
M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

A Generalized Perturbation Theory Solver In Rattlesnake Based On PETSc With Application To TREAT Steady State
Uncertainty Quantification

Sebastian Schunert, Congjian Wang, Yaqi Wang, Fande Kong, Javier Ortensi, Benjamin Baker, Frederick Gleicher, Mark
DeHart, Richard Martineau

Idaho National Laboratory, Nuclear Science & Technology Directorate, Idaho Falls, ID
sebastian.schunert@inl.gov

Abstract - Rattlesnake and MAMMOTH are the designated TREAT analysis tools currently being developed at
the Idaho National Laboratory. Concurrent with development of the multi-physics, multi-scale capabilities,
sensitivity analysis and uncertainty quantification (SA/UQ) capabilities are implemented for predicitive
modeling of the TREAT reactor. For steady-state SA/UQ, that is essential for setting initial conditions for the
transients, generalized perturbation theory (GPT) will be used. This work describes the implementation of
a Krylov subspace based solver for the generalized adjoint equations that constitute a inhomogeneous, rank
deficient problem. The standard approach is to use an outer iteration strategy with repeated removal of the
fundamental mode contamination. The proposed new GPT algorithm directly solves the GPT equations without
the need of an outer iteration procedure by constructing Krylov subspaces that are orthogonal to the operator’s
nullspace. Three test problems are solved and provide verification for the Rattlesnake’s GPT capability. We
conclude with a preliminary example evaluating the impact of the boron distribution in the TREAT reactor
using perturbation theory.

I. INTRODUCTION

Perturbation theory is an efficient tool for quantifying
changes of output parameters to changes of input parameters
if the number of output parameters is small. Perturbation
theory for fixed source problems and eigenvalue problems
is discussed in [1]. For eigenvalue problems, standard per-
turbation theory is confined to quantifying changes of the
eigenvalue to changes of the input parameters. If the perturba-
tion of other quantities is desired, a rank-deficient fixed source
problem must be solved to obtain the generalized adjoint func-
tion [2]. The theory of obtaining changes of general quantities
due to changes in input parameters for eigenvalue problems is
referred to as generalized perturbation theory (GPT). Within
this work, GPT is exclusively applied to the radiation transport
problem without multiphysics feedback.

At the center of GPT is the solution of an inhomogeneous,
rank-deficient problem. Traditionally, an outer iteration pro-
cedure is applied fixing the eigenvalue, and iterating on the
fission source [2]. After a set number of outer iterations the
fundamental mode contamination is removed. This method
is for example implemented in the SCALE code NEWT for
supporting the TSUNAMI module [3]. Within this work, we
implement a new algorithm for the solution of the GPT equa-
tions into the radiation transport code Rattlesnake, [4], that
directly solves for the generalized eigenfunction without the
need of an outer iteration procedure. The basic idea is to uti-
lize a modified Krylov subspace method such as GMRES, [5],
implemented in PETSc, [6], to solve a singular linear problem
by removing the null space from the Krylov space and the
nullspace of the transpose from the right hand side. In the de-
scribed case, Krylov methods will always provide the solution
of the linear set of eqations [7].

Within this work, we first introduce the GPT equations
and the implementation in Rattlesnake. Then we provide three
analytical test problems illustrating the correct implementation

in Rattlesnake: (1) discrete laplacian eigenvalue problem, (2)
a one-dimensional, one-group neutron diffusion problem, (3)
a two-dimensional, two-group neutron diffusion problem. Fi-
nally, we exercise the adjoint capability to compute the change
of the eigenvalue due to changes of the boron contamination
distribution in the steady state version of the Transient Test
Reactor’s (TREAT) transient 15 setup [8]. This work is the
first step on the way to TREAT centered SA/UQ effort that is
important due to the lack of detailed configuration informa-
tion including boron contamination, control rod position, and
steady-state conditions before a transient.

II. THE GENERALIZED ADJOINT PROBLEM

The radiation transport GPT equations comprise the rank-
deficient adjoint eigenvalue operator on the left hand side and
a source on the right hand side. Depending on the source, this
equation has either no solution or infinitely many solutions. In
this section, the generalized adjoint equations are introduced,
solvability conditions are introduced, the solution procedure
algorithm is discussed, and a normalization condition that
yields a unique solution is introduced.

