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Abstract - This paper presents a new sensitivity analysis method which can be applied effciently to non-linear
response models. It was developed and tested on the TREAT minimum critical core model, but can be easily
applied to all general models of interest. The method performs model variance decomposition and captures the
uncertainty effect attributable to each input factor based on the Sobol’s sensitivity index and Fourier analysis.
An preliminary efficiency and error analysis of this method is also described. Results obtained showed high
accuracy for the application to the TREAT Minimum Critical Core.

I. INTRODUCTION

The objective of this paper is to describe a new sensitivity
analysis method which is applicable to non-linear response
models. It was developed based on the Sobol’s sensitivity in-
dex [1] and multivariate Fourier series. It is a variance decom-
position method which can estimate the variance contribution
of each parameter to the total model uncertainty.

Traditional sensitivity analysis methods in the reactor
physics field are usually established based on the assumption
that the model studied is linear or could be treated as a lin-
ear system within a small perturbation range. However, the
uncertainty analysis of the TREAT minimum critical loading
eigenvalue calculation has shown that this assumption may
not be appropriate for models which include perturbations on
geometry parameters. [2] Hence it is difficult to obtain an accu-
rate estimation of the sensitivity information about parameters
such as fuel block size and assembly outer radius. The method
described in this paper was developed to address this problem.

The method was tested with two simple nonlinear non-
monotonic models and then applied to the TREAT minimum
critical core model. Results showed its accuracy and suggests
that it deserves further investigation.

II. THEORY

The method discussed in this paper is based on Sobol’s
sensitivity index and multidimensional Fourier transform.
Sobol’s sensitivity index decomposes the total variance of
model output into conditional variances of each factor and
possible factor combinations the model contains. Multidi-
mensional Fourier transform is then applied to estimate the
conditional variances.

1. Conditional Mean and Conditional Variance

Consider two random variables X and Y . The conditional
mean of Y given X = x is defined as:

µY |x = E[Y |x] (1)

Then, the conditional variance of Y given X = x is defined as:

σ2
Y |x = E{[Y − µY |x]2|x} (2)

In the case that both X and Y are continuous random variables,
the conditional mean and variance of Y given X = x are

calculated as
µY |x =

∫ ∞

−∞

yh(y|x)dy (3)

σ2
Y |x =

∫ ∞

−∞

[y − µY |x]2h(y|x)dy =

∫ ∞

−∞

y2h(y|x)dy − µ2
Y |x (4)

The conditional variance of Y |X = x depends on x, and de-
pends on x alone. It is calculated much like a variance, except
the probability distribution should be replaced with a condi-
tional probability distribution h(y|x). Consider the conditional
variance of Y given X = x as a random variable, its expected
value is calculated as

E[σ2
Y |x] = E[

∫ ∞

−∞

y2h(y|x)dy − µ2
Y |x]

= E[
∫ ∞

−∞

y2h(y|x)dy] − E[µ2
Y |x]

=

∫ ∞

−∞

∫ ∞

−∞

y2h(y|x)dy fX(x)dx − E[µ2
Y |x]

=

∫ ∞

−∞

∫ ∞

−∞

y2 fX,Y (x, y)dxdy − E[µ2
Y |x]

= E[Y2] − E[µ2
Y |x] (5)

fX,Y (x, y) is the joint probability distribution of X and Y .
The conditional mean of Y given X = x is also a random

variable. Its variance is defined as:

Var[µY |x] = E[µ2
Y |x] − E[µY |x]2

= E[µ2
Y |x] −

(∫ ∞

−∞

∫ ∞

−∞

yh(y|x)dy fX(x)dx
)2

= E[µ2
Y |x] −

(∫ ∞

−∞

∫ ∞

−∞

y fX,Y (x, y)dxdy
)2

= E[µ2
Y |x] − E[Y]2 (6)

Combining eq. (5) and (6):

E[σ2
Y |x] + Var[µY |x] = E[Y2] − E[Y]2 = Var[Y] (7)

Hence in the case if the random variable Y is the model output
and X is the model input, the variance of model output is the
sum of the expected value of the conditional variance and
the variance of the conditional means. [3] In the case that
X = (X1, . . . , Xn) is a vector of random variables and Y is a
function of X, eq. (7) can be used to evaluate Y’s sensitivity
with respect to components of X. Details are included in the
next section.
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2. Sobol’s Sensitivity Index

Suppose that the mathematical model of interest in
sensitivity analysis is described by a function f (x), where
x = (x1, . . . , xn) and is defined in a unit n-dimensional cube
Kn = {x|0 ≤ xi ≤ 1, i = 1, . . . , n}.

