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Abstract – Radiation shields afford satellite microelectronics critical protection, but their weight can 
increase launch costs or limit capability. Automated transport simulation-based design optimization, 
particularly risk-informed design, helps designers explore virtual prototypes that meet mission requirements, 
including performing in the face of manufacturing and space radiation environment uncertainty. This paper 
focuses on adjoint-based sensitivities of transport simulation responses to design or uncertain parameters, 
and their role in efficient uncertainty analysis. Particular emphasis is placed on gradient-enabled reliability 
and polynomial chaos methods for their advantages over Monte Carlo and basic first-order uncertainty 
propagation. When married with optimization algorithms, these ultimately facilitate robust design 
accounting for uncertainty, resulting in less conservative, more cost-effective designs.  
 

 
I. INTRODUCTION 

 
Satellites orbiting Earth are subject to harsh radiation 

environments primarily due to magnetically trapped electrons 
and protons, protons from solar flares, and cosmic rays. 
System designers typically use unhardened commercial off-
the-shelf microelectronics due to cost, flexibility, and 
capability benefits. These electronics and other system 
components therefore require radiation shielding sufficient 
for the anticipated mission characteristics, such as service 
altitude, duration, and solar cycles and flares. To meet strict 
weight and space constraints, the shield mass must be 
minimal, while affording required electronics robustness to 
the intense and variable space radiation environment. 

Optimal shield design can be non-intuitive as 
inelastic/elastic scattering and production/absorption of 
bremsstrahlung differentially affect electron and proton 
transport. For example, while a single low-Z (atomic number) 
shield is most effective for protons alone, graded-Z shields 
are considerably more effective for the combined 
electron/proton environment [1]. Our companion paper [2] 
describes an automated adjoint-enabled shield design 
optimization process that uses a deterministic radiation 
transport simulator to select optimal materials and layer 
thicknesses for such a graded-Z shield. 

Shields must meet radiation dose limits for nominal 
design conditions, and also perform in an uncertain, 
temporally varying, radiation environment, and in the face of 
manufacturing variability, for example when using 
composites or advanced manufacturing processes. This paper 
focuses on applying global forward uncertainty 
quantification (UQ) algorithms to an adjoint-enabled 
radiation transport code, to predict the effect of such 
uncertainties on shield performance. By understanding these 
effects early in a risk-informed design process, or ultimately, 
integrating them into an automated simulation-based robust 
design process, designers should be able to be less 
conservative in meeting probabilistic requirements. To make 
such analyses practical, parametric design optimization and 

UQ must be computationally efficient. This paper 
demonstrates potential efficiency gains from using adjoint-
based sensitivities in combination with advanced UQ 
methods. 

 
II. DESCRIPTION OF THE ACTUAL WORK 

 
In this work, we derive and implement adjoint-based 

sensitivities of radiation transport responses, such as 
component dose, to common shield design factors such as 
material composition, layer geometry, and source spectrum. 
Such local (at a point in parameter space) derivatives are 
often used for basic first-order forward uncertainty 
propagation, for example to transform a multivariate normal 
cross section covariance matrix to a corresponding response 
covariance matrix.  

The present exposition emphasizes novel combination of 
these sensitivities with derivative-enhanced UQ methods 
including reliability and polynomial chaos expansion 
methods to demonstrate potential cost savings over Monte 
Carlo sampling, together with accuracy advantages over 
basic first-order UQ approaches. Their joint application is 
demonstrated in a representative radiation shield uncertainty 
quantification analysis. 
 
1. Adjoint-based Parameter Sensitivities 

 
To model satellite electron/proton shields and expected 

dose to silicon components of interest, we consider the 
familiar Boltzmann transport equation (1a) with source term 
𝑞𝑞 and boundary conditions given by (1b).  

