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Abstract - This paper describes the application of data assimilation methods to CASMO-5 simulations of
a Proteus research reactor experiment. Its focus is a comparison and evaluation of three prominent data
assimilation methods: generalized linear least squares, MOCABA, and Bayesian Monte Carlo. These methods
have not yet been extensively compared to date. The experiment is an interesting case study for this comparison
because the measured reactivity worth response can be non-linear. This study investigates the effects that
non-linearity has upon the agreement between the methods. The adjusted calculated values, calculation
uncertainty, and nuclear data are all investigated to compare and evaluate the methods. The presented results
provide evidence supporting the hypothesis that for linear responses, all of the data assimilation methods agree
well. But when the responses become more non-linear, significant disagreements occur between generalized
linear least squares results and those of MOCABA and Bayesian Monte Carlo.

I. INTRODUCTION

Many institutes have, in a worldwide effort, developed
methods called data assimilation (DA). These methods tackle
biases and uncertainties created by input nuclear data (e.g.
cross sections, fission multiplicity) in neutronics simulations
[1]. They identify important nuclide/reaction pairs and asso-
ciated energy ranges which contribute largely to calculation
bias and uncertainty and seek to ameliorate the bias and to
reduce that calculation uncertainty. Additionally, DA can be
used to give recommendations to nuclear data evaluators to
aid in improving their evaluations. Three methods for DA
have gained prominence in the field of neutronics: General-
ized Linear Least Squares (GLLS) [2], MOCABA [3], and
Bayesian Monte Carlo (BMC) [4],[5]. Each method has its
advantages and disadvantages that, to date, have not been
extensively investigated in a comparative sense. Such a com-
parison would help to determine in which cases a method is
superior, deficient, or equal to another in their effectiveness as
a DA tool.

The present paper is a case study seeking to perform this
comparison with the LWR Phase II (LWR-PII) experimental
campaign of the research reactor Proteus at the Paul Scherrer
Institute [6]. In this campaign, the reactivity worth of several
spent fuel segments was measured by introducing them into
a mock-up of a fresh PWR assembly. The fuel samples were
cut from UO2 and MOX fuel rods irradiated in Swiss nuclear
power plants to burnups ranging between 20 and 120 MWd/kg.
This study calculates reactivity effects using CASMO-5 [7]
and then uses the sensitivity analysis and uncertainty quan-
tification tool SHARK-X [8] to compute parameters for DA.
The project’s long-term goal is to apply DA with LWR-PII
to safety analyses of a Swiss nuclear power plant’s spent fuel
pool.

LWR-PII is an interesting case study because the main
measured response, relative reactivity worth, is non-linear.
This may cause it to exceed the linearity assumption used in
GLLS. MOCABA and BMC are based on stochastic sampling
and are, therefore, global methods and not limited by the

response’s order. LWR-PII was specially chosen as a case
study to investigate and compare these DA methods because
of this non-linearity. The DA methods are applied to two sets
of integral parameters that are identical, in terms of CASMO-5
modeling, in all ways except for the type of moderator used
in Proteus’ configuration. The first moderator is water with
∼2,000 ppm of boric acid. These responses have a strong
degree of linearity and serve as a control to test the agreement
of the DA methods for a linear case. The second moderator is
pure water that creates more non-linear responses. The results
are used as evidence to assess the hypothesis that non-linearity
can significantly affect the results of GLLS.

In this paper, results and conclusions are presented con-
cerning the effectiveness of each method when applied with
CASMO-5 to LWR-PII. Conclusions are drawn based on ad-
justments to the CASMO-5 calculated values and reductions
of their uncertainty as well as on adjustments to input nuclear
data and their uncertainties. Unavoidable biases exist in the
nuclear data adjustments because the resonance self-shielding
treatment in CASMO is not fully taken into account when
nuclear data are perturbed in SHARK-X. Additionally, the
prediction of leakage changes by the 2D reflected assembly
model used in CASMO may not be totally realistic and intro-
duce biases into the adjustments. Therefore, the adjustments
to nuclear data are only interpreted qualitatively.

The paper is organized to first give a theoretical intro-
duction to the three DA methods. Then a summary of the
LWR-PII experiment is presented along with a description
of the methods used to analyze the experiment. Next, the
application of the DA methods to the two experimental sets of
integral parameters is presented. The DA results of each set of
integral parameters using the methods are compared and used
to evaluate the methods and search for effects of non-linearity.

II. THEORY

DA works by using integral experiments to adjust calcu-
lated values and input nuclear data. These adjustments are
done so that calculated values better agree with their experi-
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mental counterparts. The adjusted calculated values and nu-
clear data are called posteriors. DA is subdivided in this paper
into deterministic and stochastic methods. GLLS is catego-
rized as deterministic and MOCABA and BMC as stochastic.
GLLS requires sensitivity coefficients; the method by which to
create them depends upon the neutron transport code used and
the type of integral parameter. MOCABA and BMC require
random sampling of the nuclear data using their variance-
covariance information to create a sample set of responses.

1. Generalized Linear Least Squares (GLLS)

The GLLS technique [2] is widely used by many insti-
tutions (JAEA, ORNL, CEA, INL [1]) in their DA packages.
GLLS is, in simple terms, a form of regression analysis used
to predict adjustments to nuclear data, σ, that would create the
best agreement between measured values, E, and calculated
values, C, for integral parameters. The assumption is then
made that C would be equal to E if not for nuclear data and
experimental uncertainties. C is considered a function, C(σ),
that relates the selected nuclear data’s influence on integral
parameters. This function is assumed to be represented by a
generalized linear model, Eq. (1). This can also be thought
of as a first-order Taylor series approximation performed on
C(σ), with the sensitivity coefficients, S, being the first deriva-
tives. The variable σ is a vector containing the nuclear data
with a size (Nσ × 1) equal to the number of isotope/reaction
pairs × number of energy groups in the nuclear data. S is a
matrix of dimensions NE × Nσ, where NE is the number of
integral parameters considered. C(σ) is a vector of size NE ×1.

