
M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Kriging-based Surrogate Models for Uncertainty Quantification and Sensitivity Analysis

Xu Wu, Chen Wang, Tomasz Kozlowski

Department of Nuclear, Plasma and Radiological Engineering
University of Illinois at Urbana-Champaign

224 Talbot Laboratory, 104 South Wright Street, Urbana, Illinois, 61801, USA
xuwu2@illinois.edu, chenw3@illinois.edu, txk@illinois.edu

Abstract - In this paper, we propose to use Kriging (also called Gaussian Process emulators) surrogate models
for uncertainty and sensitivty analysis in nuclear engineering. The motivation is to significantly reduce the
computational cost while maintaining a desirable accuracy. Kriging modeling only requires the input/output
relations of the full model and thus can treat the full model as a black box. We investigated the Point Reactor
Kinetics Equation (PRKE) with lumped parameter thermal-hydraulics feedback model to compare Monte
Carlo (MC) sampling, Polynomial Chaos Expansion (PCE) and Kriging surrogate model for uncertainty and
sensitivity analysis. We applied Principal Component Analysis (PCA) for the dimension reduction. The Kriging
surrogate models are built for the principal component scores. Comparison of the statistical moments of results
from MC sampling of the full model, PCE and Kriging surroagte model shows that the Kriging surrogate
model can accurately predict the statistical moments of the full model outputs. It only requires tens to a few
hundreds of full model runs for the training and after that it can be executed with negligible cost.

I. INTRODUCTION

Within the BEPU (Best Estimate plus Uncertainty) [1]
methodology uncertainties must be quantified in order to prove
that the investigated design remains within acceptance criteria.
This requires the propagation of input uncertainties to the
output predictions, known as Uncertainty Quantification (UQ).
Sensitivity analysis (SA) is the study of how uncertain input
parameters contribute to the variation in the output. Reliable
UQ and SA are significant parts of modelling and simulation.

Modern nuclear system simulations emphasize improve-
ments of computational accuracy. One of the main directions
to achieve this is to use coupled multi-physics approach with
high fidelity simulators. The term “multi-physics” means the
requirement of coupling of discrete physics. Coupled systems
that integrate relevant phenomena in reactor systems such as
neutronics, thermal-hydraulics, and fuel performance analysis
are needed to improve design, operation and safety method-
ologies of modern reactors.

Extensive UQ and SA efforts are subsequently required
for such multi-physics coupled simulations, which poses chal-
lenges to the current UQ and SA methodologies as listed
below:

1. The nuclear reactor physics simulation normally involves
high dimensionality spaces (e. g. cross-sections), while
thermal-hydraulics and fuel performance modeling com-
monly includes strong non-linear phenomena.

2. Perturbation theory and adjoint approaches are less suit-
able when large uncertainty and non-linear effects are
significant.

3. Stochastic spectral methods like Polymial Choas Expan-
sion and Stochastic Collocation are very efficient and
can have spectral convergence if well-designed, but their
performance is greatly limited from the notorious "Curse
of Dimensionality".

4. Brute force Monte Carlo (MC) sampling is robust and in-
dependent of the model dimension. But it has extremely
slow convergence rate and requires large number of sim-
ulations, which is impractical for many simulation codes
in nuclear engineering even with high performance com-
puting.

In this paper, we propose to use Kriging-based surrogate
models [2] [3] [4] [5] for UQ and SA in nuclear engineer-
ing. Surrogate model is an approximation of the input/output
relation of a compututer code/model. It is also called meta-
model, response surface or emulator. Surroagte models usually
take much less computational time than the full model (like
TRACE, BISON, etc.) while maintaining the input/output
relation of the original model to a desirable accuracy. Con-
structing the surrogate models normally requires small number
of executions of the original model. Once validated, surro-
gate models can be used to perform uncertainty and sensitivity
analysis, Bayesian inversion, optimization, etc.

