then projected onto the created reduced ba-
sis space by means of a Galerkin projection. The generation
of the snapshot matrix and the building of the model are ac-
complished in the offline phase, which is executed only once.
Afterwards, in the online phase, the generated reduced model
can be run inexpensively at any desired parameter point. In
reactor physics applications, POD model order reduction was

applied to the eigenvalue problem of the diffusion equation
in Ref. [3] and to the time-dependent diffusion equation in
Ref. [4].

However, projection-based POD methods are code intru-
sive, which is a major limitation. For legacy codes where
access to the governing equations is not possible, the approach
is not applicable. For such cases, a slightly different nonintru-
sive POD technique can be employed. The idea is to benefit
from the orthogonality of the subspace basis to generate the
Galerkin expansion coefficients at the sampled points. Thus,
the coefficient values at the snapshots points are computed
without any projection. Then, a surrogate model can be con-
structed to compute the solution at any required non-sampled
point. In literature, different surrogate models have been sug-
gested to compute the expansion coefficients. For lower di-
mensional problems, direct interpolation or splines can be
used as in Ref. [5]. On the other hand, high-dimensionality
problems require more advanced techniques. Radial Basis
Function (RBF) is one of the commonly used methods in such
applications [6].

Nevertheless, the accuracy of the POD method to provide
a solution at a non-sampled point is directly affected by the
choice of the sampling scheme. The snapshots need to capture
the entire dynamics of the model within the desired range.
Moreover, in the nonintrusive approach, the sampling points
should be dense enough for the surrogate model to reproduce
a reliable predictive solution at non-sampled locations. Thus,
for nonintrusive methods, the sampling strategy becomes even
more relevant. In addition, problems parametrized on high
dimensional spaces are prone to the curse of dimensionality,
i.e. the exponential increase of the computational time with
the increase in the number of dimensions. In these cases,
the efficient selection of the sampling points is crucial for
any practical application. Latin Hypercube Sampling (LHS)
can be an efficient sampling technique to address this issue.
However, the lack of adaptivity can be limiting in nonlinear
cases. An extension of LHS was suggested in Ref. [7]. The
technique improves the initial snapshot matrix by adaptively
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selecting new points based on the "influence" of the new point
on the snapshot matrix.

In this paper, a different sampling method based on sparse
grids is suggested. Sparse grids were first introduced by
Smolyak [8] and, ever since, has been used to cope with the
curse of dimensionality in multivariate integrations and inter-
polations. It involves preserving the interpolation property
for the unidimensional formula by a specific combination of
the tensorized product [9]. In the context of reduced order
models, sparse grids were suggested by Peherstorfer [10] to
be used as a machine learning tool to build a reduced order
model. The approach was tested on heat transfer problems.
Also, Xiao [11] presented a method of propagating the ex-
pansion coefficients through time with the use of a sparse
grid interpolant. The method was tested on the Navier-Stokes
equations. This paper, however, presents an approach to ex-
ploit the hierarchical nature of the Smolyak’s algorithm and
select the sparse grid level based on the singular values of
the POD basis. Then, an efficient surrogate reduced order
model is built using a Smolyak interpolant. The approach can
be extended to higher dimensional problems inexpensively.
Although the nonintrusive approach is considered in this pa-
per, it is important to note that the proposed sampling method
can equally be combined with a Galerkin-POD approach. In
this work, the method is tested on two cases. The first is a
one-dimensional diffusion eigenvalue problem and the second
is the 2D IAEA benchmark problem. A comparison between
Smolyak’s interpolant and RBF method is presented.

II. THEORY

1. Proper Orthogonal Decomposition

In nonintrusive applications, the high fidelity model is
considered as a black box mapping a given input to the desired
output. The model, thus, can be seen as an unknown objective
function f : [0 1]d → R, where d is the dimension of the input
defined in the unit hypercube. The objective function f (x; λ)
is dependent on state x and the input parameters of interest
λ. In a Galerkin expansion, the function can be written as a
linear combination of basis functions:

f (x; λ) =

r∑
i=1

ci(λ) ui(x) (1)

where ci are the expansion coefficients which depend on the
input parameter λ and ui(x) are the basis functions.