The adjoint eigenvalue problem in operator notation is
given by:

L∗φ∗ =
1
k

P∗φ∗, (1)

where φ∗ is the adjoint solution vector comprising all group
fluxes (scalar or angular for diffusion or transport problems,
respectively), L∗ is the adjoint operator comprising all terms
except the fission term but including boundary conditions, k
is the multiplication factor, and P∗ is the operator comprising
the fission contributions. After discretization, the operators
L∗ and P∗ become matrices. The fundamental mode solution
is denoted by (k0, φ

∗
0). The corresponding forward problem is

given by:
Lφ =

1
k

Pφ, (2)
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and the fundamental eigenpair is given by (k0, φ0) noting that
the adjoint and forward multiplication factors are the same.
The generalized adjoint equations are given by:

(L∗ −
1
k0

P∗)Γ∗ = S ∗, (3)

where Γ∗ is the generalized adjoint function and S ∗ is a so-
far undetermined source. The generalized adjoint equations
feature the following properties:

• (L∗ − 1
k0

P∗) is rank deficient and the nullspace of dimen-
sion one is spanned by φ∗0.

• The equation has infinitely many solutions if and only if

(φ0, S ∗) = 0, (4)

where (·, ·) is an inner product over the corresponding
phase space (energy and space for diffusion, energy, space
and angle for transport). PETSc ensures that this condi-
tion is always satisfied.

• The general solution consists of a homogeneous and a
particular solution:

Γ∗ = cφ∗0 + Γ∗p, (5)

where c is an arbitrary constant.

In case Eq. (4) holds, a unique solution can be obtained by
enforcing the normalization condition adopted from [2]:

(φ0, P∗Γ∗) = (Pφ0,Γ
∗) = 0. (6)

We split the operator P into two pieces:

P = F∗F, (7)

where F∗ = (χ1, χ2, ..., χG) incorporates the fission spectrum
and F = (νσ f ,1, νσ f ,2, ..., νσ f ,G) contains the fission neutron
production cross sections. The pertinent fission sources can
be constructed using these operators:

f ∗0 = F∗φ∗0
f0 = Fφ0

F∗p = F∗Γ∗p. (8)

The normalization condition Eq. (6) becomes:

(Pφ0,Γ
∗) = (Fφ0, F∗Γ∗) = ( f0, c f ∗0 + f ∗p ) = 0. (9)

Solving for c yields:

c = −
( f0, f ∗p )

( f0, f ∗0 )
. (10)

The adjoint and forward eigenvalue problems Eq. (1) and (2)
are solved as sub-apps using the MOOSE MultiApp system,
[9]. The adjoint fundamental mode is supplied to PETSc for
constructing a basis of the null space. The forward fundamen-
tal mode is used for ensuring that condition Eq. (4) is satisfied
and for computing the fission source and constant c.

III. GENERALIZED PERTURBATION THEORY

A. Perturbation of the Eigenvalue

Perturbation of the eigenvalue follows the description in
Ref. [1]. It is more convenient to work with the reactivity
defined by:

ρ =
k − 1

k
. (11)

To first order, the change in reactivity to changes in the input
parameters can be computed by [1]:

δρ ≈
(φ∗, (1 − ρ)δPφ − δLφ)

(φ∗, Pφ)
. (12)

The significance of Eq. (12) is that it does not depend on the
perturbed flux and hence the perturbed equations do not have
to be solved.