Consider a group of indices i1, . . . , is, where 1 ≤ i1 <
. . . < is ≤ n and s = 1, . . . , n, a notation for a sum over all the
different groups of indices is introduced as∑̂

Ti1,...,is =

n∑
t=1

Ti +
∑ ∑

1≤i≤ j≤n

Ti j + · · · T1,2,...,n (8)

This sum has 2n − 1 summands. A representation of a
function f (x1, . . . , xn) as the sum

f = f0 +
∑̂

fi1,...,in (xi1,...,xin
) (9)

is referred to as an expansion into summands of different di-
mensions, if f0 is constant and the integrals of the subfunctions
fi1,...,in with respect to any of their parameters are zero, i.e.∫ 1

0
fi1,...,is (xi1 , . . . , xis )dxk = 0, 1 ≤ k ≤ s (10)

By the definition, one will find:∫
Kn

f (x)dx =

∫
Kn

( f0 +
∑̂

fi1,...,in (xi1,...,xin
))dx = f0 (11)

Also, all the summands on the right-hand side of eq. (9) are
orthogonal, i.e. ∫

Kn
fI fJdx = 0 (12)

I = (i1, . . . , is) and J = ( j1, . . . , jk) are two different sets of
indices. Since I and J are different, at least one of the indices
among I and J is not repeated. Integral with respect to this
variable vanished according to the definition in eq. (10).

For any integrable function f (x) in Kn, there exists a
unique expansion in the form defined by eq. (9). [1] Consider
the integration below, x/dxi is the product of all the elements
in x, except xi. ∫

Kn−1
f (x)dx/dxi = f0 + fi(xi) (13)

Hence all the summands fi with one index are calculated as:

fi(xi) =

∫
Kn−1

f (x)dx/dxi − f0 (14)

Now let i , j, consider the integration∫
Kn−2

f (x)dx/dxi/dx j = f0 + fi(xi) + f j(x j) + fi, j(xi, x j) (15)

Hence all the summands fi, j with two indices are calculated
as:

fi, j(xi, x j) =

∫
Kn−2

f (x)dx/dxi/dx j − f0 − fi(xi)− f j(x j) (16)

Therefore, given a function f (x) integrable in Kn, its expan-
sion into summands of different dimensions can be calculated
by integrations. First, calculate f0 with eq. (11). Then cal-
culate the summands with one index using eq. (13) and f0.
Summands with two indices are calculated using eq. (16).
Other summands with number of indices higher than two are
calculated in a similar way. A more detailed proof is provided
in [1].

In the case that the given function is a function of ran-
dom variables x1, . . . , xn, (To be consistent with the notations
used before, small letters are used here to represent random
variables. Usually they should be noted as capital letters.)
and the random variables are identical, independent uniformly
distributed, i.e. the marginal distribution of each variable and
the joint distribution of every possible variable combination
are identical and equal to 1, the variance of function f (x) is

Var[ f (x)] =

∫
Kn

f 2(x)dx − (
∫

Kn
f (x)dx)2

=

∫
Kn

f 2(x)dx − f 2
0 (17)

To find the variance of the conditional mean of f (x) given
xi = x∗i :

E[ f (x)|x∗i ] =

∫
Kn−1

f (x)dx/dxi

∣∣∣∣∣
xi=x∗i

= f0 + fi(x∗i )

(18)

Var[E[ f (x)|x∗i ]] =

(∫ 1

0
E[ f (x)|x∗i ]2dx∗i

)
−

(∫ 1

0
E[ f (x)|x∗i ]dx∗i

)2

=

∫ 1

0
( f 2

0 + f 2
i (x∗i ) + 2 f0 fi(x∗i ))dx∗i − f 2

0

=

∫ 1

0
f 2
i (x∗i )dx∗i (19)

In order to quantify the importance of an input factor xi on
the variance of f (x), xi can be "fixed" at its "preferred" value
x∗i , then the conditional mean of f (x) can be calculated and
expressed as a function of (x∗i ) with eq. (18). However, the
true value of xi cannot be fixed, the variance of the condi-
tional mean over all possible xi values gives an estimation
of xi’s importance. This is essentially what is expressed in
eq. (19). [4]

Consider the orthogonality between the summands, the
integral of f (x)2 over Kn gives∫

Kn
f (x)2dx = f 2

0 +
∑̂∫

K s
( fi1,...,is )

2dxi1 · · · dxis (20)

Combining eq. (17) and (20), normalizing the variance terms
by the total variance of f (x), the sensitivity indices can be
defined as

S i1,...,is =

∫
K s ( fi1,...,is )

2dxi1 · · · dxis

Var[ f (x)]
, 1 ≤ i1, . . . , is ≤ n (21)

Note that
∑̂

S i1,...,is = 1.
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This set of sensitivity indices are called the Sobol’s sensi-
tivity indices. They are used to measure the sensitivity of f (x)
with respect to components as well as component combina-
tions of x.