The POD method seeks an approximation of the objective
function that minimizes the error in L2 norm [12],

min e =

∥∥∥∥∥∥∥ f (x) −
k∑

i=1

ci ui(x)

∥∥∥∥∥∥∥
L2

(2)

The basis functions are chosen such that they are orthonormal.
Thus, the coefficients ci can be computed as follows:

ci =

∫
Ω

f (x) ui(x)dΩ (3)

Assuming that the objective function is discretized in
space, the solution to the minimization problem can be reached
with the Singular Value Decomposition (SVD) as follows [6]:

1. sample the objective function at some preselected sam-
pling points λk;

2. arrange the solutions to construct the snapshot matrix
M = { f (λ1), f (λ2), ..., f (λp)}, where p is the number of
simulations;

3. perform Singular Value Decomposition on the snapshot
matrix M → UDV to obtain a matrix U whose columns
are the left singular vectors, matrix V whose columns are
right singular vectors and a diagonal matrix D with entries
σk corresponding to the singular values of the snapshot
matrix arranged in a descending order.

If the number of non-zero singular values is w, it can be shown
that the rank of the snapshot matrix is also w. The POD basis
vectors (modes) can be selected as the first r left singular
vectors of the matrix U (where r ≤ w). If r is chosen to be
strictly less than w, an approximation error can be quantified
using the singular values (σ),

E =

∑ j
k=r+1 σ

2
k∑ j

k=1 σ
2
k

(4)

2. Sparse Grids

The snapshots for the POD method can be generated by
different methods depending on the sampling scheme. How-
ever, computing the objective function at every possible combi-
nation is unrealistic, especially for high dimensional problems.
Therefore, in this paper, the sampling points are generated on
a sparse grid. The idea is to select a set of nodes for each
dimension in the parameter space. Then, the points are ten-
sorized in a specific way to construct the sparse grid. Many
choices are possible for the unidimensional nodes. The only
requirement is to choose the nodes in a nested manner, i.e.
Xi ⊂ Xi+1 where Xi is the set of nodes for a given index i. An
overview of different possible sparse grid choices can be found
in [13].

In this work, the sparse grid is combined with the POD
method in order to build a nonintrusive model. This imposes
an additional constraint on the selection of the unidimensional
nodes. This is because the nodes need to be separated enough
in the parameter space to produce enriched POD modes cov-
ering the complete range of dynamics of the system. Never-
theless, such selection of nodes might not be the ideal scheme
for the interpolation. In many studies, Chebyshev nodes were
found to perform better than uniform sampling [13]. However,
Chebyshev nodes produce more points very close to each other
at the boundary and fewer points in the central region. This
increases the risk of overlooking some of the dynamics at the
inner region. Therefore, in order to achieve maximum sepa-
ration of points over the entire parameter domain, equidistant
nodes are chosen to generate the sampling points with the
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Fig. 1. Sparse grid points for d = 2 and l = 4.

following formula:

mi =

1 if i = 0
2i−1 + 1 if i > 0

xi
j =


j − 1

mi − 1
for j = 1, 2, ...,mi if mi > 1

0.5 for j = 1 if mi = 1 (5)

Where i is the index for any dimension d and xi
j are the nodes

in set Xi. The points are generated in the hypercube [0 1]d

which can then be scaled accordingly.
The Smolyak algorithm can be applied to combine the

unidimensional nodes into a sparse grid by satisfying the fol-
lowing condition:

q − d + 1 ≤ |i| ≤ q (6)

Where d is the dimension, and |i| = i1 + i2 + ... + id with id
being an integer index in dimension d. q is a parameter such
that q ≥ d. The level (l) of the sparse grid can be defined by
l = q − d. Figure 1 shows the sparse grid for d = 2 and l = 4.
Table I presents the number of points for the first 7 levels for
different dimensions.

The generated points can then be used to construct the
snapshot matrix for the POD. One can select the level to have
the maximum affordable number of snapshots. However, we

TABLE I. Number of sparse grid points by level and dimen-
sion.

Level (l) d = 2 d = 3 d = 4 d = 5 d = 6

0 1 1 1 1 1
1 5 7 9 11 13
2 13 25 41 61 85
3 29 69 137 241 389
4 65 177 401 801 1457
5 145 441 1105 2433 4865
6 321 1073 2929 6993 15121

propose an adaptive level selection by computing the SVD
for each level successively and setting a criterion based on
the decay of the singular values. The concept is based on the
fact that the singular values are representative of the energy of
each POD mode [12]. Thus, higher singular values indicate
POD modes that are contributing more and are considered
more important than modes with lower values. Consequently,
adding points to the snapshot which result only in lower sin-
gular values is analogous to including higher order terms in a
Taylor expansion.