 
  Ω ⋅ ∇𝜓𝜓 + 𝜎𝜎𝑡𝑡(𝑟𝑟,𝐸𝐸)𝜓𝜓 = 
 ∫ 𝑑𝑑𝐸𝐸′ ∫ 𝑑𝑑𝛺𝛺′𝜎𝜎𝑠𝑠(𝑟𝑟,𝛺𝛺′ → 𝛺𝛺,𝐸𝐸′ → 𝐸𝐸)𝜓𝜓(𝑟𝑟,𝛺𝛺′,𝐸𝐸′)4𝜋𝜋𝐸𝐸′ + 𝑞𝑞 
   (1a) 

 
  𝜓𝜓 = 𝜓𝜓𝑏𝑏(𝑟𝑟,Ω,𝐸𝐸), {𝑟𝑟 ∈ 𝜕𝜕𝜕𝜕|𝛺𝛺 ⋅ 𝑛𝑛�⃗ < 0} (1b) 



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, 
Jeju, Korea, April 16-20, 2017, on USB (2017) 

Shield design and uncertainty quantification focus on derived 
quantities of interest, such as an integral response 𝑔𝑔 

 
  𝑔𝑔 = ∫ 𝑑𝑑𝑑𝑑 ∫ 𝑑𝑑𝑑𝑑 ∫ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟,𝛺𝛺,𝐸𝐸)𝑞𝑞†(𝑟𝑟,𝐸𝐸)4𝜋𝜋𝐸𝐸𝐷𝐷 . (2) 
 
The functional 𝑞𝑞†  is chosen to measure the response of 
interest, for example, 𝑞𝑞† = 𝜎𝜎𝑑𝑑(𝑟𝑟,𝐸𝐸)/𝑉𝑉  to yield component 
dose.  

To enable efficient design optimization and uncertainty 
quantification, we leverage transport community advances in 
adjoint formulations for sensitivities, for example as 
described in [3, 4]. The relevant derivations are summarized 
here; additional details can be found in [2] and [4]. 

Consider (1a) in more succinct notation using streaming 
(𝐿𝐿), collision (𝐶𝐶), and scattering (𝑆𝑆) operators 

 
  𝐿𝐿𝜓𝜓 + 𝐶𝐶𝐶𝐶 = 𝑆𝑆𝑆𝑆 + 𝑞𝑞, (3) 
 
together with the inner product 〈∙,∙〉 induced by the integrals 
over space 𝐷𝐷, energy 𝐸𝐸, and direction Ω shown in (2). We 
form a Lagrangian 
 
  ℒ = ⟨𝜓𝜓, 𝑞𝑞†⟩ − ⟨𝜓𝜓†, 𝐿𝐿𝜓𝜓 + 𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆 − 𝑞𝑞 ⟩ (4) 
 
and note that when the forward transport equation (3) is 
satisfied, (4) reduces to the integral response 𝑔𝑔 of interest. 
Differentiating the Lagrangian with respect to an arbitrary 
input parameter 𝑝𝑝 yields 
 
  𝑑𝑑ℒ

𝑑𝑑𝑑𝑑
= 𝜕𝜕ℒ

𝜕𝜕𝜕𝜕
+ 𝜕𝜕ℒ

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. (5) 
 
By requiring that 𝜓𝜓  satisfy the forward transport equation (3) 
and 𝜓𝜓† satisfy the corresponding adjoint transport equation 
 
  (𝐿𝐿† + 𝐶𝐶† − 𝑆𝑆†)𝜓𝜓† = 𝑞𝑞†, (6) 
 
we find (details in [2]) that  
 
𝑑𝑑ℒ
𝑑𝑑𝑑𝑑

= ��𝜓𝜓, 𝜕𝜕𝑞𝑞
†

𝜕𝜕𝜕𝜕
� + �𝜓𝜓†, 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� − �𝜓𝜓†,� 𝜕𝜕

𝜕𝜕𝜕𝜕
(𝐿𝐿 + 𝐶𝐶 − 𝑆𝑆)�𝜓𝜓�� =

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

.   
   (7) 
 
Hence, the sensitivity of the response 𝑔𝑔 to any parameter 𝑝𝑝 
depends on the derivatives of sources and operators, but the 
sensitivity with respect to any parameter can be computed 
from inner products involving the same forward and adjoint 
flux solutions. So response derivatives with respect to a 
potentially large number of parameters only require two 
transport solves and the modest computational cost of the 
inner products in (7). 