Therefore if a model can be described as a integrable
function, the output variance can be decomposed into the
contributions associated with each input factor of the model.
In the real world, most of the models do not have a known
analytical functional solution. Instead, the integrals required to
calculate the sensitivity indices can be estimated by numerical
methods.

To simplify the problem, consider single input factor as-
sociated sensitivity indices only, to calculate S 1, . . . , S n for a
n-dimensional model, one needs to evaluate

∫ 1

0
fi(xi)2xi, where fi =

∫
Kn

f (x)dx/dxi −

∫
Kn

f (x)dx

for n times. If a traditional method is used to calculate the
numerical integrals, one needs to

• Choose a input factor, xi.

• Generate samples of xi.

• For each sample value of xi, generate samples for the
other input factors in the subspace Kn−1.

• Run the given model with all the sample sets generated.

• Evaluate S i and repeat all steps for all input factors x j, j,i.

The computational effort will be at T · O(nCn) level. T rep-
resents the average time/computational cost for each trial of
model run and C is a constant which describes the number
of samples desired in each dimension. This is a considerable
computational expense and not practical for most of the physi-
cal models being studied. To ease the computational pressure
and simplify the sampling procedures, a Fourier series can be
used to estimate the function integrals.

3. Multidimensional Fourier Series

Consider the integrable function f (x) defined on Kn in
the previous section, assuming that the function is periodic
outside Kn, (i.e. take Kn as its period and repeat the segment
of function values outside Kn) then it can be expressed as a
Fourier series using multidimensional complex exponential.

f (x) =
∑
ω̂

cω̂e2πiω̂·x (22)

cω̂ =

∫
Kn

e−2πiω̂·x f (x)dx, ω̂ = (ω1, . . . , ωn) ∈ Zn (23)

With the Fourier series expansion, the summands can be rewrit-
ten as

fi =

∫
Kn

f (x)dx/dxi −

∫
Kn

f (x)dx

=

∫
Kn

∑
ω̂

cω̂e2πiω̂·xdx/dxi −

∫
Kn

∑
ω̂

cω̂e2πiω̂·xdx

=
∑
ω̂

∫
Kn

cω̂e2πiω̂·xdx/dxi −
∑
ω̂

∫
Kn

cω̂e2πiω̂·xdx

=
∑
ω̂i

cω̂i e
2πiωi xi (24)

ω̂i = (0 . . . , ωi, . . . 0), ωi is the ith component of ω̂i, ωi , 0.

This is based on the fact that
∫ 1

0 e2πikxdx = 0 for k ∈ Z, k , 0.
Therefore, the sensitivity indices are calculated as

S i =

∫ 1

0
f 2
i (xi)dxi/Var[ f (x)]

=

∫ 1

0

∑
ω̂i

cω̂i e
2πiωi xi

2

dxi/Var[ f (x)]

=

∑
ω̂i

|cω̂i |
2

 /Var[ f (x)] (25)

based on Parseval’s theorem. [5]
Hence, the calculation of sensitivity indices is transformed

into calculations of the Fourier amplitudes.

cω̂i =

∫
Kn

e−2πiωi·xi f (x)dx (26)

Note that the evaluation of Fourier amplitudes does not include
the

∫
Kn f (x)dx/dxi term, the computational cost of running

the samples necessary for sensitivity evaluation is therefore
decreased to T · O(Cn).

In the case that all the input factors follow identical, inde-
pendent uniform distributions, eq. (26) describes the expecta-
tion of the integrated term. Hence the Fourier coefficients can
be estimated as

cω̂i ≈
1
N

N∑
j=1

e−2πiωi·x
( j)
i f ( j) (27)

N is the number of samples generated in Kn space. x( j)
i is the

value of xi in the jth sample set of x. f ( j) is the jth model
output.

4. Method Description and Error Analysis

In the previous discussion, the input factors of the studied
models are always assumed to be independent and uniformly
distributed. This section completes the theory introduced and
describes a method which has no assumptions on input factor
distributions. A weighted average is used in this method to
evaluate eq. (27).

Given the model of interest, assume that it can be de-
scribed by a integrable function within its sample space, one
can then evaluate its single factor associated sensitivity indices
following the steps listed below.
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• Draw random samples in the sample space of the given
model based on the desired distribution type for each
input factor x1, . . . , xn.

