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Abstract - This paper presents the uncertainty analysis of the original Minimum Critical Core of the TREAT
reactor. A stochastic uncertainty analysis was performed on the contribution of geometric and composition
specification of the assembly using Monte Carlo Neutronics methods. Results show that Boron contamination,
Zr can thickness, Al can thickness and flat-to-flat distance of fuel blocks are the most significant design factors
contributing to the variance.

I. INTRODUCTION

The objective of the work reported in this paper is to
quantify the uncertainties in the prediction of ke f f of a single
assembly and the minimum critical core loading of the TREAT
reactor which are attributable to uncertainties in the fuel ma-
terial composition and geometry parameters. The work was
based on stochastic sampling method and all neutronics calcu-
lations were performed using the Monte Carlo code SERPENT.
The TREAT reactor is an air-cooled, graphite moderated, ther-
mal test facility designed to evaluate reactor fuel and structural
materials under severe reactor-accident conditions. [1] The
minimum critical core configuration being studied in this pa-
per was the steady-state core configuration when the reactor
began operation in 1959.

Two major challenges were addressed in this work. First,
the detailed boron contamination and its distribution in TREAT
fuel assemblies were not available because of incomplete
records. This led to difficulties in generating a boron sam-
ple distribution and required the development of a chi square
weighting method which provided reasonable results. Second,
uncertainties in the core calculation introduced by uncertain-
ties in geometry parameters and their correlations were an-
alyzed. The results provided important information for the
continuing analysis in support of the TREAT reactor restart
efforts.

II. THEORY

1. Description of the SERPENT Model

Figure 1 shows the minimum critical core configuration of
TREAT. It consists 133 standard fuel assemblies, 8 control rod
fuel assemblies and 16 Zircaloy-clad dummy fuel assemblies.
Detailed description of the geometry of the configuration is
given in [1]. The SERPENT model of TREAT standard fuel
assembly is shown in Figure 2. The left most part in Figure 2
is the side view of the assembly, followed by the partial en-
larged views of the fuel can outgas tube and the spacer. The
right most part provides cross views of different sections of
the fuel assembly. The control rod fuel assembly is a standard
fuel assembly with a hole down to center to allow for vertical
movements of control rods. The Zircaloy-clad dummy fuel
assembly follows a similar design to the standard fuel assem-
bly. There are two notable differences. First, the graphite-fuel
blocks are replaced with graphite blocks. Second, the out-

gas tubes are removed since there is no fuel in the dummy
assemblies.

Fig. 1. TREAT minimum critical core configuration.

Fig. 2. TREAT standard fuel assembly SERPENT model.
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An example uncertainty evaluation for infinite lattice fuel
assembly model was given in [1]. Results from this analysis
pointed out that uncertainties in the following five groups of
factors are the most significant "contributors" of the uncer-
tainties in the eigenvalue calculation. The sample space and
distribution information for these parameters should be mod-
eled as close to the operational history of TREAT as possible.

• Uranium vector: the weight percent of each uranium iso-
tope (U234, U235, U236 and U238) among total uranium
content in graphite fuel.

• Fuel composition: the weight % of each element in the
graphite fuel (B, O, U, C, V, Fe).

• Al-6063 can related parameters: alloy composition, den-
sity, can thickness.

• Fuel block geometry: flat to flat distance of fuel block.

• Zr can related parameters: alloy composition, density,
can thickness.

In the reference uncertainty analysis ([1]), the distributions
of the material composition factors are assumed as normal
distributions. The geometry factors such as Al-6063 can thick-
ness and Zr can thickness are treated as uniformly distributed
random variables. Besides these assumptions, some other
distributions may describe the factors better. The following
paragraphs provide possible tools and records from other ref-
erences to re-estimate the distribution that each parameter
follows.