The calculation of sensitivities (7) for specific 
parameters of interest is detailed in [2]. For example, the 

sensitivity of the response 𝑔𝑔 to shield material composition 
requires expressing the operators 𝐶𝐶  and 𝑆𝑆  in terms of the 
multigroup approximation and differentiating them with 
respect to material volume fractions. Similarly, 𝐶𝐶 , 𝑆𝑆 , and 
𝑞𝑞† can be differentiated with respect to parameterized 
material interface locations, resulting in sensitivities to 
geometry or component location. For the computational 
studies shown below, forward (3) and adjoint (6) transport 
solves were conducted with the SCEPTRE deterministic 
radiation transport code [5], and adjoint-based sensitivities to 
design parameters (as well as to source spectra) were newly 
implemented in and evaluated with companion post-
processing tools. 
 
2. Uncertainty Quantification Methods 

 
Parametric forward uncertainty quantification assumes 

distributions on the uncertain simulation input parameters u, 
runs one or more code calculations over the parameter space, 
and calculates statistics such as moments or 
probability/response level pairs (cumulative distribution 
functions) on simulation responses of interest 𝑔𝑔(𝑢𝑢). These 
statistics can then be used to understand the typical mean or 
median performance of the system, variability or spread in 
performance, or the likelihood of exceeding design 
requirements. We focus here on three classes of global 
parametric UQ methods, which attempt to assess the 
influence of input parameter distributions considered over 
their full support. Some are based on response values only, 
while others can take advantage of the response value and its 
gradient with respect to uncertain parameters u at each point 
evaluated in the parameter space. A more detailed summary 
of these methods, with references, can be found in [6]. 

In Monte Carlo sampling, including the Latin 
hypercube variant used here, values of the input parameters 
are randomly drawn from the specified input probability 
distributions. The 𝑁𝑁 (function value-only) simulation runs at 
these values can then all be performed concurrently. Statistics 
such as sample moments and percentiles are calculated 
directly from the resulting ensemble, for example, mean and 
standard deviation:  
  𝜇𝜇𝑔𝑔 = 1

𝑁𝑁
∑ 𝑔𝑔(𝑢𝑢𝑖𝑖)𝑖𝑖 , and (8a) 

 

  𝜎𝜎𝑔𝑔 = �1
𝑁𝑁
∑ �𝑔𝑔(𝑢𝑢𝑖𝑖) − 𝜇𝜇𝑔𝑔�

2
𝑖𝑖 . (8b) 

 
Latin hypercube sampling (LHS) has several advantages 

over pure Monte Carlo, including sampling from equi-
probable one-dimensional strata commensurate with the 
input distributions to better spread the points, well-mixed 
multi-dimensional samples that respect correlations, and 
greater efficiency in estimating moment statistics. While 
robust and easy to understand, Monte Carlo methods 
converge statistics slowly, e.g., halving the error in a mean 
estimate requires quadruple the number of model evaluations, 
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and thousands to millions of samples may be necessary to 
resolve a tail probability. 

Reliability methods are often more efficient at 
calculating specific probability or response levels. They 
address questions such as “What is the probability of the 
response 𝑔𝑔(𝑢𝑢) being less than 𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  (typically a failure 
threshold) or “What is the maximal response corresponding 
to a 0.99 probability?” Among reliability methods, mean 
value is the cheapest and most approximate. A single 
evaluation of the computational model and its derivatives at 
the uncertain variable means are used to estimate any 
moments or probability levels. For example, in first-order 
mean value, the response mean and standard deviation are 
calculated at the uncertain variable means as: 

 
  𝜇𝜇𝑔𝑔 = 𝑔𝑔(𝜇𝜇𝑢𝑢) (9a) 
 
  𝐶𝐶𝐶𝐶𝐶𝐶(𝑔𝑔) = ∇𝑢𝑢𝑔𝑔(𝜇𝜇𝑢𝑢)𝑇𝑇Cov(𝑢𝑢)∇𝑢𝑢𝑔𝑔(𝜇𝜇𝑢𝑢) (9b) 
 
The first-order covariance estimate in (9b) is often 
colloquially referred to as the “sandwich” formula or first-
order propagation of variance. It is commonly used to assess 
the influence of variances and covariances associated with 
multi-group cross section data 𝑢𝑢 on a transport response of 
interest, 𝑔𝑔. 