• Run the model based on the sampled values of parame-
ters.

• Define a new set of variables s1, . . . , sn which satisfies

si = F−1
i (xi) (28)

Where F−1
i is the inverse function of xi’s cumulative prob-

ability distribution function.

In the case that all the random variables are indepen-
dent, the s variables are guaranteed to follow independent
uniform distributions. In cases that correlation exists be-
tween input factors, extra effort is required during this
step. An example is the sensitivity analysis of neutronics
calculations with respect to nuclear data uncertainties.
When one generates nuclear data samples, the correlation
between data is usually added upon a random vector of
independent random variables. Hence the method pre-
sented in this paper can be applied to the analysis of
the sensitivity indices of the initially uncorrelated sam-
ples. Furthermore, reference [6] describes the method
of transferring correlated random variables into uncorre-
lated ones. It provides possibilities of using the sensitivity
analysis method in this paper on models which contain
correlated random variables.

After this step, the model being studied is transferred into
s-space. This transformation does not change the variable
sensitivity indices in the x-space because

fX(x)dx = fS (s)ds

fX,Y (x, y)dx = fS ,Y (s, y)ds

h(y|x)dy =
fX,Y (x, y)dxdy

fX(x)dx
=

fS ,Y (s, y)dsdy
fS (s)ds

Var[E[Y |x]] = E[Y2] − E[µ2
Y |x]

= E[Y2] −
∫ ∞

−∞

(∫ ∞

−∞

yh(y|x)dy
)2

fX(x)dx

= E[Y2] −
∫ ∞

−∞

(∫ ∞

−∞

yh(y|x)dy
)2

fX(x)dx

= E[Y2] −
∫ ∞

−∞

(∫ ∞

−∞

yh(y|s)dy
)2

fS (s)ds

= Var[E[Y |s]]

X, Y and S are random variables.

• Choose the maximum harmonic order M. For the work
shown in this paper, M was chosen to be 20. This is
the value used in one of the references [5]. Test results
of simple models also showed that this choice provides
acceptable estimations.

• For each input factor xi, take ωi = 1, 2, . . . , 20, compute
the weighted average in s − space:

cω̂i ≈

N∑
j=1

e−2πiωi·s
( j)
i f ( j) · w j∑

w j
(29)

The reason of estimating the function expectation with
weighted average is to overcome errors caused by uneven
sampling. Notice that Latin hypercube sampling can be
used to decrease the error. The weighted average method
introduced below is applied only when no specific care
was taken at the sampling stage.

By definition, the sample points of s are uniformly dis-
tributed in the n-dimensional cube. However, since the
samples of s are transferred from randomly taken samples
of x and the sample size is limited, the real histogram of
the N sample points will never have same counts for each
sub-region in the s-space. Segments of the sample space
which contain more sample points may have fake higher
significances in the function expectation estimation.

The weighting factors w j are chosen with the following
steps:

– Divide the n-dimensional cube (s-space) evenly into
L sub-regions. The boundaries of the sub-regions
are user defined.

– Check each variable vector s( j) = (s( j)
1 , . . . , s( j)

n ) to
decide which sub-region the sample point falls into.
Keep counts for all the sub-regions (C1, . . . ,CL).

– Use 1
Cl

as the weight w j for all sample points s( j)

that falls into the lth sub-region.

Fig. 1. Example of weighting factor generation

– Figure 1 shows an example with a 2-D sample space.
For a model which has two input factors, 20 sam-
ple points were generated and transferred into the
s-space. The 2D sample space is cut into four sub-
regions. For the seven sample points falling in re-
gion one, they have the same weight factor w = 1

7 .
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Note that when all the user defined sub-regions
contain the same number of sample points, eq. 29
becomes eq. 27

– Since the counts of sample points falling in each
sub-region is used as the denominator of the weight
factor, it is important that user should define the
sub-region grid carefully so that each defined sub-
region contains at least one sample point. If this
condition is not satisfied, the sub-regions should be
redefined into "larger" segments.