C(σ) ≈ C(σ0) + S(σ − σ0) (1)

C(σ) is then fit to E (size: NE × 1) using the least squares
method, i.e., by minimizing the error between E and C(σ).
This fitting gives the posterior mean values of the nuclear data,
σ′, and their variance-covariance matrix (VCM) M′σ as shown
in Eq. (2) and Eq. (3) respectively. Here ME and Mσ are the
VCMs of the experimental parameters (size: NE ×NE) and the
nuclear data (size: Nσ × Nσ).

σ′ = σ + MσST [
SMσST + ME

]−1[E − C(σ)
]

(2)

M′σ = Mσ − MσST [
SMσST + ME

]−1SMσ (3)

The posterior calculated value, C′, is then given by plug-
ging in σ′ into Eq. (1) as σ, with σ0 being the prior nuclear
data. This is shown in Eq. (4). The posterior VCM of C, M′C,
can then be calculated with S and M′σ using Eq. (5), commonly
called the sandwich rule.

C′(σ′) ≈ C(σ0) + S(σ′ − σ0) (4)

M′C = SM′σST (5)

2. MOCABA

Recent research at Areva has led to the MOCABA frame-
work for DA [3]. MOCABA was developed as an alternative
to the GLLS methodology. MOCABA seeks to avoid GLLS’
technical limitations linked to first-order perturbation theory
and to be applicable in cases where adjoint-based first-order
perturbation theory is unavailable. MOCABA avoids both
of these limitations by using the Monte Carlo method to per-
form Bayesian inference. MOCABA was shown in [3] to be a
non-perturbative form of GLLS or, in other words, the GLLS
equations are linear estimates of MOCABA equations.

MOCABA’s method begins with Bayes’ theory where
calculated values, C, have a prior distribution p(C). The distri-
bution p(C) represents the knowledge of C before the Bayesian
update, or before DA. Additionally, p(C) is assumed to have
a multivariate normal distribution with means C0 and a VCM
MC (size: NE × NE). The experimental values, E, are the evi-
dence used to update the prior. The Bayesian update gives the
posterior p(C|E), with updated moments for the multivariate
normal distribution of C: C′ and M′C. The formulas for calcu-
lating C′ and M′C are given in Eqs. (6) and (7). The posterior
nuclear data’s mean values and VCM are given by Eqs. (8)
and (9), where Mσ,C (size: Nσ × NE) is the covariance matrix
between C and σ.

MOCABA DA uses the Monte Carlo method to randomly
sample nuclear data with the uncertainty information found in
VCM files. For every randomly sampled nuclear data file, σi,
a simulation is performed to create a calculated value Ci(σi).
If N samples of σ are done, N simulations are then performed
creating a population of calculated values: C1(σ1), C2(σ2),
. . . , Cn(σn). This population set is then used to estimate
p(C), or more specifically C0 and MC. A covariance matrix,
Mσ,C, is also calculated from the population sets and estimates
the covariance between C and σ. Eqs. (6) and (7) can then
be applied to calculate C′ and M′C. Mσ,C is used in Eqs. (8)
and (9) to get σ′ and M′σ.

C′ = C + MC
(
MC + ME

)−1(E − C
)

(6)

M′C = MC − MC
(
MC + ME

)−1 MT
C (7)

σ′ = σ + Mσ,C
(
MC + ME

)−1(E − C
)

(8)

M′σ = Mσ − Mσ,C
(
MC + ME

)−1 MT
σ,C (9)

3. Bayesian Monte Carlo (BMC)

BMC [4] [5] uses Bayes’ theorem to get C′, M′C, σ′, and
M′σ. Bayes’ theorem for DA is shown in Eq. (10) with the
prior distribution p(σ) and likelihood function L

(
σ
∣∣∣E)

being
used to get a posterior distribution for nuclear data p(σ′|E).

p(σ′|E) ∝ L
(
E
∣∣∣σ)

p(σ) (10)

The Bayesian update is performed by estimating a maxi-
mum of L

(
σ
∣∣∣E)

by randomly sampling p(σ) to get a sample
set of Ci vectors, with the VCM MC estimated from the popu-
lation set. These Ci values are compared to E to find which
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randomly sampled σi creates the best agreement between C
and E, i.e. maximizes the likelihood of getting these experi-
mental/calculated values given the assumptions for the prior
distribution.

The likelihood function for aσi is given by Eq. (11). Here
χ2

i is the χ2-distribution as calculated in Eq. (12).

L
(
E
∣∣∣σi

)
∝ e−χ

2
i /2 (11)

χ2
i =

(
E − Ci(σi)

)T M−1
E

(
E − Ci(σi)

)
(12)

Each χ2
i from a random sampling of the nuclear data is

used to calculate a weight for that sample set, wi. Sample
sets with higher wi contribute more to adjusting p(σ), where
sample sets with lower wi contribute less. The weight of σi
is given in Eq. (13), where L

(
σ0

∣∣∣E)
is the likelihood function

of the zeroth sample set, or the unperturbed σ. Smaller χ2
i

values, or better agreement between E and Ci(σi), create larger
weights.

wi =
L
(
E
∣∣∣σi

)
L
(
E
∣∣∣σ0

) (13)

The weights are then used to calculate posterior moments
for C and σ seen in Eq. (14) and Eq. (15) for C′ and M′C and
in Eq. (16) and Eq. (17) for σ′ and M′σ.