2. Distribution of Boron Impurity

Boron content in the graphite fuel is one of the most
significant uncertain factors observed. This uncertainty re-
sulted directly from the procedure used to bake the fuel during
the fuel fabrication of TREAT. Ref [2] noted that during the
TREAT fuel baking procedure, boron loaded stainless steel
was used as separator material between the assemblies to alle-
viate concerns with criticality which allowed boron to diffuse
into core graphite. [3] To evaluate the boron contamination
resulting from this fabrication procedure, 50 core graphite
samples (a total of 1.25g) were tested. The samples were then
separated into four groups and each group contained a differ-
ent number of samples. Only the mean and average deviation
values of each group were recorded. [4]

Two methods were evaluated to combine statistics from
the four groups. The first method is inverse variance weight-
ing in which the sample means y1, y2, . . . , yk from k individ-
ual studies, with respective known variances σ2

1, . . . , σ
2
k are

evaluated using an inverse weighting procedure in which the
variance of the weighted mean is minimized by wi = 1

σ2
i
, i =

1, 2, . . . , k. [5] In this case, the weighting factors are defined
as:

wi = (
1
σ2

i

)/(
k∑

j=1

1
σ2

j

), i = 1, 2, . . . , k. (1)

And the variance of the weighted mean
∑k

i=1 wiyi is then de-
fined as

k∑
i=1

w2
i Var(yi) =

1∑k
j=1

1
σ2

j

. (2)

Based on Eq. (1) and (2), the weighted mean (ȳ) and the
standard deviation of this estimation (σȳ) can be calculated
and the boron content is therefore assumed to follow a normal
distribution N(µ = ȳ, σ = σȳ).

The second method was developed specifically for this
work and is based on "chi-square weighting". It is based on the
assumption that the boron impurity in core graphite follows
a normal distribution. (Notice that it is assumed that there is
no spatial dependency of boron contamination.) Under this
assumption, the ratio between variances observed from the
four groups and the actual distribution coefficient σ2 follows
chi-square distribution: [6]

(ni − 1)
S 2

i

σ2

 ∼ χ2(ni − 1) (3)

where ni is the sample size of the ith group and S 2
i is the

variance observed in the ith group. χ2(ni − 1) denotes a chi-
square distribution with the degree of freedom (ni−1). Denote
vi =

S 2
i

σ2 and perform a variable transformation, the probability
distribution function of vi is obtained as

f (vi) = (ni − 1)χ2
ni−1 (4)

Based on Eq. (4), the probability of having vi in the range of
[0.9, 1.1] can be estimated. These probabilities were used as
the weight of each group data to calculate weighted mean and
variance results. Again the weighted mean and variance are
used as the µ, σ2 coefficients for the normal distribution of
boron.

Among the two methods, the first uses the standard de-
viation of the estimated distribution mean as the distribution
coefficient. This significantly underestimates the real devia-
tion among the Boron contamination distribution. The inverse
variance weighting factors make the data group with the small-
est variance become the most important part of the estimation.
This may lead to inaccurate estimation. The second method es-
timates the distribution coefficients based on the same assump-
tion used by the first method but with a more solid theoretical
foundation. The ke f f calculated using the chi-square weighted
boron contamination was closer to critical compared to result
calculated with inverse variance weighted boron value.

3. Distribution of Geometry parameters

A uniform distribution was assumed for geometry factors
in [1]. However, a triangular distribution may be more suitable
in this case. [7] Characterised by three numbers a, b and c, a
triangular distribution is defined on the range x ∈ [a, b] with
probability density function

p(x) =

 2(x−a)
(b−1)(c−a) , a ≤ x ≤ c.

2(b−x)
(b−a)(b−c) , c < x ≤ b.

(5)
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While uniform distribution says that the value of the ge-
ometry factor may fall on any value within the range with same
probability, triangular distribution defines a most "preferred"
value and the upper/lower bounds for the factor. Triangular
distribution can be asymmetric with respect to the expected
value of the distribution. This makes it attractive when model-
ing TREAT as some of the factors were measured to follow an
asymmetric distribution. An example is the density of graphite
fuel.