• Clean up the high frequency terms. It has been mentioned
that the maximum harmonic order M was chosen to be
20, i.e the sensitivity index given in eq. (25) is estimated
as

S i =

|ωi |=20∑
|ωi |=1

|cω̂i |
2

1
N−1

N∑
j=1

( f ( j) − f̄ )2

(30)

For most of the physical models being studied, the Fourier
coefficients of high order harmonics decays away fast. [5]
M = 20 is a relatively large choice. However, since
the Fourier series coefficients are estimated, each of the
coefficients contains some random error:

τωi =

∣∣∣∣∣∫
Kn

e−2πiωi·si f (s)ds
∣∣∣∣∣2 −

∣∣∣∣∣∣∣∣∣∣∣∣
N∑

j=1
e−2πiωi·s

( j)
i f ( j) · w j∑

w j

∣∣∣∣∣∣∣∣∣∣∣∣
2

(31)
Note that the Fourier coefficient cω̂i is a complex number.
The square of its absolute value is used in the estimation
of the sensitivity indices. Hence the error τ is defined by
the square of the modulus values.

Use the sum expansion of function f (s) and the orthogo-
nality between summands:

τωi =

∣∣∣∣∣∣
∫ 1

0
e−2πiωi·si fi(si)dsi

∣∣∣∣∣∣2 −∣∣∣∣∣∣∣∣∣∣∣∣
N∑

j=1
e−2πiωi·s

( j)
i ( f ( j)

i +
∑̂

f ( j)
i0,...,in/i

) · w j∑
w j

∣∣∣∣∣∣∣∣∣∣∣∣
2

The term
∑̂

fi0,...,in/i denotes the sum of all the sub-
functions of f (s) (include f0) except fi(si).

Therefore, the error τωi can be divided into two parts:

τωi = τi + τ0 (32)

τi =

∣∣∣∣∣∣
∫ 1

0
e−2πiωi·si fi(si)dsi

∣∣∣∣∣∣2 −
∣∣∣∣∣∣∣∣∣∣∣∣

N∑
j=1

e−2πiωi·s
( j)
i f ( j)

i · w j∑
w j

∣∣∣∣∣∣∣∣∣∣∣∣
2

τ0 = −

∣∣∣∣∣∣∣∣∣∣∣∣
N∑

j=1
e−2πiωi·s

( j)
i
∑̂

f ( j)
i0,...,in/i

· w j∑
w j

∣∣∣∣∣∣∣∣∣∣∣∣
2

Proof of eq. (32) used the theorem: define a set of nonzero
complex numbers zk = rk exp(iθk), then∣∣∣∣∣∣∣

N∑
k=1

zk

∣∣∣∣∣∣∣
2

=

N∑
k=1

r2
k +

∑
j,k

r jrk exp(i(θ j − θk))

=

N∑
k=1

r2
k , in the case that θk is a constant.

τi is the error from 1-D numerical integration with respect
to si. It can be decreased by modifying the weight factors
w j. For example, if the sub-regions of the sample space
are defined in a way that any two sample points falling
in the same region have different si values, the weight
factors calculated using the sub-region method should
provide a better estimate. Other algorithms of numerical
integration may also be modified and used to give better
estimations.
τ0 is the random error resulted from sampling. Unlike τi
which is related to the numerical integration algorithm,
τ0 cannot be effectively decreased by the weight factors
w j without knowing the analytical function format of
the model. The only certain way of decreasing τ0 is to
increase the sample size.
Hence, the value of τωi depends mostly on the numerical
integration algorithm and the sample size. It is acceptable
to assume that the error τωi is independent of ωi. With the
maximum harmonic order M fixed, Fourier coefficients
of ω > M terms can be used to estimate the average
error τ̄. Assume that the real Fourier coefficients of the
model vanishes at harmonic orders higher than M, τ̄ can
be approximated as

τ̄ ≈
1

M′ − M

ωi=M′∑
ωi=M+1

|cω̂i |
2. (33)

Again, |cω̂i |
2 are estimated with eq. (29). For the results

included in this paper, M′ was chosen as 60.

• Subtract the average error from the numerator of eq. (30)
to avoid overestimation of the sensitivity indices, the final
result is given as:

S i =

|ωi |=20∑
|ωi |=1

(|cω̂i |
2 − τ̄)

1
N−1

N∑
j=1

( f ( j) − f̄ )2

(34)
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5. Simple Test Models Description

The method was tested with two simple test models before
it was applied to TREAT. The analytical solutions of these two
models are known.

The first simple test problem contains three independent
random variables which all follow standard uniform distribu-
tion. The function of the model is given as

y = x2
1 + 2x2

2 + 3x2
3 + x1x22x2x3 + 3x1x3 + x1x2x3. (35)

The second test problem contains three independent ran-
dom variables which follow different distribution types. The
function of the model is given as

y = x3
1 + x3

2 + x3
3 + x1x2x3 + x1x2

2 + x2x2
3 + x3x2

1. (36)

Both models are nonlinear and non-monotonic. Detailed dis-
tribution information of the variables are listed in Table II and
Table III.