Therefore, after a sufficient number of points, the main
dynamics is captured and any added point will only change the
lower singular values. Thus, benefiting from the hierarchical
nature of the sparse grids, we suggest comparing the slope of
decay for the leading singular values with each level increase.
Then, the appropriate level is selected when no change in the
slopes is observed. However, the “leading” singular values
still need to be defined properly. In the proposed algorithm,
they are defined with respect to the highest singular value, i.e.
the first singular values within a margin of the highest singular
value (σi/σ1). The margin in this work was taken as 10−4.

Thus, the following algorithm is proposed to select the
minimum sparse grid level needed to build a reduced model:

Algorithm
Starting with l = 1

1. generate the sparse points for level l;

2. sample the model at the generated points;

3. construct the snapshot matrix;

4. perform the SVD on the snapshots;

5. compute the logarithmic decay slope for the lead-
ing singular values;

6. compare the computed decay slope with that of
level l−1. If the absolute difference is more than
a given tolerance, increase l and repeat step 1;
otherwise, return U and D .

The algorithm returns the POD modes in the left singular
matrix U and the singular values in the diagonal of D. Equa-
tion 4 can be used to choose the number of POD modes (r)
appropriately. The expansion coefficients (ci) can be computed
from Equation 3 for all parameter points within the training set.
Then, in order to compute the solution for a new parameter
value, one needs to interpolate between the obtained coeffi-
cients. However, interpolation for high dimensional functions
is challenging. Therefore, Smolyak’s combination technique is
used to tensorize unidimensional interpolation functions. Due
to the selection of equally spaced nodes, local piecewise mul-
tilinear functions are chosen as basis functions. The piecewise
linear functions are defined as follows [13]:

ax1 = 1 if i = 1

ax j
i
(x) =

1 − (mi − 1) · |x − xi
j| if |x − xi

j| <
1

mi − 1
0 otherwise (7)
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Where a(x) is the local basis function and mi is defined as in
Eq. 5. The interpolant for one dimension can then be computed
as follows:

U i( f ) =
∑
xi∈Xi

axi (x) f (x) (8)

Then, as shown in [9], the Smolyak combination technique
can be used to construct the multidimensional interpolant:

Aq,d =
∑

q−d+1≤|i|≤q

(−1)q−|i|
(
d − 1
q − |i|

)
(U i1 ( f ) ⊗ ... ⊗ U id ( f )) (9)

3. Radial Basis Function

A different method to compute the expansion coefficients
is using Radial Basis Functions (RBF). RBF assumes a surro-
gate of the form:

c (λ) =

p∑
i=1

αigi(‖λ − λi‖ ) (10)

where p is the number of sample points, αi are coefficients to
be determined. In principle, the kernel function gi(‖λ − λi‖

can be any function of the norm between the required λ and
the sampled λ j. In this study, the multi-quadratic kernel was
selected,

gi(‖λ − λi‖ ) =

√
‖λ − λi‖

2 + γ2 (11)

where γ is a shape parameter to be tuned. The coefficients α
can be found by replacing the obtained values of ci in Equa-
tion 10 and solving the resultant system of linear equations.
Once αi are obtained, which is done only once in the offline
phase, values for ci can be computed in the online phase for
any new parameter λ. It is important to highlight that the se-
lection of the shape parameter has an effect on the accuracy of
the interpolation [14]. The shape parameter in this work was
selected by dividing the data into a training set and a testing
set. The parameter was then optimized by cross validation of
the two sets to minimize the error.

III. RESULTS AND ANALYSIS

Two cases were chosen to test the proposed algorithm.
In both cases, the two-group diffusion eigenvalue equation is
solved. Assumptions of no up scattering and no fast fissions
were made for the equation,

−∇ · D1∇φ1 + (Σa1 + Σ12) φ1 =
1
k
νΣ f 2 φ2

−∇ · D2∇φ2 + Σa2φ2 = Σ12φ1

(12)

where Dg is the group diffusion coefficient, Σag is the group
absorption cross section, Σ12 is the down scattering cross sec-
tion, k is the multiplication factor, φ1 and φ2 are the fast and
thermal flux respectively.