4. Sample Generation

Table I summarizes the distribution information of the
factors studied in the work. Notice that for Al-6063 can thick-
ness and Zr-3 can thickness, uniform distribution was used in
the standard fuel assembly model. This was based on Table
4.2 in Ref [1]. Then the distribution assumptions of these
two factors were modified to triangular distributions in the
minimum critical core model.

The sample generation procedures contain the following
steps.

• Step 1: generate a data matrix X ∈ Rn×p which represents
n observations of p random variables. The variables fol-
low multivariate joint normal distribution with an identity
covariance matrix. This data matrix is called the "raw"
sample here after. It is used as a "sample base" to generate
samples for all the factors through probability distribu-
tion transformation. The reason for choosing multivariate
joint normal distribution as the sample base is that only
for this distribution, a diagonal covariance matrix implies
independence. This is used as an important criteria in
the later steps. Notice that to avoid ill-conditioned co-
variance matrix, n should be chosen much larger than
p.

• Step 2: take Y = XT , T is a matrix operator. Detailed
expression of T is given in the next subsection. This step
is performed to eliminate the "artificial" covariance be-
tween random variables. Although the samples of differ-
ent factors are generated independently, a non-diagonal
covariance matrix is often observed in reality due to sta-
tistical fluctuations. For variables which follow joint
normal distribution, this gives an "artificial" dependency.
The effect brought by this may be weak or significant
depends on the complexity of the model of interest. For
the work presented in this paper, this step is designed
to eliminate effects from outside the model as much as
possible.

After the first two steps, the random variable data matrix
Y obtained should have a covariance matrix which is
almost diagonal.

• Step 3: transfer each column of random variables back to
the desired marginal distribution.

• Step 4: for those factors which are physically correlated,
(for example, weight percentages of different elements
in an alloy should add up to one, geometry parameters
of different sections of assembly should align, etc.) keep

one of the factors as a balance. For example, four ran-
dom variables x1, x2, x3, x4 which represent the weight
percentages of U234, U235, U236, U238. x4 could be
sampled as 100 − x1 − x2 − x3.

The steps established are to make sure that the "raw"
samples generated are as independent as possible before trans-
forming each variable back to its user defined marginal dis-
tribution. The raw samples were generated using multivari-
ate joint-normal distribution. The operator T was applied to
push the covariance matrix of the raw samples generated to
"almost" diagonal. Joint-normal distributed variables with
diagonal covariance matrix are guaranteed to be independent
from each other. [8] Then, these independent random vari-
ables are transferred back to their marginal distributions and
the physical correlations are built upon that. Unfortunately,
geometry parameters are not like nuclear cross sections which
have predefined covariance information. Hence the correlation
between parameters has to be considered at the end.

For geometry parameters, when perturbation is added on
one factor, sections adjacent to the section defined by the per-
turbed factor may be effected. The principle used for the work
in this paper was to conserve the volume of unperturbed sec-
tions. In cases where volume conservation is not achievable,
the effect will be pushed toward air filled sections. For ex-
ample, when perturbing the Al-6063 can thickness, the outer
radius of Al can was changed to reflect the perturbation while
the inner radius was kept unchanged.

A. Determination of the T Operator

Taking N samples of the random variable xi and x j. the
unbiased covariance of these two variables from this N set of
samples is estimated as

cov(xi, x j) =
1

N − 1

N∑
k=1

(x(k)
i − µi)(x(k)

j − µ j) (6)

=
1

N − 1

N∑
k=1

x(k)
i x(k)

j −
N

N − 1
µiµ j (7)

Given the data matrix X ∈ Rn×p, according to the defini-
tion, the covariance matrix of data set X can be expressed in
the matrix product form:

Σ =
1

n − 1
XT X −

1
n(n − 1)

XT AX (8)

where A is a n × n matrix with all elements equal to 1. The
purpose is to find a transform operator T which will transfer
the data matrix X to a modified data matrix Y = XT and ensure
that Σ(Y) is a diagonal matrix.