C′ =

∑N
i=1 wi × Ci(σi)∑N

i=1 wi
(14)

M′C =

∑N
i=1 wi ×

(
Ci(σi) − Ci(σ0)

)T (
Ci(σi) − Ci(σ0)

)∑N
i=1 wi

(15)

σ′ =

∑N
i=1 wi × σi∑N

i=1 wi
(16)

M′σ =

∑N
i=1 wi × (σi − σ0)T (σi − σ0)∑N

i=1 wi
(17)

III. EXPERIMENT DESCRIPTION AND INPUT PA-
RAMETERS

In each LWR-PII measurement, the absolute reactivity
worth, ∆ρ, of an irradiated fuel rod taken from a Swiss nuclear
power plant was measured. ∆ρ was evaluated as the change
in keff created by replacing a reference sample (Ure f ) of fresh,
3.5 w.% enriched UO2 with the irradiated fuel sample. ∆ρ was
then calculated with with Eq. 18. In addition, ∆ρ of a natural
uranium sample (Unat) instead of the irradiated fuel was also
evaluated with this method. This ∆ρ with Unat was then used
to create a ratio of reactivity worths called relative reactivity
worth as seen in Eq. 19. ∆ρrel was used and not ∆ρ so that
accurate comparisons can be made between CASMO calcu-
lated values and experimental values. This is because, unlike
∆ρ, ∆ρrel is independent of the size of the system calculated.
It can therefore be used in a CASMO model where only a
sub-system of the core is simulated in 2D [6].

∆ρ =
1

kre f
−

1
ksample

(18)

∆ρrel =
∆ρ(Ure f → sample)

∆ρ(Ure f → Unat)
(19)

This analysis performs DA on three sets of integral param-
eters. During LWR-PII, each set of integral parameters was
measured with a different moderating condition at atmospheric
temperature and pressure in the reactor’s center assembly. The
moderating conditions investigated in the experiment were
full-density H2O, a mixture of H2O and D2O (37.0 w% D2O),
and borated H2O (∼2,000 ppm of boric acid). In this paper,
only results for the borated moderating condition (henceforth
called BHO) and the full-density H2O moderator are presented.
These moderators will be most useful in the future when DA
will be applied to analyzing a spent fuel pool. Additionally,
the contrast between the results of BHO and H2O moderators
highlights differences that can occur between deterministic
and stochastic DA methods when non-linearities are present.
The calculated ∆ρrel responses behave more non-linearly with
the H2O moderator than the BHO moderator. To ease the
analysis in this study, the experimental values are assumed to
have an uncertainty of 1.5% and to be fully uncorrelated.

In this analysis, the uncertainty associated with nuclear
data of 41 isotopes is investigated using the SCALE6.1 VCM
[9] and the stochastic sampling (SS) and equivalent general-
ized perturbation theory (EGPT) modules in SHARK-X [8].
SS is used to randomly sample the nuclear data and create the
sample set of calculated responses for stochastic DA. EGPT is
used to calculate the sensitivity coefficients for GLLS. Accord-
ing to the EGPT approach, the sensitivity coefficient of ∆ρrel
can be expressed as a function of the k-sensitivity coefficients
of the reference and two perturbed states, as seen in Eq. 20.
Here, S kre f ,σ, S k1,σ, and S k2,σ are the sensitivity coefficients of
keff for the reference state and perturbed states 1 and 2. The
variables λre f , λ1, and λ2 are the states’ lambda eigenvalues
as calculated by CASMO-5. For ∆ρrel, state 1 is a given fuel
sample, and state 2 is the natural fuel sample.

S ∆ρrel,σ = −
λre f (λ1 − λ2)

(λre f − λ1)(λre f − λ2)
S kre f ,σ

+
λ1

λre f − λ1
S k1,σ −

λ2

λre f − λ2
S k2,σ (20)

For low atomic number nuclides (e.g. H, O, Zr, Nd) only
the total scattering and total capture cross sections are consid-
ered: no distinction was made between inelastic and elastic
scattering. The following reactions were considered for fissile
and fertile nuclides: elastic scattering (σe), inelastic scattering
(σi), (n,2n) reaction, fission (σ f ), capture (σc), average num-
ber of neutrons per fission (ν̄), and fission spectrum (χ). The
CASMO-5 neutron transport simulations, the nuclear data,
and sensitivity coefficients are all obtained in CASMO-5’s
19-energy-group structure.
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Sample & Prior Posterior Bias C’/E Prior 1 Rel. Std. [%] Posterior 1 Rel. Std. [%]
Burnup [MWd/kg] R2 C/E GLLS MOCABA BMC EGPT SS ± Conf. Int GLLS MOCABA BMC

U1* (∼40) 0.976 0.950 0.943 0.943 0.943 1.79 1.76 ± 0.07 0.43 0.40 0.41
U2 (∼50) 0.976 1.016 1.011 1.011 1.010 1.15 1.13 ± 0.05 0.39 0.30 0.31
U3 (∼70) 0.983 0.980 0.975 0.976 0.975 1.03 1.01 ± 0.04 0.38 0.31 0.32
U5 (∼90) 0.982 1.004 1.000 1.000 1.000 0.97 0.96 ± 0.04 0.40 0.32 0.33
U6 (∼90) 0.995 0.991 0.987 0.987 0.987 0.98 0.95 ± 0.04 0.41 0.32 0.33
U7 (∼120) 0.994 0.997 0.993 0.993 0.992 1.04 1.02 ± 0.05 0.46 0.37 0.37