II. THEORY

1. Essential Components of Kriging

In statistics, Gaussian process regression [6] [7] is widely
used as a method of interpolation for which the interpolated
values are modeled by a Gaussian process. In geostatistics
(also known as spatial statistics), regression with Gaussian
processes is known as Kriging [3]. Kriging has been widely
used as surrogate models for deterministic computer models.
A Kriging model is a generalized linear regression model
that accounts for the correlation in the residuals between the
regression model and the observations.

Consider a computer model y = G(x). Without loss of gen-
erality, consider y as a scalar and x is a d-dimensional vector
representing d input parameters. Assuming that the computer
model output is known at m design sites X = (x1, x2, . . . , xm)>.
The corresponding output values are y = (y1, y2, . . . , ym)> =
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[G(x1),G(x2), . . . ,G(xm)]>.
The mathematical form of a Kriging model has two parts:

ŷ(x) =

n∑
j=1

β j f j(x) + z(x) = f>(x)β + z(x) (1)

where f =
[
f1, f2, . . . , fn

]>. The first part is a linear regression
of the data with n regressors modeling the drift of the process
mean. The second part z(x) is a stationary Gaussian random
process with zero mean and covariance:

Cov
[
z(xi), z(x j)

]
= σ2R

(
xi, x j

)
(2)

where σ2 is the process variance.
The spatial correlation function (SCF) R

(
xi, x j

)
controls

the smoothness of the resulting Kriging model and the influ-
ence of nearby points. The Gaussian function is the most
commonly used SCF as it provides a relatively smooth and
infinitely differentiable surface:

R
(
xi, x j

)
= R

(
|xi − x j|

)
= e−

|xi−x j |
2

θ (3)

TABLE I: Common spatial correlation functions ( or correla-
tion kernels)

Name Expression
(
h = |xi − x j|

)
Exponential R(h) = exp

(
−
|h|
θ

)
Power-exponential R(h) = exp

(
−
|h|p

θp

)
Gaussian R(h) = exp

(
−
|h|2

2θ2

)
Matern ν = 3/2 R(h) =

(
1 +

√
3|h|
θ

)
exp

(
−
√

3|h|
θ

)
Matern ν = 5/2 R(h) =

(
1 +

√
5|h|
θ

+ 5h2

3θ2

)
exp

(
−

√
5|h|
θ

)
The correlation function scale parameter θ is essentially

a width parameter which affects how far a sample point’s
influence extends. Different θ’s can be chosen for different
input dimensions:

R
(
|xi − x j|

)
=

d∏
k=1

e−
|xi,k−x j,k |

2

θk (4)

2. Prediction using Kriging Surrogate Model

Given the design sites X and corresponding output values
Y, to predict the output values at a new input location x∗ using
the Kriging model, we first define the following notations:

1. The set of regression functions f =
[
f1, f2, . . . , fn

]> eval-
uated at the unknown point x∗:

f(x∗) =
[
f1(x∗), f2(x∗), . . . , fn(x∗)

]>
2. The set of regression functions evaluated at m known

design points:

F = [f(x1), f(x2), . . . , f(xm)]>

=


f1(x1) f2(x1) · · · fn(x1)
f1(x2) f2(x2) · · · fn(x2)
...

...
. . .

...
f1(xm) f2(xm) · · · fn(xm)



3. The correlation of x∗ with design points X:

r(x∗) =
[
R (x∗, x1) ,R (x∗, x2) , . . . ,R (x∗, xm)

]>
4. The correlation matrix R of design points X:

R =


R (x1, x1) R (x1, x2) · · · R (x1, xm)
R (x2, x1) R (x2, x2) · · · R (x2, xm)

...
...

. . .
...