B. Perturbation of Reaction Rate Ratios

For computing the changes of reaction rate ratios to
changes in the input parameters using linear perturbation the-
ory, the generalized adjoint problem Eq. (3) normalized ac-
cording to Eq. (6) must be solved. We consider reaction rate
ratios of the form

R =
(σ1, φ0)
(σ2, φ0)

. (13)

The perturbation up to linear terms can be determined to be:

δR/R ≈
(δσ1, φ0)
(σ1, φ0)

−
(δσ2, φ0)
(σ2, φ0)

+ (−δLφ0 + (1 − ρ)δPφ0,Γ
∗) . (14)

where we have chosen S ∗ in Eq. (3) as

S ∗ =
σ1

(σ1, φ0)
−

σ2

(σ2, φ0)
. (15)

IV. ANALYTICAL TEST PROBLEMS

In this section we demonstrate by using simple analytical
test problems that Rattlesnake correctly solves the generalized
adjoint equations. The first problem is a one-dimensional,
discrete Laplacian eigenvalue problem, the second problem is
a one-group, slab geometry neutron diffusion problem, and the
third problem is a two-group, two-dimensional bare reactor
problem.

1. Discrete Laplacian Problem

The setup of this test problem slightly adapts the descrip-
tion in Ref. [10]. The eigenvalue problem of the continuous
Laplacian operator is given by:

−
d2u
dx2 =

1
λ

u(x)

u(0) = u(L) = 0, (16)

where u is the function we seek, λ is the eigenvalue, and the
domain extends from x = 0 to x = L. For any given discretiza-
tion, a discrete Laplacian operator can be constructed that for
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TABLE I. Rattlesnake solution of Eq. (20) at interior nodes.

Node x Γ

1 1.25 1.002323
2 2.5 1.417499
3 3.75 1.002323
4 5 0
5 6.25 -1.002323
6 7.5 -1.417499
7 8.75 -1.002323

a continuous FEM implementation with linear Lagrange shape
functions looks like:

D~u =
1
λ

M~u, (17)

where D and M are the stiffness and mass matrices, respec-
tively, and ~u are the values of u at the internal nodes. Let the
discrete problem be defined on a mesh featuring n elements
with a mesh spacing of h = L/n; this mesh has n − 1 interior
nodes. The m-th eigenpair is given by:

1
λm

=
12
h2

sin2 ωm

1 + 2 cos2 ωm

um, j =

√
2
L

sin
(πx j

L

)
, (18)

where

ωm =
mπ
2n

x j = jh. (19)

The fundamental mode is indicated by m = 1. A test problem
is set up using L = 10 and n = 8 resulting in an eigenvalue of
λ1 = 10.00292.

To test Rattlesnake’s ability to exactly [i.e. without dis-
cretization error] solve the rank deficient, inhomogeneous
problem, a source term is added to Eq. (17):

D~Γ −
1
λ1

M~Γ = ~S ∗, (20)

where ~S ∗ is given by:

S ∗j =

√
2
L

sin
(πx j

L

)
+

√
2
L

sin
(

2πx j

L

)
(21)

It should be noted that the right hand side of Eq. (21) is not
within the range of the left hand side operator of Eq. (20)
and hence the problem tests the ability of PETSc to properly
prepare the right hand side of the provided linear system before
solving it. Rattlesnake is used to solve Eq. (20) and then the
solution is extracted and subsituted back into Eq. (20). The
computed solution that is listed in Table I satisfies Eq. (20).

2. One-group Slab Geometry Diffusion Problem

This test uses the slab-geometry, one-group neutron diffu-
sion equation in a homogeneous medium as model equation.
The one-group diffusion equation in its eigenvalue form is
given by:

−D
d2φ

dx2 + σaφ =
1
k
νσ fφ, 0 < x < a,

φ(0) = 0,
φ(a) = 0. (22)

where D is the diffusion coefficient, σa is the absorption cross
section, and νσ f is the fission neutron production cross section.
As Eq. (22) is self-adjoint φ = φ∗. The fundamental mode
solution of Eq. (22) is:

φ = α sin
(
πx
a

)
,

k =
νσ f /σa

1 + D/σaB2
g
, (23)

where α is an arbitrary constant and the geometric buckling
Bg is given by:

Bg =
π

a
. (24)

We select the following parameter D = 0.72 cm, σa =
0.2 cm−1, k = 1.1, a = 100 cm, and compute νσ f = 0.220782.