UO2 mean 0.984 0.990 0.985 0.985 0.985 1.16 1.14 ± 0.05 0.41 0.34 0.35

M1 (∼20) 0.996 1.035 0.999 0.998 0.997 8.13 8.09 ± 0.36 1.09 1.39 1.35
M2* (∼40) 0.991 1.053 1.035 1.033 1.032 3.91 3.88 ± 0.17 0.71 0.70 0.67
M3 (∼60) 0.992 1.018 1.007 1.005 1.004 2.49 2.48 ± 0.11 0.65 0.59 0.58
M4 (∼70) 0.935 1.034 1.024 1.022 1.022 2.11 2.09 ± 0.09 0.64 0.56 0.56

MOX mean 0.979 1.035 1.016 1.014 1.014 4.16 4.14 ± 0.18 0.77 0.81 0.79

TABLE I. Prior and posterior biases and 1-relative-standard deviations using each DA method. An asterisk (*) indicates removal
from influencing the adjustments by ∆χ2-filtering. Sample U4 is missing because it was not experimentally measured for BHO.

IV. RESULTS AND ANALYSIS

The results of the data assimilation for the BHO and H2O
moderating conditions are presented separately in the follow-
ing sections. First, for a given moderator, the methods’ ability
to improve the calculation bias and reduce the calculation un-
certainty are presented and analyzed. Then a summary of the
analyzed adjustments to nuclear data is presented. The data
assimilation for the BHO-moderated integral parameters is pre-
sented first to test the hypothesis that the DA methods agree
well for linear integral parameters. Next, the more non-linear,
H2O-moderated responses are examined to test the hypothesis
that heightened discrepancies will be seen between GLLS and
MOCABA/BMC results with non-linearities present.

The degree of linearity of a response is assessed by cal-
culating a coefficient of determination, or R2. In the context
of this study, R2 is the square of the correlation between a re-
sponse’s values and the best predictions that can be computed
from a linear approximation of the dependence of a response
on the nuclear data. R2 takes values between 0 and 1. Higher
values of R2 indicate better predictability of the response us-
ing the assumed linear approximation. R2 is calculated in this
analysis by using the N randomly sampled nuclear data sets
and the sensitivity coefficients produced by SHARK-X. Eq. 21
is used to calculate R2 whereσi is a randomly sampled nuclear
data set, C(σi) is the response calculated by CASMO when σi
is used as input, Cs(σi) is the calculated response using Eq. 1
with σi and the response’s sensitivity coefficients, and C(σ0)
is the calculated response with CASMO using the unperturbed
nuclear data, σ0.

R2 = 1 −
∑N

i=1
(
C(σi) −Cs(σi)

)2∑N
i=1

(
C(σi) −C(σ0)

)2 (21)

1. BHO: Adjustments to Calculated Values

The prior and posterior calculated-to-experimental (C/E)
ratios for ∆ρrel and the relative standard deviations of these
values are compared in Table I, where they are arranged by
increasing burnup and by fuel type. The uncertainties given
in Table I include only contributions from nuclear data and
are obtained with either EGPT or SS as described in Section
III. The uncertainties from SS include their 95% confidence
intervals [10] and show that the differences in the prior uncer-
tainties between EGPT and SS are not statistically significant.
Additionally, the R2 values are shown for each response as
calculated with Eq. 21. Samples U1 and M2 were removed
from the data assimilation by ∆χ2-filtering [11]. This method
removes responses from the adjustment procedure if their χ2

value exceeds 3.0. Responses are removed because the dis-
agreement between C and E is too large to be explained by
nuclear data and experimental uncertainties. With too high χ2

values, the DA theories’ assumptions are violated and these
integral parameters would negatively affect the quality of pos-
teriors.

The adjustment shows good agreement for the posterior
C/E values (C’/E) of the methods. The C’/E values never
differ by greater than 0.2%, which is less than their 1-relative-
standard deviations. The adjustments to the UO2 samples show
a degradation in the agreement between C and E, with the
mean C/E decreasing away from 1.0 by 0.3-0.5%. The MOX
samples, in contrast, show a 1.2-2.1% decrease in C/E moving
closer to the desired values of 1.0. The UO2 samples likely
show poorer adjustments because the MOX samples dominate
the DA as they have higher prior biases and uncertainties.
The good agreement between the methods indicates, first, the
consistency in their formulations. Second, it shows that despite
some non-linearity for these responses with average R2 values
of 0.984 for UO2 and 0.979 for MOX samples, these degrees of
non-linearity did not significantly invalidate GLLS’ linearity
assumption and cause significant discrepancies in the results.
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Examining the reduction in C’/E uncertainties in the form
of relative standard deviations, good agreement is seen be-
tween methods, especially between MOCABA and BMC. For
these two stochastic methods, the differences between C un-
certainties are less than 0.01%, except for M1 and M2 which
are approximately 0.04% and 0.03% respectively. Larger dis-
agreements are seen between GLLS and the two stochastic
methods. The most significant discrepancy is seen for sample
M1, where the MOCABA and BMC uncertainties are 0.30%
and 0.26% larger than GLLS’, respectively. The results sup-
port this study’s hypothesis: MOCABA and BMC should
agree very well and, with a slight non-linearity, some small
differences between the stochastic methods and GLLS should
be seen.