R (xm, x1) R (xm, x2) · · · R (xm, xm)


Then, the best linear unbiased predictor (BLUP) of ŷ(x∗)

is:
ŷ(x∗) = f>(x∗)β̂ + r>(x∗)R−1

(
y − Fβ̂

)
(5)

where β̂ is the least sqaures estimate of β:

β̂ =
(
F>R−1F

)−1
F>R−1y (6)

The MSE or variance of the estimate ŷ(x∗) is:

MSE
[
ŷ(x∗)

]
= σ2

{
1 − r>(x∗)R−1r(x∗)+(

r>(x∗)R−1F − f>(x∗)
)> (

F>R−1F
)−1 (

r>(x∗)R−1F − f>(x∗)
)}

(7)

Equations 5 to 7 formulate the so called Universal Kriging
(UK). Ordinary Kriging (OK) is a special case of UK when the
basis functions reduce to a unique constant function, f(x) = [1].
Simple Kriging (SK) is the case when the mean function is a
known deterministic function:

ŷ(x) = µ(X) + r>(x)R−1 (y − µ(X)) (8)

MSE
[
ŷ(x)

]
= σ2

{
1 − r>(x)R−1r(x)

}
(9)

The Kriging model can be proved to be interpolating all
the design points. The predicted variance increases as new
point gets further away from existing points. To build Kriging
surrogate model, we only need to run the original model y =
G(x) m times, which depends on the desired accuracy level
(m is typically a few hundreds). Once the Kriging surrogate
model is available, we can use it for prediction at new point
x∗, which will run practically instantaneously.

III. SIMULATION MODEL

To test the proposed methodology, the Point Reactor
Kinetics Equation (PRKE) with lumped parameter thermal-
hydraulics feedback model [8] [9] will be used in this study.
It describes the transient behavior of the normalized power
level p(t), the delayed neutron precursor concentrations C(t),
and the core effective fuel and coolant temperatures, Tfuel(t)
and Tcool(t). The model employs the standard neutron point
kinetic equations and couples them to simple 0-D (core aver-
age) fuel heat conduction and fluid energy balance models via
the reactivity function. In this model, the reactivity depends
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TABLE II: Symbols used in Kriging formulation

Symbol Dimension Description

d 1 × 1 number of input factors
m 1 × 1 number of design points
n 1 × 1 number of basis functions
β n × 1 vector of regression coefficients
β̂ n × 1 estimate of β
f n × 1 vector of regression functions f =

[
f1, f2, . . . , fn

]>
xi d × 1 vector of ith design point, xi =

(
xi,1, xi,2, . . . , xi,p

)ᵀ
yi 1 × 1 output value of ith design point, yi = G(xi)
X m × d collection of m design points
y m × 1 vector of output values at X, y = (y1, y2, . . . , ym)>

x∗ d × 1 unknown input point, to be predicted
ŷ(x∗) 1 × 1 predicted output at x∗
f(x∗) n × 1 f evaluated at x∗

F m × n f evaluated at X
r(x∗) m × 1 correlation between x∗ and design points X

R m × m correlation between design points X

on both fuel and coolant temperatures. The system of coupled
nonlinear Ordinary Differential Equations (ODEs) is given by:

dp(t)
dt

=
ρ(t,Tfuel,Tcool) − β

Λ
p(t) + λC(t) (10)

dC(t)
dt

=
β

Λ
p(t) − λC(t) (11)

dTfuel(t)
dt

=
Ωpow p(t)
ρfuelcp, fuel

−
[Tfuel(t) − Tcool(t)]
ρfuelcp, fuelR̂th

(12)

dTcool(t)
dt

= −
2u
H

[
Tcool − T in

cool

]
+

Afuel

Aflow

[Tfuel(t) − Tcool(t)]
ρcoolcp, coolR̂th

(13)

Note that only one-group effective delayed neutron is con-
sidered. The detailed definitions of the parameters and values
used in the model can be found in [9]. The fuel and cladding
material properties are based on LWR fuel and cladding prop-
erties [10] [11]. The lumped parameter (i.e. averaging the
unknown values over the whole domain) description of the
reactor fuel and coolant temperatures allows the elimination
of the spatial dependencies and therefore focuses on the time-
dependent part.