Σ′ =
1
n

YT Y−
1

n(n − 1)
YT AY =

1
n

T T XT T X−
1

n(n − 1)
T T XT AXT

(9)
Perform singular value decomposition to the original covari-
ance matrix Σ:

Σ = US V ′ (10)

Define a squared diagonal matrix D0 which contains n variance
values of variables in X (the diagonal entries of the original
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Factor Distribution Distribution parameters

U-234 content in graphite fuel(wt.%) Normal µ = 0.91, σ = 0.008
U-235 content in graphite fuel(wt.%) Normal µ = 93.239, σ = 0.026
U-236 content in graphite fuel(wt.%) Normal µ = 0.438, σ = 0.008
U-238 content in graphite fuel(wt.%) Balance

O:U ratio in graphite fuel Triangular a=1.95, b=2.05, c=2
Graphite fuel B content (wt.%) Normal µ = 7.53, σ = 1.1619
U mass content in fuel (wt.%) Triangular a=0.205, b=0.222, c=0.211
Density of graphite fuel (g/cm3) Triangular a=1.71, b=1.76, c=1.73
Graphite fuel graphitization (%) Triangular a=58, b=60, c=59
C mass content in fuel (wt.%) Balance

Flat-to-flat distance of graphite fuel (in.) Triangular a=3.795, b=3.82, c=3.8

Standard fuel assembly outer radius (in.) Triangular a=3.935, b=3.985, c=3.96

Al 6063 composition (Non Al elements wt%) Uniform Details in ref [1] Table 3.17
Al 6063 composition (Al wt%) Balance
Al 6063 can thickness (in.) Triangular (MCC) a=0.05-1/64, b=0.05+1/64, c=0.05

Uniform (SFA) a=0.05-1/64/
√

3, b=0.05+1/64/
√

3

Zr-3 can thickness (in.) Triangular (MCC) a=0.025-1/64, b=0.025+1/64, c=0.025
Uniform (SFA) a=0.025-1/64/

√
3, b=0.025+1/64/

√
3

TABLE I. Variable and distribution information summary for TREAT uncertainty analysis, "MCC" stand for the TREAT
minimum critical core model and "SFA" stand for the standard fuel assembly model

covariance matrix). Then define a new squared diagonal matrix
D ∈ Rn×n, Di,i =

√
D0 i,i

S i,i
. Therefore

D−1UT ΣVDT−1
= D0 (11)

Also, since Σ is a symmetric matrix by definition, U = V
(when m > n). We have

D−1UT ΣUDT−1
= D0 (12)

D−1UT
(

1
n

XT X −
1

n(n − 1)
XT AX

)
UDT−1

= D0 (13)

Hence
T = UDT−1 (14)

In the case that X contains multivariate joint normally dis-
tributed variables, Y = XT contains independent standard
normal distributed variables.

This method works only when the covariance matrix of
X is positive-definite. This is guaranteed by using a sample
size which is large enough. It is known that when the ran-
dom variables are close to independent from each other, the
covariance matrix of X has full rank. In reality, when the
sample size is large enough to produce convincing predictions,
the covariance matrix of X is not ill-conditioned. This is a
numerical observation and must be checked each time before
transforming the raw matrix X to the factor samples desired.
Notice that when the covariance matrix of X is ill-conditioned,
for example, one or more of the Eigenvalues is zero, the matrix
is not positive-definite. This operator fails in this case.

The operator T developed in this paper works only for
joint-normal distribution. Hence it is only used to process
the raw samples. Other desired distributions can be obtained
through variable transformations on the post T processed sam-
ples.

III. RESULTS AND ANALYSIS

For TREAT standard fuel assembly SERPENT model,
five groups of factors were considered. The groups include
uranium vector, fuel composition, Al 6063 alloy composition,
Al can thickness and Zr can thickness. For each factor (group),
150 samples were generated and tested. Another set of 300
samples which contain perturbations on all five groups of fac-
tors were studied. It was found that changes in uranium vector
did not lead to a significant effect of the calculation results.
Hence these two groups were not tested for the minimum
critical core model. However, in the fuel composition group,
boron contamination still remained as a significant uncertainty
source and was kept for the minimum critical core study.