For each test, 1000 sample points were generated and the
corresponding y values (model output) were calculated.

Since these two models are very simple, the numerical
cost of model output evaluation for a large sample size is
almost negligible. 1000 seems to be a relatively small sample
size. However, for most of the high-fidelity models of interest,
1000 is already at the upper bound of the affordable sample
size. In these two simple tests, it is necessary to prove that
the method can provide acceptable predictions with (at most)
1000 samples.

6. TREAT Model Description

The method presented in this paper was motivated by
the uncertainty analysis of the TREAT reactor which is an
air-cooled, graphite moderated, thermal test facility designed
to evaluate reactor fuels and structural materials under severe
reactor-accident conditions. [7] The reactor has not operated
since 1994, but recently the DOE decide to restart TREAT.

To prepare for its resumption of testing, a baseline assess-
ment report ([7]) was prepared by the Idaho National Labo-
ratory. An example uncertainty evaluation of infinite lattice
fuel assembly model was given in [7]. In this analysis, the
uncertainty of eigenvalue calculation related to material com-
position and geometry factors was studied. Results pointed
out that the following five factors are the most significant
"contributors" of the uncertainties in the TREAT eigenvalue
calculation.

• Boron contamination in the fuel graphite.

• Flat to flat distance of the fuel block.

• Al-6063 can thickness.

• Standard fuel assembly outer radius.

• Zr can thickness.

Based on the results obtained with infinite lattice fuel
assembly model in [7], the uncertainties in the prediction of
TREAT minimum critical core loading ke f f attributable to

uncertainties in the fuel material composition and geometry
parameters was studied. Results showed that TREAT min-
imum critical core has non-linear response to the geometry
factors studied, such as the Al can thickness and the flat-to-
flat distance of fuel block. [2] Hence a sensitivity analysis
method applicable to nonlinear problems is necessary for
this model. Also, the boron contamination in the TREAT
minimum critical core model contained large uncertainty
([2], [7]) and was assumed to follow a normal distribution
with µ = 7.53ppm, σ2 = 1.16ppm2. This caused large devia-
tion among the parameter samples and difficulties in applying
general perturbation theory to the TREAT model.

The uncertainty results presented in [2] used 1200 random
sample sets of TREAT minimum critical core model input
factors which were simulated using the SERPENT Monte
Carlo code. Each sample contained perturbations on all of the
five significant parameters listed.

In this case, traditional sensitivity analysis methods usu-
ally require running the given model with single parameter
perturbations. When the model sensitivity with respect to one
input factor is being studied, the other factors are fixed at their
"preferred" values. This means generating a new set of sam-
ples and re-test them through the TREAT minimum critical
core model. Because the numerical cost for this is expensive, it
was advantageous to have a sensitivity analysis method which
makes use of the existing tested samples instead of generating
new specific samples.

Applicable to non-linear response model and requires
no extra sample generation, these two requirements together
motivated the sensitivity method introduced in this paper.

Figure 2 shows the minimum critical core configuration
of TREAT. It consists 133 standard fuel assemblies, 8 control
rod fuel assemblies and 16 Zircaloy-clad dummy fuel assem-
blies. A more detailed description of the geometry of the
configuration is given in [7]. The SERPENT model of TREAT
standard fuel assembly is shown in Figure 3. The left most
part in Figure 3 is the side view of the assembly, followed by
the partial enlarged views of the fuel can outgas tube and the
spacer. The right most part provides cross views of different
sections of the fuel assembly. The geometry factor mentioned
are marked in Figure 3.

Table I summarises the detailed information of the TREAT
uncertainty analysis in [2]. The sensitivity analysis is based
on the same samples.

III. RESULTS AND ANALYSIS

Results from three models are presented in this paper.
Two models are the simple tests and the last one is TREAT
minimum critical core SERPENT model. Theoretically this
method allows user to evaluate partial variance attributable to
combinations of variables of the given model. However, to
simplify the calculation and validate the method, only the sin-
gle parameter effects were calculated. i.e. sensitivity indices
S i, i = 1, 2, . . . , n were evaluated. The other terms in the sum

expansion
∑̂

S i1,...,is are beyond the scope of this paper.
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Factor Distribution Distribution parameters

Graphite fuel B content (wt.%) Normal µ = 7.53, σ = 1.1619

Flat-to-flat distance of graphite fuel (in.) Triangular a=3.795, b=3.82, c=3.8

Standard fuel assembly outer radius (in.) Triangular a=3.935, b=3.985, c=3.96

Al 6063 can thickness (in.) Triangular a=0.05-1/64, b=0.05+1/64, c=0.05

Zr-3 can thickness (in.) Triangular a=0.025-1/64, b=0.025+1/64, c=0.025

Summary: Sample size=1200, Mean ke f f : 1.0069 ± 3.4053E − 4, Relative uncertainty: 1171.6 ± 23.9pcm

TABLE I. Variable and distribution information summary for minimum critical core model uncertainty analysis

Fig. 2. TREAT minimum critical core configuration.