In this model, the neutronics equations (the first two equa-
tions) are coupled to the thermal-hydraulics equations (the last
two equations) via the temperature dependent total reactivity
ρ(t,Tfuel,Tcool) that contains the external reactivity term (e.g.,
control rod movement), the fuel temperature reactivity and the
coolant temperature reactivity:

ρ(t,Tfuel,Tcool) = ρext − αD[Tfuel(t) − Tfuel(0)]
− αc[Tcool(t) − Tcool(0)] (14)

In the above equation, ρext, αD and αc are external re-
activity insertion, Doppler reactivity coefficient and coolant
temperature coefficient, respectively. These three parameters

are treated as uncertain input parameters in the model. The
Quantity of Interests (QoIs) in this model are p(t), C(t), Tfuel(t)
and Tcool(t).

TABLE III: Uncertainties for three input parameters

Parameters mean std/mean

ρext 0.8 · ρext,0 20%
αD 1.5 · αD,0 20%
αc 1.5 · αc,0 20%

We arbitrarily chose some uncertainties for the input pa-
rameters as shown in Table III, as the main purpose is to com-
pare MC sampling, PCE and Kriging-based surrogate model
for uncertainty and sensitivty analysis. In Table III, ρext,0 = β,
αD,0 = 3.18×10−3β, αc,0 = 8.2186×10−3β are nominal values
used in [8]. Figure 1 shows the Probability Density Functions
(PDFs) of the three uncertain input parameters.
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Fig. 1: PDFs for three random input parameters

The reasons of choosing this model for testing the Kriging
surrogate modeling are listed below:

1. This model is essentially a mini-multiphysics problem,
which has been designed as close to a real reactor as
possiblel. All the material properties are based on West-
inghouse PWR [9].

2. It takes very short simulation time to run (about 0.5 sec-
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onds), which makes MC sampling available as a reference
solution.

3. Solutions from PCE [9] are available for comparison.
Intrusive Galerkin projection can be directly applied to
this model since we know the exact form of the ODEs.

4. This model involves multiple (three) uncertainty input
parameters, as well as multiple (four) QoIs.

5. The four QoIs are time-dependent, which is a challenging
topic for surrogate modeling. Normally Principal Com-
ponent Analysis (PCA) is required for data reduction.

IV. RESULTS AND ANALYSIS

1. Simulation at Nominal Input Values and Input Uncer-
tainties

This model starts from an initial condition of p(t = 0) =
1.0, while initial conditions for C(t), Tfuel(t) and Tcool(t) can
be found in [9]. Figures 2 and Figure 3 show the simulation
results at mean values of the three uncertain input parameters.
With the introduction of external reactivity, the power quickly
increases to about four times of the initial state. Consequently,
the fuel and coolant temperature increase introduces negative
feedback to counter-interact the external reactivity, and the
power returns to a new lower value in a short time.
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Fig. 2: Reactivity evolution at nominal values of the random
uncertain input parameters

The increase in coolant temperature is small and the neg-
ative reactivity feedback caused by the coolant is negligible,
which will cause the system to be insensitive to coolant tem-
perature coefficient αc.

2. UQ Solution using Monte Carlo Sampling and Polyno-
mial Choas Expansion

To provide reference solutions for Kriging-based surro-
gate models, we performed the MC sampling (with 5000
samples) and PCE with intrusive Galerkin approach up to
polynomial order 5. Details of the PCE derivation and imple-
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Fig. 3: Simulation results for the four QoIs at nominal values
of the random input parameters

mentation can be found in [9]. In this paper we only provide
the results.