For the minimum critical core model, two geometry fac-
tors were added upon the factors studied for standard fuel
assembly model. These two factors are the flat-to-flat distance
of fuel block and the outer radius of the standard fuel assem-
bly. All of the geometry factors studied are marked in the
SERPENT model in Figure 2. 300 samples of perturbation
on each factor alone were tested. To study the overall effect,
another 600 samples which contain perturbations on all factors
were tested. Notice that these sets of samples were repeated
twice with the same raw data matrix. The first 600 samples
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contain factor values transformed from the raw data matrix
and the second 600 samples contain factor values transformed
from the same raw data matrix but processed with the T factor
before the transformation.

For all the sample sets, the covariance matrix of the raw
data matrix were tested to be well-conditioned. Based on the
law of large numbers, the average of the results obtained from
a large number of trials should be close to the expected value.
Hence, running average ke f f results for each factor (group)
were plotted. The convergence of average ke f f with respect to
the increasing sample size showed that the sample size was
large enough.

The standard error of estimation of means and variances
are calculated using the equations below:

σx̄ =
S
√

N
(15)

σS 2 = S 2

√
2

N − 1
. (16)

Here S 2 denotes the variance of the results, S is the standard
deviation.

Based on Equation 15 and 16 and the propagation of un-
certainty, the standard errors of standard deviation estimation
and relative uncertainty estimation are evaluated as:

σS = S

√
1

2(N − 1)
(17)

σ S
x̄

=

√
1
x̄2σS +

S 2

x̄4 σx̄ (18)

1. Standard Fuel Assembly Model

The running ke f f average plots for each factor group are
shown in Figure 3 and 4. The factors contained in the uranium
vector group were not found to be significant sources of un-
certainty. The sample size of N = 150 is more than enough
for this group and the deviation among results was quite small.
Factors in the Al6063 alloy composition group showed similar
tendency. Zr can thickness and Al6063 can thickness were
recognised as significant uncertainty contributors. Fuel com-
position group provided the most uncertainty as it contains the
boron contamination factor. Due to the wide range of possible
boron contamination in the graphite fuel, the ke f f value from
standard fuel assembly model calculations varies by almost
one percent.

Table II shows the same conclusions with more details.
Notice that the overall uncertainty was about 300 pcm lower
than the square root of the sum of all factor groups squared.
This is expected since the sample size used for the all parame-
ters included group was larger.

The reference calculation for a single standard fuel as-
sembly model gives a ke f f value of 1.4117. Average ke f f
results from the fuel composition, Al can thickness and Zr can
thickness groups are shifted from the reference results. A shift
like this usually has two reasons. The first reason is because

Fig. 3. Running average ke f f results for the standard fuel
assembly model. Error bar in the plots shows the variation of
the standard error of the mean value estimation with respect
to the sample size.
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Factor(s) perturbed Sample size Average ke f f Relative uncertainty (pcm)

All parameters included 300 1.4141 ± 1.4125E − 3 1730.1 ± 70.8

Uranium vector 150 1.4117 ± 1.5052E − 5 13.1 ± 0.8

Fuel composition 150 1.4108 ± 1.3773E − 3 1195.7 ± 69.3

Al 6063 composition 150 1.4119 ± 2.5843E − 5 22.4 ± 1.3

Al can thickness 150 1.4112 ± 1.2498E − 3 1084.6 ± 62.8

Zr can thickness 150 1.4127 ± 1.2801E − 3 1109.8 ± 64.3

TABLE II. TREAT single standard fuel assembly model uncertainty analysis summary

Fig. 4. Running average ke f f results for the standard fuel
assembly model. The first two plots show single factor effects.
The last one shows the overall effect of five factors on the ke f f

estimation. Error bar in the plots shows the variation of the
standard error of the mean value estimation with respect to the
sample size.

of the covariance between perturbed factors or to be more
general, the higher order responses of the joint probability
distribution of factors. The second reason is the non-linearity
of the model being studied. For Al can thickness and Zr can
thickness factors, each set of samples contains single perturbed
factor, hence there is no joint distribution or covariance. The
shift should be resulted solely from the non-linearity of the
model. Hence the linear assumptions widely used by direct
perturbation method may not be appropriate when analysing
uncertainties caused by geometry factors such as can thick-
ness.