Most probable point search methods, another class of 
gradient-based reliability methods, reformulate the UQ 
problem as an optimization problem. Given a response level 
of interest 𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , for example dose = 10 krad, an 
optimization solver finds the most probable point (MPP) in 
input space u that gives rise to that target: 

 
  min

𝑢𝑢
 𝑢𝑢𝑇𝑇𝑢𝑢 (10a) 

 
  𝑠𝑠. 𝑡𝑡.  𝑔𝑔(𝑢𝑢) = 𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (10b) 
 
Then probabilities are calculated by (optionally forming an 
approximation and) integrating about the MPP. Reliability 
methods typically use gradient-based optimization (nonlinear 
programming) solvers, such as sequential quadratic 
programming (SQP), to solve the transport simulation-
constrained optimization problem (10), and thus directly take 
advantage of adjoint derivatives of the response QoIs during 
the solution process. 

Polynomial chaos expansions (PCE) approximate the 
response function 𝑔𝑔(𝑢𝑢) with an orthogonal polynomial 
expansion (11a), where the polynomials 𝜑𝜑𝑗𝑗(𝑢𝑢) are tailored to 
the uncertain variable distributions to accelerate 
convergence.  
 
  𝑔𝑔(𝑢𝑢) ≈ ∑ 𝑐𝑐𝑗𝑗𝜑𝜑𝑗𝑗(𝑢𝑢)𝑗𝑗  (11a) 
 
   𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
(𝑢𝑢) ≈ ∑ 𝑐𝑐𝑗𝑗

𝜕𝜕𝜙𝜙𝑗𝑗
𝜕𝜕𝜕𝜕

(𝑢𝑢)𝑗𝑗  (11b) 

The coefficients of the approximation 𝑐𝑐𝑗𝑗  may be estimated 
with a number of techniques. When using regression and 
related approaches, the approximation and its analytic 
derivative (11b) can be trained with both function value 
𝑔𝑔(𝑢𝑢𝑖𝑖)  and gradient  𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
(𝑢𝑢𝑖𝑖)  information from each 

simulation sample point 𝑖𝑖 = 1, … ,𝑁𝑁. 
Once the approximation is constructed, moments can be 

calculated explicitly from the functional form, appealing to 
the orthogonality of the basis. When the response 𝑔𝑔(𝑢𝑢) is 
well-approximated by the PCE, highly accurate statistics of it 
can be obtained. 

 
3. Satellite UQ Problem Description 

 
Consider a satellite to be flown in a 3000km circular 

equatorial orbit, with the surrounding radiation environment 
defined by the Spenvis AE8 and AP8 models [7]. Assume 
that the design optimization process described in our 
companion paper [2] was used with an adjoint-enabled 
radiation transport code to find the best performing shield. 
The designer now wishes to predict the optimal shield’s 
performance given uncertainties in the radiation source 
spectra, assumed transport cross section uncertainties, 
material composition, and manufacturing processes.  

Figure 1 shows the simplified one-dimensional slab 
(infinite in other directions) geometry analyzed for this 
scenario. The electron and proton radiation source is imposed 
on the left boundary, while vacuum is prescribed on the right. 
The shield is comprised of a 30 mil aluminum casing, 
followed by three 5 mm shield layers, protecting the epoxy-
embedded silicon representing microelectronics.  

 

 
Fig. 1. Diagram of satellite shielding problem (not to scale). 
Compositions of layers L1, L2, and L3 are shown in Table I. 

 
The optimal amount of uniformly mixed ultra-high 

molecular weight polyethylene (UHMWPE) and Ta 
comprising each of layers L1, L2, and L3 was automatically 
determined by the methods in [2]. The designed (nominal) 
values of these material amounts are shown in the mean 
column of Table I. (Note that this design exploration took 
advantage of the one-dimensional geometry and fixed each 
layer thickness at arbitrary nominal values. The densities 
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resulting from the optimization may therefore not be 
physical, but can be readily rescaled based on thickness.) 