Figure 4 shows the comparison of the mean values for
four QoIs predicted by the MC sampling and PCE with order
up to 5. Here we only compare results at 21 time points which
are uniformly distributed between 0 and 1 second. There is
an excellent agreement of these results. PCE can accurately
predict the mean values even at a very low expansion order.
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Fig. 4: Mean values of four QoIs by MC sampling and PCE

Figure 5 shows the comparison of the standard deviations
for four QoIs predicted by the MC sampling and PCE with
order up to 5 for different priors. For p (normalized power)
and C (delay neutron precursors) the PCE predicted standard
deviations converge to the MC sampling values, while for Tfuel
and Tcool PCE predictions converge to values that are slightly
different than MC sampling standard deviations. They are
likely to be caused by the PCE low order truncation in both
inputs and outputs. The ODEs for Tfuel and Tcool include many
material properties that depend on Tfuel and Tcool themselves,
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causing them to be more sensitive to small errors than p and
C, which are only affected by Tfuel and Tcool. However, these
discrepancies are very small compared to the mean values of
those QoIs.
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Fig. 5: Standard deviations of four QoIs by MC sampling and
PCE

3. Principal Component Analysis for Dimension Reduc-
tion

The remaining issue before building surrogate models by
Kriging is that the four QoIs are time-dependent, which causes
each QoI to be multivariate. If we are interested in many time
steps of these four QoIs, the dimension of the outputs can
be very high. It is not efficient to build surrogate models for
each QoI at each time step. So we used PCA as a dimension
reduction technique to reduce the number of outputs. In the
following, we will use Tfuel as an example to demonstrate this
process.

Suppose now we are interested in p = 21 time points
in the Tfuel evolution. These p time points are uniformly dis-
tributed between 0 and 1 second. The intuition for dimension
reduction is that by observing the evolution of Tfuel shown in
Figure 3, we noticed that the shape is nearly linear or close
to a quadratic polynomial. We do not need so many (p = 21)
“variables” to represent such a shape. To learn the underlying
pattern of the evolution of Tfuel, we sample the input param-
eters N times, run the model and collect the Tfuel data and
center the data to form a p × N data matrix A.

Define the following linear transformation:

PA = B (15)

where P is a p× p transformation matrix and B is a p×N data
martrix whose rows represented new variables.

Now the covariance matrix of A is a full matrix. After
the transformation, we would like matrix B to have a diagonal
covariance matrix, which means that the new variables in B
are independent. To find such a transformation matrix P, we

first look at the Singular Value Decomposition (SVD) of A:

A = UΣV> (16)

where

1. U is a p × p orthogonal matrix. The columns of U are
called the left-singular vectors of A. The columns of U
are a set of orthonormal eigenvectors of AA>.

2. V is a N × N orthogonal matrix. The columns of V are
called the right-singular vectors of A. The columns of
V are a set of orthonormal eigenvectors of A>A.

3. Σ is a p×N rectangular diagonal matrix with non-negative
real numbers on the diagonal. The diagonal entries σi of
Σ are called the singular values of A and are arranged
in descending order. Singular values are square roots of
the eigenvalues of AA> and A>A. Large singular values
point to important features in matrix A.

If we choose P = U>, we have:

PA = U>A = ΣV> = B (17)

CB = Cov(ΣV>) =
1
N
ΣV>VΣ =

1
N
Σ2 (18)

It can be seen that if we choose P = U>, whose columns
are the left-singular vectors of A, the covariance matrix of Y
is diagonalized. Define the following:

1. The rows of P are called principal components, also
known as loadings. Each row of P contains coefficients
for one principal component (a vector of length p).

2. The transformed variables (rows of B) are called princi-
pal component scores. Principal component scores are
the representations of the original data A in the princi-
pal component space. The columns of B correspond to
observations.

3. The eigenvalues of the covariance matrix of A are called
principal component variances, which correspond to
the sqaure of the diagonal elements in Σ.

Note that diagonal entries of Σ are arranged in decend-
ing order. It is quite normal that the values of such entries
decrease very quickly. We can remove the entries that has
very small values, which corresponds to only keeping the first
few principal components. Suppose we only keep the first p∗
principal components:

P∗A = B∗ (19)

where P is a p∗×p transformation matrix and B is a p∗×N data
martrix whos rows represented new variables after reduction.
Now we have reduced the the number of variables from p to
p∗. A commonly accepted criteria is that the reserved variables
have variances that account for over 95% (some others choose
99%) of the total variance.