Fig. 3. TREAT standard fuel assembly SERPENT model.

1. Results of The Two Simple Test Models

Table II and Table III lists the single parameter sensitivity
indices results. The last column in the two tables contains the
results obtained from the sensitivity analysis method presented
in this paper. Compared to the analytical solutions, estimation
results of test model 1 are very accurate. For test model two,
sensitivity index estimations of the first two variables have
high accuracy. Sensitivity index of the last parameter was
underestimated by about 10%.

Both tests were designed to verify the applicability of this
method to non-linear models. Based on the results, it is clear
that the method is applicable to non-linear models. It is able
to perform a variance decomposition and capture the effects
brought by each input factor with 1000 samples for the two
simple models.

The first test contains only standard normal distributed
variables while the second model contains a mixture of dif-
ferent distribution types. It is expected that the estimations of
the second model have a lower accuracy. Note that due to the
complexity of the steps in this method, there was no standard
error propagation procedures available for the sensitivity in-
dex estimations listed in Table II and Table III. Hence there
is no standard errors added for the values in the tables. This
problem should be addressed in the future work.

Figure 4 and Figure 6 plot the Fourier coefficient estima-
tions and the analytical values of the Fourier coefficients for
each single parameter sub-function fi, i = 1, 2, 3. The error
bar for each Fourier coefficient estimation plotted in Figure 4
and Figure 6 is the standard error of mean estimation. It de-
pends only on the sample size and the standard deviation of
the sampled distribution.

For the first input factor in test model 1, the Fourier co-
efficient estimations contain relatively large errors. The co-
efficients were overestimated at some harmonic orders and
underestimated at the other harmonic orders. It has been anal-
ysed in section II.5 that the errors in the Fourier spectrum are
independent of their harmonic order. This observation proved
the statement. Since the sensitivity index was estimated by
the sum of all the coefficient modulus squares, errors over
the spectrum were canceled out. An "accurate" estimation
was given. For the other two factors, the errors in the Fourier
coefficient estimations were much smaller.

Similar conclusions were obtained from the spectrum
plots of test model 2. An error analysis in the previous section
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has shown that the errors contained in the Fourier spectrum
can be divided into two parts. One part is related to the numer-
ical integration algorithm chosen for the factor of interest and
the other is caused by the sampling process. For this two test
models, the samples were generated using the random num-
ber generator provided by MATLAB. No specific sampling
techniques were utilised. Latin hypercube sampling may be a
better choice in case of decreasing the sampling related error.

For these two models the weighting factors used to es-
timate the Fourier coefficients were decided by cutting the
s-space evenly into 53 = 125 sub-regions. Other weight fac-
tors may also be tested to track the tendency of the spectrum
errors.

Figure 5 and Figure 7 plot the subfunctions fi(si) recon-
structed from the Fourier coefficients. It is clear that the maxi-
mum harmonic order M = 20 used is a relatively large value,
as all of the functions re-constructed were oscillating around
the analytical solutions. This would not affect partial vari-
ance estimation because the partial variance were defined
as integrals over the whole sample space. However, if the
re-constructed functions are used to estimate the sensitivity
response of the model with respect to a specific sample point
defined as,

S α0 =
∂R
∂α

α0

R0
, (37)

This oscillation may cause errors.

2. Results of TREAT Minimum Critical Core ke f f

The sensitivity indices obtained for TREAT minumum
critical core is summarised in Table IV. The second column in
table IV gives the ratio between two variances. The numerator
of the ratio is the variances calculated from the model out-
puts of 300 samples which contain single factor perturbations.
(These tests were run through the model to give a comparison
to the sensitivity method presented in this paper.) The denomi-
nator is the variance of ke f f estimated from the 1200 sets of
samples mentioned in [2]. This ratio represents a value similar
to the sensitivity indices defined in this paper. However, the
sensitivity indices defined in this paper is estimating the term

S i = Var[E[ f |xi]]/Var[ f ] (38)

while the ratio is estimating

Ri = Var[E[ f |x∗j , j , i]]/Var[ f ] (39)

i.e. Ri calculates the variance of the model’s conditional mean
given that all the other factors except xi are fixed at their user
preferred values.