 
Table I. Optimal shield layer compositions, with 
prescribed uncertainties 
Layer: Mixture   mean 𝜇𝜇 

(g/cm2) 
standard deviation 𝜎𝜎 

(g/cm2) 
L1: UHMWPE 3.4424e+00 1.7212e-01 
L1: Ta  1.3198e-02 6.5992e-04 
L2: UHMWPE 3.6750e+00 1.8375e-01 
L2: Ta  6.1353e-03 3.0677e-04 
L3: UHMWPE 4.8077e+00 2.4039e-01 
L3: Ta  9.7317e-02 4.8658e-03 

 
The uncertainty quantification demonstration presented 

here addresses uncertainty in the composite material 
manufacturing process. The as-manufactured material 
densities are assumed to follow a normal distribution with 
means and standard deviations shown in Table I, where the 
standard deviations 𝜎𝜎 are take to be 5% of nominal (mean 𝜇𝜇). 
The distributions are truncated below at zero to enforce 
nonnegative material density.  
 
III. RESULTS 
 

Dakota-based [6] forward uncertainty quantification 
studies using each of the methods described in Section II.2. 
were conducted on the satellite demonstration problem, using 
the SCEPTRE deterministic radiation transport code [5] and 
associated adjoint post-processing tools. LHS samples of 
sizes N = 5, 10, 15, 20, 25, 50, 100, 200, 400, 800, 1600, and 
3200 were generated with both function values and adjoint-
based gradients. Owing to the regression training approach 
used, the same datasets can be used to directly compute 
sample statistics and to train function value-only (PCEf) and 
gradient-enhanced (PCEg) PCEs. Gradient-based mean-
value (MV) and most probable point (MPP) reliability studies 
were conducted as well.  

The (relative) computational cost of the methods is 
summarized in Table II, where the 1.75 cost of a forward + 
adjoint solve relative to a forward-only solve was estimated 
empirically across all simulation runs completed. The LHS 
and PCE methods were applied with varying samples sizes N 
as noted above. When MPP reliability methods are used to 
evaluate multiple probability levels (here, 15 levels for each 
of mass and dose, for a total of 30 levels), the calculation can 
be warm-started for each subsequent probability level. So, 
while a single probability level required 4 forward and 4 
adjoint solves, all 30 levels calculated only required 54 
forward and 54 adjoint solves in total.   

 
 
 
 
 

Table II. Cost of UQ studies, relative to cost of one 
forward transport calculation. 
Method  Relative Cost Notes 
MV 1.75 1 forward + 1 adjoint solve 

MPP 

4 * 1.75 4 * (fwd. + adj.) for a single 
probability level 

54 * 1.75 
54 * (fwd. + adj.) in total for 

30 probability levels  
(see text) 

LHS_N; 
PCEf_N N N (number of samples) 

forward solves 

PCEg_N N * 1.75 N (number of samples) 
forward + adjoint solves  

 
Table III summarizes the mean and standard deviation 

for dose, as calculated by a select subset of the Dakota UQ 
methods. (Statistics on both mass and dose were computed, 
but only the more interesting results for dose are presented 
here. For this problem formulation, mass is exactly linear in 
the uncertain variables considered and all the methods predict 
statistics well for it).  
 

Table III. Predicted moments for dose (krad) from 
select UQ methods. 
Method  Mean  Standard Deviation 
MV 10.0133 0.3802 
PCEg_10 10.0227 0.3809 
PCEf_20 10.0220 0.3808 
LHS_50 10.0243 0.3979 
LHS_3200 10.0229 0.3808 

 
Figures 2 and 3 show cumulative distribution functions 

(CDFs) resulting from specifying probability levels to 
various Dakota methods and requesting calculation of the 
corresponding dose levels. For example, the median dose is 
10.0 krad and the probability of the dose being less than 10.9 
krad is approximately 99%. From Figure 2 one might 
conclude that all the UQ methods, save the under-resolved 
LHS_50, are in good agreement; indeed, they all agree well 
near the median. Figure 3 highlights the challenge in 
predicting upper tail probabilities, where the methods deviate 
by as much as 0.1 krad. 
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Fig. 2. Cumulative distribution function for dose as a 

result of several select UQ methods.  

 
Fig. 3. Cumulative distribution function for dose, 

emphasizing upper percentiles. 
 