The inhomogeneous, rank-deficient GPT system is set up
as: [

−D
d2

dx2 + σa −
1
k
νσ f

]∗
Γ∗ = S ∗(x), 0 < x < a,

Γ∗(0) = 0,
Γ∗(a) = 0. (25)

Using Eq. (23), we can simplify Eq. (25):

−D
[

d
dx2 +

(
π

a

)2
]∗

Γ∗ = S ∗(x), 0 < x < a,

Γ∗(0) = 0,
Γ∗(a) = 0. (26)

We first determine a source that satisfies the condition
(φ, S ∗) = 0 and the boundary conditions in Eq (26). A suitable
choice is:

S ∗(x) = sin
(

2πx
a

)
. (27)

The solution Γ∗ is the linear combination of the homogeneous
solution φ and a particular solution Γ∗p according to Eq. (5).
where c is an arbitrary constant. The particular solution Γ∗p is
given by:

Γ∗p =
1

3D

(a
π

)2
sin

(
2πx

a

)
. (28)

PETSc returns the particular solution without fundamen-
tal mode contamination, i.e. Γ∗p. To check this, we set up the
test problem in Rattlesnake and compute the L2 norm of the
difference between the exact and numerical solutions for mesh
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element’s thicknesses 10, 5, 2.5, 1.25, and 0.625 cm discretiz-
ing the diffusion equations with first order continuous finite
elements. The results are compiled in Table II. In addition to
the source S ∗(x) given in Eq. (27), we also use the source

S ∗2(x) = S ∗(x) + φ. (29)

S ∗2(x) does not satisfy the orthogonality condition and hence
we again test if PETSc properly removes the fraction of the
right hand side that is outside of the range of the left hand side
operator. Therefore, the solution is expected to be identical
up to numerical integration error to the one that uses S ∗(x) as
right hand side. The results in Table II indicate that the error
reduces with the theoretical predicted order two confirming
that Rattlesnake correctly solves the rank deficient problem.

3. A Two-Dimensional, Two-group Bare Reactor Bench-
mark Problem

A. Analytical Solution

For the two-group, neutron diffusion problem an inner
product is defined as:

2∑
g=1

(
fg, pg

)
=

2∑
g=1

a∫
0

dx

b∫
0

dy fg pg. (30)

The two-group diffusion equations for a homogeneous reactor
extending from 0 < x < a, 0 < y < b are given by:

−D1∇
2φ1 + σr,1φ1 =

1
k

(
νσ f ,1φ1 + νσ f ,2φ2

)
−D2∇

2φ2 + σr,2φ2 = σ1→2
s φ1, on V,

φ1 = φ2 = 0 on ∂V. (31)

Note that the subscript now indicates the group index and not
the fundamental mode. The geometric buckling B2 defined in
[1] is slightly generalized to:

B2
n,m =

(nπ
a

)2
+

(mπ
b

)2
, (32)

where we note that B2
1,1 = B2. The multiplication factor can

be computed as:

k =
νσ f ,1

σr,1 + D1B2 +
σ1→2

s

σr,1 + D1B2

νσ f ,2

σr,2 + D2B2 . (33)

The fundamental mode is given by:

~φ = α

(
Φ1
Φ2

)
sin

πx
a

sin
πy
b
, (34)

where α is an arbitrary real number representing the magnitude
of the flux. The ratio Φ1/Φ2 is fixed and can be computed by
determining the nullspace of the matrix:[

D1B2 + σr,1 −
1
k νσ f ,1 − 1

k νσ f ,1
−σ1→2

s D2B2 + σr,2

] (
Φ1
Φ2

)
= 0 (35)

Similarly, the adjoint fundamental mode is given by:

~φ∗ = α∗
(

Φ∗1
Φ∗2

)
sin

πx
a

sin
πy
b
. (36)

We define the matrix A∗n,m as:

A∗n,m =

[
D1B2

n,m + σr,1 −
1
k νσ f ,1 −σ1→2

s
− 1

k νσ f ,1 D2B2
n,m + σr,2

]
. (37)

The ratio Φ∗1/Φ
∗
2 can be determined by obtaining the nullspace

of the matrix A = A1,1.
The response of interest is a ratio of reaction rates inte-

grated over a subset of the domain. Let us denote the subset
of the domain by Vs:

Vs : xmin < x < xmax, ymin < y < ymax, (38)

and the integal over region Vs by:

( f , g)Vs
=

xmax∫
xmin

dx

ymax∫
ymin

dy f g. (39)

The response of interest is then given by:

R =

(
σx,1, φ1

)
Vs(

σx,2, φ2
)
Vs

, (40)

and the corresponding adjoint source is computed from
Eq. (15):

~S ∗ =




σx,1

(σx,1,φ1)Vs

−
σx,2

(σx,2,φ2)Vs

 ~r ∈ Vs

~0 otherwise

(41)

The GPT problem written in matrix form is given by:

A∗~Γ∗ = ~S ∗. (42)

The particular solution is sought as superposition of orthogonal
functions on the domain V:

~Γ∗p =

∞∑
n=1

∞∑
m=1

(
Φ

n,m,∗
p,1

Φ
n,m,∗
p,2

)
sin

nπx
a

sin
mπy

b
, (43)

with the source similarly expanded:

S ∗g =

∞∑
n=1

∞∑
m=1

S n,m,∗
g sin

nπx
a

sin
mπy

b
. (44)

The expansion coefficients can be computed as:

~S n,m,∗ =


σx,1

(σx,1,φ1)Vs

−
σx,2

(σx,2,φ2)Vs


×

4
n m

(
cos

nπxmax

a
− cos

nπxmin

a

)
×

(
cos

mπymax

b
− cos

mπymin

b

)
. (45)
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TABLE II. L2 error of the numerical and exact solution for the one-group diffusion test problem.

L2 error

Mesh size (cm) S ∗(x) order S ∗2(x) order

10 2.36E+02 2.36E+02
5 6.08E+01 1.96E+00 6.08E+01 1.96E+00

2.5 1.53E+01 1.99E+00 1.53E+01 1.99E+00
1.25 4.67E+00 1.71E+00 4.03E+00 1.92E+00

0.625 9.74E-01 2.26E+00 9.63E-01 2.06E+00

TABLE III. Two-dimensional, two-group test problem specifi-
cations.

Quantity Value

a 300
b 300

xmin, xmax = ymin, xyax {133.3, 166.6}
σr {0.027, 0.07}
νσ f {0.006, 0.1}
D {1.51515, 0.4166667}

σ1→2
s 0.017
σx {0.002, 0.0417}
k 1.106897

Substituting Eq. (43) into Eq. (42) and collecting terms with
identical n and m leads to:

An,m~Γ
n,m,∗
p = ~S n,m,∗, (46)

Using the pseudo-inverse, the expansion coefficients can be
computed:

~Γn,m,∗
p = A†n,m~S

n,m,∗, (47)

We require the generalized adjoint solution ~Γ∗,T to be normal-
ized such that it satisfies:(

~Γ∗,T ,P~φ
)

= 0. (48)

Explicitly evaluating this condition yields:

Γ
1,1,∗
1

(
νσ f ,1Φ1 + νσ f ,2Φ2

)
×


a∫

0

dx sin2 πx
a




b∫
0

dy sin2 πy
b

 = 0, (49)

which can only be satisfied if Γ
1,1,∗
1 = 0. The properly normal-

ized generalized adjoint flux is therefore obtained by:

~Γ∗ = ~Γ∗p −
Γ

1,1,∗
p,1

Φ∗1

~φ∗. (50)
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Fig. 1. Comparison of the numerical and reference solution for
the two-dimensional, two-group, bare reactor test for group
g = 1.

B. Numerical Results

We sample the numerical solution and the analytical so-

lution along the diagonal (x = y) at distances of
√

2 · 10 cm
(31 locations) and compare as the numerical model is refined.
For the analytical solution, the series expansion is truncated
at N = M = 200. The comparison of the reference solution
with the numerical solution on meshes featuring 9× 9, 18× 18,
36×36, 72×72 and 144×144 rectangular elements is depicted
in Fig. 1 and Fig. 2 for group 1 and group 2, respectively. The
numerical solution uses first order continuous shape functions
in space. The results show convergence of the numerical so-
lution to the reference solution as the mesh is refined. The
generalized adjoint function computed on the finest mesh is
depicted in Fig. 3.