Hence Ri and S i values are supposed to be different from
each other. The purpose of presenting both results in Table IV
is to provide the readers with comparison between different
methodologies and definition of sensitivity measures.

Notice that there is no errors estimated for the S i values.
Because of the complexity of the steps used in this method
to estimate S i, it is hard to find a standard way to define the

Fig. 4. Simple test model 1 results, comparison between the
analytical frequency spectrum of fi(si) and the estimation.
i = 1, 2, 3
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Effect Parameter distribution information Partial variance Analytical sensitivity Sensitivity estimation

Vx1 Normal distribution µ = 0, σ = 1 2 0.047 0.043
Vx2 Normal distribution µ = 0, σ = 1 8 0.186 0.189
Vx3 Normal distribution µ = 0, σ = 1 18 0.419 0.423

TABLE II. Summary of simple test case one.

Effect Parameter distribution information Partial variance Analytical sensitivity Sensitivity estimation

Vx1 Normal distribution µ = 0, σ = 0.5 2.0211 0.211 0.209
Vx2 Uniform distribution a=0.2, b=0.6 0.8505 0.089 0.088
Vx3 Triangular distribution a=2.5, b=3, c=2.7 6.6297 0.694 0.638

TABLE III. Summary of simple test case two.

Fig. 5. Simple test model 1 results, comparison between the
analytical solution of fi(si) and its estimation. i = 1, 2, 3

Fig. 6. Simple test model 2 results, comparison between the
analytical frequency spectrum of fi(si) and the estimation.
i = 1, 2, 3
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Factor Ri =
Var[Ke f fSingle factor perturbation ]

Var[ke f f ] S i estimations

Boron contamination 0.8675 ± 0.0501 0.7444

Flat to flat distance of fuel block 0.0361 ± 0.0021 0.0310

Standard fuel assembly outer radius 6.7784E − 4 ± 3.9151E − 5 5.6169E-4

Al-6063 can thickness 0.0817 ± 0.0047 0.0701

Zr-3 can thickness 0.5793 ± 0.0335 0.4974

TABLE IV. TREAT minimum critical core sensitivity analysis summary

Fig. 7. Simple test model 2 results, comparison between the
analytical solution of fi(si) and its estimation. i = 1, 2, 3

error of the estimations. This should be addressed in the future
work.

The weight factors used to estimate the S i results were
calculated by dividing the s-space evenly into 25 sub-regions.
Comparison between column 2 and 3 in Table IV shows that
the sensitivity indices defined in this paper captures the correct
model response with respect to different input factors. Note
that the sum of the sensitivity indices listed here is larger than
1. This showed that the current method is slightly overes-
timating the sensitivity indices. Possible reason for this is
the maximum harmonic order used was too large. When the
Fourier coefficients of the fi(si) function are being summed up,
noise from other sub-functions may get counted. The simple
2D example below may explain this better.

Consider a given integrable model which contains two
independent, uniformly distributed random variables X1 and
X2. As discussed before, the model can be written into the
sum expansion:

f (x1, x2) = f0 + f1(x1) + f2(x2) + f1,2(x1, x2)

Consider only the variable X1, by definition, the sensitivity
index is calculated by S 1 =

∫ 1
0 f1(x1)2dx1. Although the f1,2

term also contains the x1 factor, it should not be counted in the
estimation of S 1. (It is counted by its own sensitivity index:
S 1,2 =

∫ 1
0

∫ 1
0 f1,2(x1, x2)2dx1dx2 )

During the estimation of the Fourier coefficients, the
f1,2(x1, x2) term may get partially mixed up with the f1 term.
This explains the observed overestimation. Note that the Ri
values listed of all input factors are always larger than the
estimations of S i. This is totally expected because the Ri is
actually counting for all sub-functions which contain the xi
term by definition. It makes perfect sense that the S i values
obtained are slightly larger than their expectations and at the
same time slightly smaller than the Ri values.

In the test with the TREAT model, the estimation of Ri
took 300 × 5 + 1200 = 2700 trials of SERPENT model run
while the estimation of S i took 1200 trials. The new method
showed its advantage.

IV. CONCLUSIONS

This paper presented a new sensitivity analysis method
which can be applied efficiently to non-linear response models.
It was tested on the TREAT minimum critical core model, but
can be easily applied to all general models of interest. Results
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presented for the two simple test models provided verification
of the methods developed. A preliminary efficiency and error
analysis of this method was also presented. Compared to
traditional sensitivity analysis method, the method developed
here can provide predictions at same level of accuracy with
fewer sample tests. Future work includes further developing
of the algorithms and expanding the range of applications.
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