One difficulty in comparing MOCABA and BMC’s re-
sults to GLLS’ is created by the finite sample size of the
randomly sampled nuclear data and, therefore, the sampled
∆ρrel values. This means that the moments of a ∆ρrel value’s
prior distribution (in particular its mean and variance or, C0
and MC) are only approximations and not the moments of
the true population or, in other words, the sample set if its
size was infinite. The consequence of this fact is that the
inputs into, for instance, MOCABA’s equations would vary
from one sample size of 1,000 to another, potentially creating
the discrepancies between MOCABA/BMC and GLLS seen
in Table I. These disagreements from statistical fluctuations
could be erroneously attributed to linearity effects and lead to
type I or type II errors when evaluating the paper’s working
hypothesis. Type I errors occur when the hypothesis would be
erroneously declared false when it is in fact true. Type II errors
occur when the hypothesis would be erroneously declared true
when it is in fact false. With the current hypothesis that “if
the integral parameters are linear then the DA methods give
equivalent results,” a type I error would occur when conclud-
ing from the evidence that the DA methods do not agree when
they in fact do. A type II error would be concluding from the
evidence that they do agree when they in fact do not.

A very large sample size is needed to investigate the
effects of statistical uncertainties in the prior distributions’
moments on the MOCABA and BMC methods’ results. A
large sample size is, however, difficult to create because of
the high computational costs required by the large number
of CASMO-5 simulations it would need. To create a large
sample size and not suffer from high computational costs, a
metamodel was used to create 1 million samples for each ∆ρrel
response. The 1 million samples were grouped into 1,000 sets
of 1,000 samples and then used in the MOCABA and BMC
methods. This practically means that 1,000 prior distributions
were calculated (i.e. 1,000 C0 and 1,000 MC) each from 1,000
independent response samples and used to calculate 1,000
posterior distributions. These results would then approximate
the fluctuations in the posterior distributions that would be
created by fluctuations in the prior distributions due to the
finite sample size used in the results presented in Table I.

The metamodel was made by using the keff sensitivity
coefficients of the fuel samples, 1 million random samples of
the nuclear data, and the linear approximation used in GLLS’
methodology described previously in Eq. 1. This equation is
reformulated below as Eq. 22. The keff sensitivity coefficients,

Ske f f , and each perturbed nuclear data set, σi, are plugged into
Eq. 22 to calculate keff values for each of the 11 fuel samples
and the reference and naturally enriched fuel samples. These
keff values are then used in Eq. 18 and Eq. 19 to calculate
∆ρrel. With the 1 million random samples of the nuclear data,
1 million keff values are calculated which are then used to
calculate 1 million ∆ρrel values. These 1 million ∆ρrel values
are split into 1,000 sets of 1,000 values, whose means and
VCMs are then used by MOCABA and BMC. Because the
keff values are highly linear (R2 > 0.99), this metamodel is
considered to be sufficiently accurate to capture the statistical
behavior of a true large sample set of ∆ρrel. The linearity
of keff values means that for a given set of nuclear data, the
keff calculated with CASMO-5 using this nuclear data and with
the Eq. 22 agree very well.

k(i)
e f f (σi) ≈ ke f f (σ0) + Ske f f (σi − σ0) (22)

An example of the results of the metamodel analysis for
MOCABA is presented graphically in Fig. 1 for C/E and Fig. 2
for the relative standard deviation of C. Included in the plots
are the prior values of each sample set of 1,000 for C/E and
the relative standard deviation, and the posterior MOCABA
values calculated with each sample set’s prior distribution.
Additionally, the GLLS C’/E values and relative standard
deviation calculated with the original, or zeroth, set of nuclear
data are presented.

Sample set of 1000 (-)
200 400 600 800 1000

C
/E

1.004

1.006

1.008

1.01

1.012

1.014

1.016

1.018

1.02

1.022
prior
GLLS
MOCABA

Fig. 1. Distribution of fuel sample M3’s prior C/Es and the
MOCABA C’/Es with meta-modeling along with the original
GLLS C’/E.

Turning first to C/E in Fig. 1, it is apparent that 1) the
difference between the GLLS and MOCABA posterior C’/E
is likely statistically significant and that 2) the spread of MO-
CABA C’/E values is smaller than that of the prior C/E values,
indicating that the adjustment to C is not highly sensitive to
fluctuations in the prior’s mean, C0. Next examining Fig. 2
for fuel sample M3’s ∆ρrel relative standard deviations, sim-
ilar behavior to that of C/E is seen. Namely, the difference
between the GLLS and MOCABA posterior relative standard
deviations is likely statistically significant, i.e. not caused
by the finite sample size used to formulate the prior distribu-
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Fig. 2. Distribution of fuel sample M3’s prior and MOCABA’s
1-relative-standard deviations using metamodeling along with
the original GLLS posterior 1-relative-standard deviation.

tion. Additionally the spread of MOCABA’s posterior relative
standard deviations is smaller than that of the prior’s.

The complete results of the metamodeling analysis were
analyzed in terms of the standard deviations of the 1,000 sets
of prior and posterior distributions’ moments. In other words,
the results are analyzed in terms of the standard deviation of
the sample set of 1,000 C/Es and C’/Es and the standard de-
viation of the sample set of 1,000 prior and posterior relative
standard deviations. This analysis shows that the uncertainty
in the posterior C/E (average of 1E-4) is two orders of mag-
nitude smaller than the difference seen between GLLS and
MOCABA C’/Es in Table I. Additionally, the uncertainty of
the posterior relative standard deviations (the standard devi-
ation of the relative standard deviations) is also, at around
5E-3%, an order of magnitude lower than the discrepancies
between MOCABA and GLLS results, which are on the order
of 1E-2 to 1E-1%.