V. APPLICATION OF PERTURBATION THEORY TO
TREAT

This summary contains preliminary results for TREAT
perturbation analysis. We focus on the eigenvalue version
of the transient 15 model described in Ref. [8] that is used
to obtain the initial conditions for the subsequent transient
analysis. This model features vacuum boundary conditions
on all exterior sides. In particular, we use Rattlesnake’s per-
turbation capability to compute the change in the eigenvalue
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Fig. 2. Comparison of the numerical and reference solution for
the two-dimensional, two-group, bare reactor test for group
g = 2.

due to boron contamination in the fuel. During the baking
process for the manufacture of TREAT fuel, borated steel
dividers were used to reduce the chance of inadvertant criti-
cality. However, due to direct contact with some of the fuel
blocks, some boron migrated into the graphite. It is estimated
to average either 5.6 or 7.9 weight parts per million (wppm)
[11]. The transient 15 model already contains 7.9 wppm of
boron distributed uniformly within the fuel and the computed
eigenvalue is k = 0.9917. As the detailed spatial distribution
is unknown, we analyze the following cases within this work:
(1) uniform spatial distribution in the fuel using the lower esti-
mate of 5.6 wppm of boron [essentially we compute the worth
of 2.3 wppm of boron uniformly distributed within the core],
(2) boron is distributed according to the following periodic
function:

N(~r) = α
(
1 −

∣∣∣∣∣sin
xπ
L

∣∣∣∣∣) (1 − ∣∣∣∣∣sin
yπ
L

∣∣∣∣∣) , (51)

where α is chosen to conserve the total amount of boron in the
core, and L = 10.22 cm is the size of a fuel assembly. The
postulated distribution attempts to model the fact that boron
migrated into the fuel assemblies from the outside so it is
expected to vary on the assembly length scale. In fact, the true
distribution is more complicated because not all outer surfaces
were exposed to borated steel.

Thermal absorption cross sections of boron are obtained
by assuming a Maxwellian flux spectrum, 1/v dependence of
the cross section and a value of 755 b at v = 2250m/s [1]. We
solve the transient 15 steady-state model in forward and adjoint
mode using the continuous finite element diffusion solver in
Rattlesnake and an 11 group energy structure described in
[12].

Using Eq. (12), we find that the eigenvalue changes by
about 1,700 pcm when decreasing the boron content unformly
by 2.3 wppm. In Ref. [11] it is found that this change leads
to a 1,200 pcm change of the eigenvalue for an infinite lat-
tice of TREAT assemblies. Finally, the case where boron is
distributed according to the periodic function Eq. (51) leads

TABLE IV. ∆k/k found for the various changes in boron dis-
tribution in the TREAT transient 15 core.

Case ∆k/k [pcm]

Change by 2.3 wppm 1695
Periodic 42

to almost no change in the eigenvalue. While the spatial dis-
tribution of boron matters in principle, the length scale of
realistic boron distributions [the typical distance over which
changes are observed] is smaller or equal to the assembly
pitch that is much smaller than the length scale over which the
fluxes change. Hence the shape of the boron distribution does
not play a significant role, but characterizing the total boron
content is critical for accurate TREAT models.

VI. CONCLUSIONS AND FUTURE WORK

In this summary we introduce and verify Rattlesnake’s
capability for computing generalized adjoint functions. The
generalized adjoint problem is solved using PETSc requiring
no outer iteration procedure as typically performed. Three
test problems: a discrete laplacian problem, a slab-geometry,
one-group neutron diffusion problem, and a two-dimensional,
two-group bare reactor are proposed and used to verify the im-
plementation. The described GPT capability in Rattlesnake is
the first step in a SA/UQ effort for TREAT modeling and simu-
lation. Perturbation of the eigenvalue for the TREAT transient
15 core due to changes in the boron distribution are presented.
Future work will focus on the TREAT M8CAL core and in-
vestigate more closely the effect of boron contamination, and
control rod position on the eigenvalue and assembly powers.
Future work will include SA/UQ on transient, multiphysics
TREAT models.
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