2. Minimum Critical Core Model

Based on the conclusions drawn from the standard fuel
assembly model, the three material composition groups were
discarded for minimum critical core uncertainty quantification
study. Instead, boron contamination was used and flat-to-flat
distance of fuel blocks and assembly outer radius were added.

The reference ke f f of minimum critical core model calcu-
lated with the Monte Carlo model is 1.0041.

Figure 5 and 6 plot the running ke f f average results of
the minimum critical core model. Similar to the standard fuel
assembly results, boron contamination, Zr can thickness and
Al can thickness remained as significant factors. Flat-to-flat
distance of fuel block caused observable variations among the
ke f f values. It also provided the largest mean ke f f shift from
the reference case. This is reasonable since perturbation on
flat-to-flat distance of fuel block changes the amount of the
fuel directly. The uncertainty caused by perturbations on outer
radius of fuel assembly was almost negligible compared to the
effect brought by the other factors.

The last plot in Figure 6 compares the sample set
with/without T operator process. As shown in Table III, the
process of removing "artificial" covariance caused about 70
pcm change in the relative uncertainty estimation.

In conclusion, the total uncertainty on the TREAT min-
imum critical core ke f f calculation at zero power caused by
geometry factors and material composition is ∼ 1150pcm.
The results presented in Ref. [1] was 495 pcm for the infinite
lattice model of TREAT standard fuel assembly. Due to the
difference in models and parameter distributions, it is hard to
compare between these values. Based on the work presented
in this paper, boron contamination and Zr can thickness were
recognised as the most significant uncertainty sources of the



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

TREAT minimum critical core model. It was also found that
the system had a non-linear response to some geometry fac-
tors such as the flat-to-flat distance of fuel block and Al can
thickness.

Fig. 5. Running average ke f f results for the minimum critical
core model. Error bar in the plots shows the variation of the
standard error of the mean value estimation with respect to the
sample size.

IV. CONCLUSIONS

The work presented in this paper provides uncertainty
analysis of the TREAT standard fuel assembly model and
minimum critical core model. The distribution estimation
and sampling method used were described in detail. Results
showed that Boron contamination and geometry factors such
as Zr can thickness, Al can thickness and flat-to-flat distance
of fuel block were the most significant uncertainty contributors
for these models. Because of the uncertainty in the boron con-
tamination and the geometry factors, the relative uncertainty in

Fig. 6. Running average ke f f results for the minimum critical
core model. The first two plots show single factor effects. The
last one shows the overall effect of five factors on the ke f f

estimation. Error bar in the plots shows the variation of the
standard error of the mean value estimation with respect to the
sample size.
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Factor(s) perturbed Sample size Average ke f f Relative uncertainty (pcm)

All parameters included (raw) 600 1.0070 ± 4.9481E − 4 1203.6 ± 34.8pcm
All parameters included (T operated) 600 1.0068 ± 4.6835E − 4 1139.5 ± 32.9pcm

Boron content 300 1.0044 ± 6.3435E − 4 1093.9 ± 44.7pcm

Flat to flat distance of fuel block 300 1.0064 ± 1.2939E − 4 222.7 ± 9.1pcm

Standard fuel assembly outer radius 300 1.0041 ± 1.7732E − 5 30.6 ± 1.3pcm

Al-6063 can thickness 300 1.0044 ± 1.9463E − 4 335.6 ± 13.7pcm

Zr-3 can thickness 300 1.0040 ± 5.1837E − 4 894.2 ± 36.6pcm

TABLE III. TREAT minimum critical core model uncertainty analysis summary

ke f f results for the minimum critical core may be higher than
1000 pcm. It was also shown that the model response to some
geometry factors is non-linear and therefore methods based
on linear assumption may not provide accurate predictions for
this case.
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