The metamodel analysis results for BMC have similar
uncertainties to MOCABA for its C’/E values: for all fuel sam-
ples, the standard deviations of the C’/Es are approximately
1E-4, thereby indicating that the discrepancies between BMC
and GLLS C’/Es are likely statistically significant. A larger
uncertainty, by an order of magnitude, is calculated for BMC’s
posterior relative standard deviations. At approximately 2E-
2%, the posterior relative standard deviations’ standard devi-
ations are similar to that of the prior relative standard devi-
ations’. Additionally, it is on the same order of magnitude
as the discrepancies between the BMC and GLLS posterior
relative standard deviations. This means that the differences
between BMC and GLLS posterior relative standard devia-
tions may only occur due to statistical fluctuations in the prior
distribution.

In conclusion, metamodeling helped show that statisti-
cally significant differences exist between GLLS and MO-
CABA/BMC C’/E values and between the MOCABA and
GLLS posterior relative standard deviations. Furthermore,
the metamodeling helped confirm that a type I error was not
occurring: the null hypothesis that “if the integral parameters

used in DA are linear, then the three DA methods will give
equivalent results” was not being incorrectly rejected. Be-
cause the responses are not perfectly linear, with average R2

values of 0.984 and 0.979 for UO2 and MOX respectively,
some discrepancy between GLLS and MOCABA/BMC will
be, however, present. Therefore, the results are consistent
with the hypothesis but strictly cannot not prove it true. The
null hypothesis will be further tested in Section IV.3 when
the identical responses become more non-linear with the H2O
moderator.

2. BHO: Adjustments to Nuclear Data

The comparison of each method’s ability to adjust nuclear
data is summarized here by focusing on the nuclide/reaction
pairs that contribute most to uncertainty. The major contrib-
utors are 239Pu/ν̄, 238U/σc, and 235U/σ f . The adjustments
are presented in CASMO-5’s 19-energy-group structure in
Fig. 3, 4, and 5. Here, the adjustments are shown in the upper
figure as relative changes in the nuclear datum from prior to
posterior (∆XS/XS) along with the prior and posterior uncer-
tainties as relative standard deviations in the lower figure.

10
−2

10
0

10
2

10
4

10
6

10
80

0.1

0.2

0.3

0.4
∆X

S
/X

S
 [%

]

Energy [eV]

 

 

MOCABA
GLLS
BMC

10
−2

10
0

10
2

10
4

10
6

10
80.5

1

1.5

2

2.5

1 
R

el
. S

td
. [

%
]

Energy [eV]

 

 

MOCABA
GLLS
BMC
Prior

Fig. 3. Adjustments with each DA method to 239Pu/ν̄ as
∆XS/XS (above) and relative standard deviations (below).

First examining Fig. 3, good agreement is seen between
all the methods with mean-value adjustments being approxi-
mately 0.17%, 0.27%, 0.20% respectively in thermal groups
for MOCABA, GLLS, and BMC respectively and 0.19%,
0.23%, and 0.29% respectively in epithermal groups. The
reductions in uncertainty are also similar: at the thermal en-
ergy range the prior 1-relative-standard-deviation is 1.03% and
the posterior MOCABA and GLLS uncertainties are 0.68%,
0.64%, 0.67% for MOCABA, GLLS, and BMC respectively;
at the epithermal energy range the prior uncertainty is 1.13%
and the posterior uncertainties are 0.74%, 0.72%, 0.74% for
MOCABA, GLLS, and BMC respectively.

Examining Fig. 4 for 238U/σc, good agreement is seen
between MOCABA and GLLS in the thermal energy range
where their ∆XS/XS values are within 0.01% of each other.
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BMC predicts a larger increase in the cross section at thermal
and epithermal energy ranges by about 0.1-0.2%. Even though
BMC adjustments disagree to a greater extent with the other
two methods, the adjustments created by the methods all agree
within their respective 1-standard-deviation uncertainty inter-
vals. The uncertainty reductions also agree well between the
methods, except for BMC at energies at approximately 102 -
104 eV where BMC’s posterior uncertainty increases relative
to the prior’s. The effects causing this increase in uncertainty
are not known at this time.
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Fig. 4. Adjustments with each DA method to 238U/σc as
∆XS/XS (above) and relative standard deviations (below).

Fig. 5 presents adjustments for 235U/σ f . Again, strong
agreement (within 0.01%) is seen between the adjusted cross
sections and the posterior uncertainties for MOCABA and
GLLS. The BMC method predicts larger adjustments to the
cross section’s data and larger reductions in its posterior uncer-
tainty. In general, the posterior data with each method agree
well and follow similar trends.

In conclusion, when examining these nuclear data, no
clear trends can be seen concerning the DA methods’ abilities
to adjust nuclear data. In general, MOCABA and GLLS agree
best, with larger disagreements between BMC and the MO-
CABA/GLLS. These results do not provide any evidence to
indicate that the non-linearities in the BHO samples created
significant effects in the GLLS adjustments to nuclear data.
Furthermore they provide evidence to support the hypothesis
that the DA methods should be equivalent given linear inte-
gral parameters. Strong and definitive conclusions about the
posterior nuclear data are harder to make concerning the work-
ing hypotheis. This is because the resonance self-shielding
treatment in CASMO is not fully taken into account when the
nuclear data are perturbed in SHARK-X.