In each test case, Equation 12 is first solved with a well-
established numerical method (Finite Difference in the first
case and Finite Element in the second). Then, the reduced mod-
els (RBF and Smolyak) were built and assessed with respect
to that reference solution. All computations were performed

Fig. 2. Geometry of the slab in Case1.

in a Matlab environment. It is important to note that in both
cases the reference solution itself was fast enough to be solved
inexpensively at any desired point. Thus, building a reduced
order model was not required in those cases. Nevertheless, the
test cases were selected for illustrative purposes only.

1. Test Case 1

The first case is an eigenvalue problem solved with a
Finite Difference scheme. Equation 12 is solved for one spatial
direction. Figure 2 shows the slab geometry, which has a total
thickness of 396 cm. The flux at the boundaries is assumed
to be zero. The fuel region is reflected at both ends with a
reflector of thickness 15.4 cm at each side. Two control rods
are introduced in the fuel region, each with equal thickness
of 15.4 cm. The domain was discretized into a total of 780
mesh points. The percentage insertion of each control rod is
considered as an input parameter for the model. Thus, the
model is parametrized on a 2D space. For this test case, only
the thermal flux is considered as an output for the model.
Nevertheless, the same algorithm can be applied to the fast
flux.

The algorithm was applied to the model and resulted in
a sparse grid level selection of 5 (145 points). The resulting
singular values are shown in Figure 3. For comparison pur-
poses, the singular values of the previous level (l = 4) are
also plotted in the same figure. A close-up view of the first
singular values can be seen in Figure 4. Indeed, by examining
the singular values, it is evident that most of the points added
in level 5 contributed only to the lower part of the plot. In
fact, the algorithm revealed that the maximum absolute slope
change between the two levels in the leading singular values
was 0.03.

To build the reduced models, Equation 3 was first used to
compute the expansion coefficients. Then, two nonintrusive
models were built with the obtained POD modes and coeffi-
cients. The first was RBF with Equation 10 and the second
was Smolyak’s interpolant as in Equation 9. Both models
were tested with 121 points that were not part of the training
set. The maximum error in L2 norm was found to be 17%
for the RBF model and 9% for the Smolyak model. This
case was observed when control rod 1 was inserted 30% and
control rod 2 inserted 5%. Figure 5 shows the flux for this
case. In Figure 6, a different selected point is shown where
also the Smolyak model had outperformed RBF. The reference
model had a runtime of around 10 s. On the other hand, both
RBF and Smolyak models achieved a considerable saving in
computational time. Smolyak model needed 0.1 s for a single
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Fig. 3. Singular values of Case 1 for l = 5 (145points) com-
pared with the previous level of l = 4 (65points).
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Fig. 4. A close-up view of the first singular values seen in
Figure 3.

simulation. The RBF model was even faster than Smolyak by
a factor of 10. The offline time to assemble both models was
around 1451 s.

2. Test Case 2

The second tested case is the 2D IAEA benchmark prob-
lem as described in Ref. [15]. The core has two fuel zones
with five control rods and a reflector. The geometry of the core
can be seen in Figure 7. The steady state, 2-group diffusion
equation (Equation 12) is solved in two spatial dimensions.
The cross sections of the different regions are reported in
Table II. The benchmark problem also provides the axial buck-
ling B2

z,g = 0.8 × 10−4. Thus, a term Dg B2
z,g is added to the

removal term of Equation 12. The boundary conditions are
assumed to be vacuum at the external boundary (Jin

g = 0) and
symmetry at the inner boundaries (∇φg = 0). This problem
was solved with a Finite Element Method (FEM) on an un-
structured mesh employed in a Matlab environment. The FEM
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Fig. 5. Normalized thermal flux for Case 1. CR1 inserted 30%
and CR2 inserted 5% (RBF error = 17% and Smolyak = 9%).
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Fig. 6. Normalized thermal flux for Case 1. CR1 in-
serted 10% and CR2 inserted 60% (RBF error = 5% and
Smolyak = 0.1%).

model is considered as the reference model for the problem.
The insertion percentage of the control rods were considered as
input to the model. Thus, a nonintrusive reduced order model
of the FEM is built with 5 input parameters corresponding to
each control rod position. The model output was considered
to be the thermal flux.