To find the principal components in the current study, we
run the model with N = 25, 50, 100, 200 samples. Figure 6
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shows the decay of the principal component variances. Clearly,
the variances become trivial after first few dimensions.

Figure 7 shows the percentage of total variance explained
by each dimension. Figure 8 shows the cumulative percentage
of total variance explained. Clearly the first two variables can
account for over 99.8% percent of the total variation, which
means that we only need the first two principal components.
Therefore, the dimension of the output Tfuel has been reduced
from 21 to 2 and in the following we only need to build Kriging
surrogate models for these two new variables.

Figure 9 shows the first two (p∗) principal components
(each one is a p-vector). The first principal component is
similar in shape with the evolution of Tfuel and it dominates
the change of Tfuel with time. The second principal component
represents the influence of power p on Tfuel. Tfuel first increases
because of the power surge. Then thn increasing rate becomes
smaller because of the negative weighting from the second
principal component.

4. Build and Validate the Kriging Surrogate Model

In the last section we have found the principal compo-
nents for Tfuel and performed the dimension reduction. In this
section we will build the Kriging surrogate models follow the
steps below:

1. Create the N training samples by Latin Hypercube Sam-
pling (LHS) [12].

2. Run the PRKE model at the training samples, get the
p × N data matrix A. Calculate the mean and center this
data matrix by substracting the mean.

3. Perform PCA of the centered data matrix. Find the first
p∗ principal components which forms a p∗ × p matrix P∗,
and the corresponding principal component scores. Note
that each score will have N samples.

4. Build Kriging surrogate model for each principal compo-
nent score based on the N samples.

5. Use the Kriging surrogate model to make prediction. At
every new sample of the inputs, the Kriging model pro-
duce prediction for each score which forms a p∗×1 vector
b.

6. With a = P∗>b we can get a p × 1 vector a, which
represents the time evolution Tfuel after adding the mean
vector back.

As we have a few options for correlations kernels and
many choices for the trend functions, we need to find the most
appropriate combinations for the following study. This can be
done by a simple test to see if the Kriging model can reproduce
the Tfuel results at mean values of the uncertain inputs. Figure
10 shows the predictions of Kriging surrogate models built
using different kind of correlation kernels and same training
samples (N = 100) and trend functions (constant). The first
three subfigures show the predictions along with the standard
deviations of the prediction. And the last subfigure shows the
comparison of Tfuel from various Kriging predictions with re-
sults from running the full model. Even though all the Kriging
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Fig. 9: First and second principal components
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Fig. 10: Comparison of Tfuel from PRKE and Kriging surro-
gate models with different correlation kernels

mdoels can accurately reproduce the Tfuel evolution, the Krig-
ing models built with linear and exponential correlation kernel
have large variances in their predictions. In the following we
will choose the Matern 5/2 correlation kernel.
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Fig. 11: Comparison of Tfuel from PRKE and Kriging surro-
gate models with different trend functions

Figure 11 shows comparison for different trend functions:
constant, linear and quadratic. No obvious difference can be
observed for different cases. Actually Ordinary Kriging (with
constant trend functions) is the most widely used version of
Kriging surrogate model. In the following we will choose the
constant trend function.

0 0.2 0.4 0.6 0.8 1
time (s)

840

860

880

900

920

940

T
f
u
el

(K
)

training size 25

0 0.2 0.4 0.6 0.8 1
time (s)

840

860

880

900

920

940

T
f
u
el

(K
)

training size 50

0 0.2 0.4 0.6 0.8 1
time (s)

840

860

880

900

920

940

T
f
u
el

(K
)

training size 100

0 0.2 0.4 0.6 0.8 1
time (s)

840

860

880

900

920

940

T
f
u
el

(K
)

PRKE
Kriging, training size 25
Kriging, training size 50
Kriging, training size 100