3. H2O: Adjustments to Calculated Values

The results from the data assimilation for the H2O-
moderated integral parameters are presented in Table II. First
seen are the lower R2 values for these ∆ρrel responses in com-
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Fig. 5. Adjustments with each DA method to 235U/σ f as
∆XS/XS (above) and relative standard deviations (below).

parison to those moderated by BHO, especially for the UO2
samples which have an average R2 of 0.870. The possible
effect of the higher degree of non-linearity can then be seen
in the comparison of GLLS to MOCABA/BMC: both the pos-
terior C’/Es and posterior relative standard deviations do not
show the strong agreement between methods seen in Table I
for BHO. Beginning with the UO2 samples’ posterior C’/E
values, the average relative difference between GLLS’ and
MOCABA/BMC’s C’/E values is approximately 0.9%. In
contrast, the UO2 samples’ C’/E values for BHO, with an av-
erage R2 of 0.975, have an average relative difference of less
than 0.05% (much smaller than the posterior relative standard
deviations) and smaller than the number of significant digits
included in the experimental data.

Next the C’/Es for MOX samples’ have an average R2 of
0.964 and the average relative difference between C’/E values
is ∼1.2%. The identical MOX samples moderated by BHO,
which have an average R2 of 0.979, have an average relative
difference between C’/E values of ∼0.1%. The larger differ-
ences seen for the H2O samples between the deterministic
GLLS method and the stochastic MOCABA/BMC methods
provides evidence to support the hypothesis that non-linearities
in responses may exceed the limits of GLLS’ linearity assump-
tion.

Examining the posterior relative standard deviations cal-
culated with each method, good agreement is seen between
MOCABA and BMC but poor agreement between MO-
CABA/BMC and GLLS. In fact, the GLLS uncertainties are
approximately twice as large as those of MOCABA/BMC de-
spite there being good agreement between the prior EGPT and
SS relative standard deviations. In comparison to the poste-
rior relative standard deviations shown in Table I for BHO,
the discrepancies between GLLS and the stochastic methods
are much greater for H2O than BHO. This again provides
evidence to support the hypothesis that non-linear responses
like ∆ρrel limit the applicability of GLLS’ theory and create
discrepancies between GLLS’ results and those of MOCABA
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Sample & Prior Posterior Bias C′/E Prior 1 Rel. Std. [%] Posterior 1 Rel. Std. [%]
Burnup [MWd/kg] R2 C/E GLLS MOCABA BMC EGPT SS ± Conf. Int. GLLS MOCABA BMC

U1* (∼40) 0.845 0.926 0.939 0.948 0.949 2.15 1.95 ± 0.09 1.39 0.54 0.53
U2 (∼50) 0.848 0.983 0.994 1.002 1.002 1.64 1.48 ± 0.07 1.08 0.45 0.43
U3* (∼70) 0.851 0.949 0.958 0.967 0.965 1.41 1.40 ± 0.06 0.99 0.46 0.44
U4* (∼70) 0.893 0.944 0.953 0.962 0.960 1.42 1.42 ± 0.06 0.97 0.47 0.44
U5 (∼90) 0.871 0.962 0.971 0.980 0.978 1.36 1.36 ± 0.06 0.96 0.48 0.46
U6 (∼90) 0.879 0.964 0.973 0.981 0.980 1.34 1.36 ± 0.06 0.94 0.48 0.45
U7 (∼120) 0.868 0.998 1.007 1.017 1.015 1.41 1.41 ± 0.06 1.00 0.51 0.47

UO2 mean 0.870 0.962 0.972 0.981 0.980 1.53 1.48 ± 0.07 1.05 0.48 0.46

M1 (∼20) 0.978 0.964 0.995 1.010 1.011 4.59 4.48 ± 0.20 2.70 1.13 1.19
M2 (∼40) 0.967 0.953 0.974 0.987 0.987 3.11 3.02 ± 0.13 1.83 0.70 0.67
M3 (∼60) 0.961 0.969 0.985 0.997 0.996 2.34 2.33 ± 0.10 1.47 0.62 0.56
M4* (∼70) 0.950 1.013 1.028 1.040 1.039 2.08 2.09 ± 0.09 1.34 0.61 0.55

MOX mean 0.964 0.975 0.996 1.008 1.008 3.03 2.98 ± 0.13 1.83 0.77 0.74

TABLE II. Prior and posterior biases and 1-relative-standard deviations using each DA method for H2O. An asterisk (*) indicates
removal from influencing the adjustments by ∆χ2-filtering.

and BMC.
To further analyze the results, the metamodeling was

again used for these H2O-moderated samples. The results of
the metamodel analysis assess the uncertainty in the posterior
values of MOCABA and BMC. This uncertainty is caused by
using a finite sample size of 1,000 samples when estimating the
prior distributions’ moments that are inputs into the methods.
This study seeks to eliminate the possibility of a Type I error
in assessing the hypothesis. Here, the erroneous conclusion
could be made that the differences seen are created by non-
linearity and therefore support the hypothesis, whereas, in fact,
they result only from statistical fluctuations.

The results of this metamodel analysis show that the un-
certainties on the C’/E values of MOCABA and BMC (with
standard deviations of 2E-4 to 9E-4) are not sufficiently large
to account for the differences between the GLLS C’/Es. This
indicates that it is unlikely that the discrepancies in Table II
were caused by statistics and further supports the conclusion
that they were caused by non-linearities. Additionally, the un-
certainties of MOCABA and BMC C’/Es and relative standard
deviations are sufficiently large to account for the disagree-
ments seen between their results in Table II. This helps to
confirm that these two methods are well formulated and con-
sistent given identical input data.