The algorithm selected sparse grid level 4, which resulted
in 801 simulation points. The leading singular values are plot-
ted in Figure 8 along with the singular values of the previous
level. The figure shows the similarity of the decay between
level 4 and level 3. This indicates that most of the new level
points had little contribution to the dominant singular values.
The resultant POD modes were truncated to r = 50 in order
to build the reduced RBF and Smolyak models. The expan-
sion coefficients were obtained by applying Equation 3. The
models were then tested with 1500 points that were not part
of the training set. The points were generated on a uniform
full grid spanning the parameter domain. The error for both
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Fig. 7. Geometry of the 2D IAEA benchmark problem as
implemented for Test Case 2.

TABLE II. Cross Section data for the different regions in Test
Case 2.

Fuel 1 Fuel 2 Control Rod Reflector

D1 [cm] 1.5 1.5 1.5 2
D2 [cm] 0.4 0.4 0.4 0.3
Σ12 [cm−1] 0.02 0.02 0.02 0.04
Σa1 [cm−1] 0.01 0.01 0.01 0
Σa2 [cm−1] 0.08 0.085 0.13 0.01
νΣ f 2 [cm−1] 0.135 0.135 0.135 0

models is compared in Figure 9. The reference FEM model
computed a single simulation in about 3 s. RBF model needed
2404 s to assemble the model (offline time) and 0.005 s for a
single simulation (online time). On the other hand, Smolyak
model needed almost the same time for the offline phase and
0.3 s for the online phase. The results show that while RBF
was faster in running a single simulation, Smolyak model
outperformed RBF by a considerable margin. All error analy-
ses were assessed in the L2 norm. The average error for the
RBF was 1.03% whereas the average Smolyak’s error was
found to be 0.08%. The maximum observed RBF error was
2.7%. The same configuration resulted in a Smolyak error of
0.04%. This case is shown in Figure 10. The flux is given
along the x-axis and along the diagonal line (y = x). On the
other hand, Figure 11 shows the configuration that resulted in
a maximum Smolyak error, which was found to be 0.3%. This
configuration resulted in an RBF error of 2.7%.

IV. CONCLUSIONS

Building a reduced order POD model for high dimen-
sional problems can be achieved efficiently with the use of
sparse grids. The suggested algorithm of comparing the sin-
gular values of the different spars grid levels provides a valu-
able tool for the efficient selection of the sampling points.
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Fig. 8. Leading singular values for Test Case 2 plotted in
comparison with the singular values of the previous level.
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Fig. 9. Test Case 2 error comparison between RBF and
Smolyak models for 1500 simulation points.

Thus, the offline time can be reduced significantly in prob-
lems parametrized on high dimensional spaces. Moreover,
combining sparse grid sampling with Smolyak’s combination
technique results in an effective nonintrusive reduced order
model. In this work, Smolyak’s interpolant was tested with
equally spaced nodes and piecewise linear interpolation. Also,
a comparison with RBF was presented for two nuclear prob-
lems. In both cases, the results showed that while RBF resulted
in a faster reduced order model, Smolyak’s model provided a
superior accuracy. Nevertheless, different RBF kernels were
not studied and the shape parameter was selected by manual
optimization. As suggested in Ref. [14], the accuracy of the
RBF can be improved with advanced optimization.

Although the sparse grid approach generated an efficient
set of sampling points compared to the full grid tensorization,
the number of points still depends on the dimension d. As is
evident from Table I, the number of points increases sharply
with the increase in d and l. Therefore, the algorithm may
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Fig. 10. Thermal flux for the configuration that resulted in a
maximum RBF error in Test Case 2 (control rods insertion
percentages were [CR1 = 10%, CR2 = 90%, CR3 = 58%,
CR4 = 90%, CR5 = 10%]). RBF error was 2.7% and
Smolyak’s error was 0.04%.
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Fig. 11. Thermal flux for the configuration that resulted in
a maximum Smolyak model error in Test Case 2 (control
rods insertion percentages were [CR1 = 10%, CR2 = 10%,
CR3 = 90%, CR4 = 10%, CR5 = 10%]). RBF error was 1.8%
and Smolyak’s error was 0.3%.
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result in an infeasible number of simulations for really high
dimensions. Similarly, models with strong nonlinearities will
need a higher level of sparse grids. In these cases, adaptive
sparse grids can be employed to increase the sampling points
only in regions of higher interest. Therefore, in future work,
we will investigate the use of adaptive sparse grids in building
reduced order models.
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