Fig. 12: Comparison of Tfuel from PRKE and Kriging surro-
gate models with different number of training samples

Figure 12 shows the comparison for different sample sizes.
We can see that even with a small training sample size (N = 25)
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the Kriging predictions are very accurate. To better evaluate
the performance of Kriging model with training sample sizes
N = 25, 50, 100, we can use the sample set with size 200 for
validation (we can also use Cross Validation). The validation
is performed based on the accuracy of the Surrogate model’s
capability to predict the responses at samples other than the
training sites. The predictivity coefficient Q2 is usually used
to evaluate the fitted Kriging surrogate model:

Q2 = 1 −

∑Nval
i=1

(
Yi − Ŷi

)
∑Nval

i=1

(
Ȳ − Yi

) (20)

where Nval is the size of the validation set (in this case 200).
Yi denotes full model simulation outputs of the validation set
and Ȳ is their empirical mean. Ŷi represents the prediction
from Kriging surrogate model. In practical situations, a meta-
model with a predictivity oefficient above than 0.7 is often
considered as a satisfactory approximation of the computer
code [13]. Table IV shows the predictivity coefficients for
both principal component scores and all the training samples.
The predictivity coefficient is above 97.5% even with a samll
number of training samples (N = 25).

TABLE IV: Predictivity coefficients Q2

Training sample size score 1 score 2

25 0.9984 0.9753
50 0.9988 0.9975
100 0.9995 0.9988
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Fig. 13: Comparison of first and second PCA scores from
PRKE and Kriging surrogate models with different training
sizes.

Figure 13 shows the comparison of first and second PCA
scores from PRKE and Kriging surrogate models with different

training sizes. It is observed that most of the points fall very
close to the diagonal line, with only a few exceptions for
N = 25.

The primary assumption of Kriging surrogate model is
that the response of the computer model under consideration is
a sample path of an underlying Gaussian random field. It indi-
cates that the output responses at different samples follow joint
Gaussian distributions. Kriging surrogate model can not only
provide the response prediction, but also the Mean Squared
Error (MSE, or variance) of its prediction. The differences
between full model simulations and Kriging metamodel pre-
dictions are called residuals. And by dividing the residuals by
the corresponding standard deviations of the prediction we get
the standardized residuals. By assumption the standardized
residuals follow the standard normal distribution. Therefore,
99.7% of all the standardized residuals are expected to fall
within [−3, 3]. This is also verified by Figure 14. As expected,
the case with N = 25 has the most points that fall above 3 or
below -3. In the following we will use the training sample set
of size 50 to build the Kriging surrogate model for uncertainty
and sensitivity analysis.
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Fig. 14: Standardized residuals for first and second PCA scores
from Kriging surrogate models with different training sizes.

5. Uncertainty and Sensitivity Analysis using Kriging Sur-
rogate Model

In the last section we have selected Matern 5/2 correla-
tion kernel, constant trend function and training samples of
size 50 to build the Kriging surrogate model and successfully
validated the surrogate model. Now we can use Kriging model
for uncertainty and sensitivity anlaysis by sampling it at ar-
bitrary input locations. The advantage and primary purpose
of using Kriging surrogate model is that it can be evaluated
in a negligible time. For example. 10,000 evaluations of the
current Kriging model only take about 19 seconds using a
single processor.
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Figure 15 and 16 show the comparison of mean values
and standard deviations of Tfuel w.r.t. time, by MC sampling
of the full model (5000 samples), PCE of order 5 and MC
sampling of the Kriging surrogate model (5000 samples). We
observed excellent agreements between full model and Krig-
ing surrogate model for both the mean values and standard
deviations. The standard deviations estimated by Kriging are
more accurate than PCE. The computational cost of various
approaches are:

1. MC sampling of full model: 5000 samples take about 43
minutes to run.

2. PCE of order 5: re-coding efforts caused by intrusive
Galerkin, plus 9 seconds to to solve for PCE coefficients.

3. Kriging surrogate model: 50 full model evaluations for
the training set take about 26 seconds, plus 10 seconds to
sample the Kriging surrogate models 5000 times.
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Fig. 15: Comparison of mean values of Tfuel computed by
sampling the full PRKE model, PCE and Kriging surrogate
model