4. H2O: Adjustments to Nuclear Data

The comparison of each method’s ability to adjust nuclear
data with the H2O moderator is summarized here by again
focusing on 239Pu/ν̄, 238U/σc, 235U/σ f in Fig. 6, Fig. 7, and
Fig. 8 respectively. Turning first to Fig. 6, good agreement
is seen between all the methods in terms of ∆XS/XS and
posterior relative uncertainties. While the size and direction
of the adjustments are different for the H2O moderator in
comparison to the BHO moderator, the behavior and trends
are consistent between these sets of integral parameters. This

shows that for this nuclide/reaction pair, the H2O-moderated
responses’ higher degrees of non-linearity did not introduce
major inconsistencies.
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Fig. 6. Adjustments with each DA method to 239Pu/ν̄ as
∆XS/XS (above) and relative standard deviations (below).

Fig. 7 presents the adjustments for 238U/σc. Here, dis-
crepancies between the stochastic MOCABA/BMC methods
and GLLS appear. At thermal energies, BMC adjusts the data
by 1.9-2.2% and MOCABA by 1.5-1.8%. GLLS, in contrast,
creates adjustments of 0.6-0.7%. Higher energies also show
the same dynamic of closer agreement between the stochastic
methods than with GLLS. This may provide evidence that the
non-linearities in the H2O-moderated responses do have an
effect in the GLLS method which can lead to disagreements
between its results and those of MOCABA or BMC.
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Fig. 7. Adjustments with each DA method to 238U/σc as
∆XS/XS (above) and relative standard deviations (below).

The adjustments for 235U/σ f are presented in Fig. 8.
Strong agreement is seen in the thermal energy range between
MOCABA and GLLS. The BMC method creates adjustments
that are inconsistent with MOCABA and GLLS in the thermal
range, where the adjustments are two to three times as large.
Additionally for BMC, similar behavior to what was seen in
Fig. 5 concerning the posterior uncertainties appears in the
energy group from 1.5E2 eV to 5.5E4 eV: the posterior un-
certainties are larger than the priors. Again, strong agreement
(within 0.01%) is seen between the adjusted cross sections
and the posterior uncertainties for MOCABA and GLLS. The
BMC method predicts larger adjustments to the cross section’s
data and larger reductions in its posterior uncertainty. In gen-
eral, the posterior data with each method agree well and follow
similar trends.
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Fig. 8. Adjustments with each DA method to 235U/σ f as
∆XS/XS (above) and relative standard deviations (below).

In conclusion when examining these nuclear data, no clear
trends can be seen concerning the DA methods’ abilities to
adjust nuclear data. In Fig. 6, the methods produce consis-
tent and comparable adjustments. In contrast, Fig. 7 shows
stronger agreement between MOCABA and BMC and weaker
agreement between those two methods and GLLS. This behav-
ior tends to support the hypothesis that the stochastic methods
would agree well when non-linearities are present and be
demonstrably different from GLLS. Finally, in Fig. 8, stronger
agreement is shown between MOCABA and GLLS with BMC
providing inconsistent adjustments. These results lead to the
conclusion that the non-linearities may have an effect on the
GLLS adjustments to nuclear data, but they cannot be proven
within the case study presented here. In a global sense, the
methods agree well and all adjustments are within their 1-
relative-standard deviations, criteria used in [1] to assess the
agreement between institution’s adjustment results.

V. CONCLUSIONS

The comparison between GLLS, MOCABA, and BMC
was performed for two moderating conditions that were
present during the LWR-Proteus Phase II campaign: borated
water (BHO) and pure water (H2O). The H2O-moderated in-
tegral parameters showed non-linear behavior and were used
to assess if non-linearities would have a significant impact
on the GLLS methodology’s results, particularly the posterior
calculated values and nuclear data. The BHO moderated re-
sponses, being fairly linear, served as a control to show that
the stochastic methods would agree with GLLS given the lin-
earity assumption was accurate. The results of the case study
provided evidence to support the hypothesis that the meth-
ods would agree well for linear integral parameters, but that
non-linearities can cause significant discrepancies between the
stochastic methods and GLLS.

First, the posteriors with the three methods for the BHO
moderated responses showed strong agreement in C/E, with
their values never differing by greater than 0.2%. The posterior
uncertainties showed some small but statistically significant
disagreement between MOCABA/BMC and GLLS. This led
to the general conclusion that the methods were well formu-
lated and agree well for linear responses. The examination
of the posterior nuclear data did not show any significant dis-
agreement between the methods. The BMC method showed
behavior most inconsistent with the other methods, especially
at thermal energies for 238U/σc and 235U/σ f . Continuing to the
H2O moderated responses, statistically significant disagree-
ments were then found between GLLS results and those of
BMC and MOCABA. These disagreements were especially
large in the posterior uncertainties of the calculated responses,
where differences of 0.5-1.0% were calculated. These dif-
ferences supported the hypothesis that these non-linearities
would affect the GLLS method’s results. The comparison
of the posterior nuclear data for these responses was incon-
clusive concerning the effect of non-linearities in the integral
parameters on the GLLS method’s adjustments to nuclear data.

The results are auspicious for the ultimate goal of the
project: to use SHARK-X to perform DA to reduce the bias
and bias uncertainty of a hypothetical spent fuel pool of a
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Swiss nuclear power plant with LWR-Proteus Phase II results.
The results show that the three methods are well formulated
and have been well integrated into the SHARK-X tool. The
effect of non-linearities in the responses will need to be closely
considered when using the experimental data set for this appli-
cation and when interpreting the results.
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