Figures 4, 5, and 6, show the convergence of various 

methods for the mean, standard deviation, and 99th percentile, 
respectively. For mean and standard deviation, the LHS and 
PCE methods appear to be converging on the same solution, 
while for the 99th percentile, the LHS is likely still under-
resolved. (Dakota’s MPP methods cannot calculate moment 
statistics, so they are omitted.) Both value-only and adjoint-
enhanced PCE perform well for this smooth problem, with 
the gradient-enhanced variant showing a slight computational 
efficiency advantage. Figure 6 again demonstrates the 
challenge of estimating a tail probability with sampling 
methods (unresolved even at 3200 samples), and that the 
MPP and PCE methods show promise in reliably estimating 
these quantities with lower computational cost (roughly 4 and 
20 model evaluations, respectively).  

 
Fig. 4. Convergence of mean dose as a function of 

simulation cost. 

 
Fig. 5. Convergence of standard deviation of dose as a 

function of simulation cost. 

 
Fig. 6. Convergence of 99th percentile of dose as a 

function of simulation cost. 
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IV. CONCLUSIONS  
 
These preliminary results show promise that gradient-

enhanced UQ methods can be more efficient than function 
value-only approaches in analyzing satellite radiation shields. 
Advanced reliability and PCE UQ methods can take 
advantage of adjoint-based sensitivities and calculate more 
accurate statistics than first-order approximations or Monte 
Carlo sampling. The performance gains reported here are 
modest. As we turn our attention to analyses with more 
complex geometries and transport physics, we hope to see 
more substantial benefit to the gradient-based MPP reliability 
and gradient-enhanced PCE methods. Future work will also 
consider uncertainty in mission source spectrum 
environment, using the richer characterization available in 
the AE9/AP9/SPM: Radiation Belt and Space Plasma 
Specification Models [8]. 

Our planned work includes enabling risk-informed 
shield design, where a designer can specify probabilistic 
performance constraints such as “the probability of dose 
exceeding 10 krad must be less than 0.001,” or “the mean 
dose plus three standard deviations must be less than 10.1 
krad.”  A nested design optimization under uncertainty 
strategy (Figure 7) can be used to find designs satisfying such 
probabilistic requirements. Here, for each design proposed by 
the optimizer, an inner iteration performs UQ on the 
simulation responses 𝑔𝑔(𝑥𝑥;𝑢𝑢), resulting in statistics 𝑠𝑠(𝑥𝑥). The 
statistics can be included in objectives or constraints of the 
outer optimization problem. 

 

 
 
Fig. 7. Depiction of nested design optimization under 

uncertainty, with analytic design gradients of statistics.  
 

Nested design processes can be prohibitively expensive 
when each inner iteration requires a Monte Carlo UQ 
analysis. As previously discussed, our adjoint-enabled 
transport solver enables more efficient gradient-based UQ 
methods in the inner loop. In addition, when using gradient-
based UQ methods, Dakota can also compute accurate 
sensitivities of the statistics to the design variables, enabling 
efficient gradient-based optimization at the outer loop. This 
will enable risk-informed design at significantly lower cost 
than sampling-based UQ and enable analysts to directly find 
optimal designs that meet probabilistic constraints. 
 
 

NOMENCLATURE 
 
C = collision operator 
D = spatial domain, discrete-to-moment operator 
E = particle energy 
g = response to radiation 
i = simulation evaluation index 
j = basis polynomial index 
L = streaming operator 
ℒ = Lagrangian 
m = material index 
𝜇𝜇𝑔𝑔 = mean response 
Ω = particle direction 
p = arbitrary design/uncertain parameter 
𝜓𝜓 = angular flux 
𝜓𝜓† = adjoint angular flux 
q = transport source 
𝑞𝑞† = adjoint transport source 
r = spatial coordinate 
S = scattering operator 
s = arbitrary statistic 
𝜎𝜎𝑑𝑑 = dose cross section 
𝜎𝜎𝑔𝑔 = response standard deviation 
𝜎𝜎𝑠𝑠 = scattering cross section 
𝜎𝜎𝑡𝑡 = total cross section 
u = uncertain variable/parameter 
x = design variable/parameter 
V = volume of region 
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