We performed global sensitivity analysis [14] by calcu-
lating the Sobol’ indices. Sobol’ indices [15] [16] represent
the part of output variance that can be attributed to each input
parameter. The detailed process and results are presented in
a companion paper [17]. To calculate the Sobol’ indices, we
used the suggested “D3” sampling method proposed in [18].
The total computational cost of such method is N(2d + 2)
where d is the input dimension and N is the number of sam-
ples. Usually N is expected to be at least a few hundred to
a few thousand. This is only practical by using some cheap
surrogate models. Figure 17 and Figure 18 show the conver-
gence of the main and total effect Sobol’ indices for score 1
and score 2 by using different sample size N. We can see that
the Sobol’ indices are converging to certain equilibrium values
when enough samples are used.

Figure 19 shows the converged Sobol’ indices for prin-
cipal component score 1 and score 2. As expected, αc has
negligible effect on both scores. ρext accounts for over 90%
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Fig. 16: Comparison of standard deviations of Tfuel computed
by sampling the full PRKE model, PCE and Kriging surrogate
model
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Fig. 17: Convergence of the main and total effect Sobol’ in-
dices calculated with GP surrogate model for the first principal
component score
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Fig. 18: Convergence of the main and total effect Sobol’ in-
dices calculated with GP surrogate model for the second prin-
cipal component score

of the variation in score 1 and αD is more important for score
2 than ρext. Recall what we observed in Figure 9: The first
principal component dominates the change of Tfuel with time
and the second principal component represents the influence
of power p on Tfuel. This is consistant with Sobol’ indices
shown in Figure 19 since ρext changes the power directly and
αD affects the power by a negative feedback.
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Fig. 19: Sobol’ indices (main and total effects) for first and
second principal component scores.

Finally, even though we have Sobol’ indices available
by post-processing of PCE coefficients, they are not directly

comparable with the results shown in Figure 19. The Sobol’
indices shown in Figure 19 are for the principal component
scores, while PCE results are for Tfuel values. The direct
comparison of Sobol’ indices calculated with PCE and Kriging
is presented in a companion paper [17] using a different model,
in which they are shown to be very close.

V. CONCLUSIONS

In this paper, we propose to use Kriging-based surrogate
models for UQ and SA in nuclear engineering. The motivation
is to significantly reduce the computational cost while main-
taining a desirable accuracy. It only needs the input/output
relations of the full model and thus can treat the full model
as a black box. Also, Kriging surrogate models can deal
with higher-dimensional problem than stochastic spectral tech-
niques like PCE.

We investigated the Point Reactor Kinetics Equation
(PRKE) with lumped parameter thermal-hydraulics feedback
model to compare MC sampling, PCE and Kriging surrogate
model for uncertainty and sensitivity analysis. We applied
PCA for the dimension reduction and it was demonstrated
that the evolution of fuel temperature can be represented by
only two principal components. The Kriging surrogate models
are built for the principal component scores and the Kriging
predictions of the scores can be mapped back to the original
space, forming a time-series for the fuel temperature.

Comparison of the mean values and standard deviations
of results from MC sampling of the full model, PCE and
Kriging surroagte model shows that the Kriging surrogate
model can accurately predict the statistical moments of the
full model outputs. It only requires tens to a few hundreds of
full model runs for the training and after that it can be executed
in a negligible time. Kriging also has a few advantages over
stochastic spectral methods like PCE: it is always non-intrusive
and can deal with much higher input dimensions. Stochastic
spectral methods can be non-intrusive but they always suffer
from the “curse of dimensionality”. To sum up, we recommend
Kriging-based surrogate models for uncertainty and sensitivity
analysis in nuclear engineering, especially when the compute
code is very expensive.
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