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Abstract - Argonne has been leading the safety analysis of Sodium-cooled Fast Reactors under protected 
and unprotected transient events by developing and maintaining the system code SAS4A/SASSYS-1. In these 
analyses, some assumptions must be made for the models because of the uncertainties related to the heat 
transfer systems; the propagation of nuclear data uncertainties also has significant impact on the reactivity 
coefficients. In order to estimate the safety related parameters (e.g. coolant boiling margin, peak fuel 
temperature) more accurately, SAS4A/SASSYS-1 has recently been coupled with uncertainty quantification 
toolkits, including Dakota and RAVEN. The objectives of this paper are to present the coupling and 
demonstrate the capabilities of the uncertainty quantification and design optimization. The unprotected 
transients of Argonne’s Advanced Burner Test Reactor (ABTR) were examined in this study. A sensitivity 
analysis was conducted within the uncertainty domain considering five uncertain parameters. It was found 
that core radial expansion has the most significant impact on the safety performance because of the large 
negative feedback during the Unprotected Loss of Heat Sink (ULOHS). The uncertainty quantification of the 
minimum boiling margin and the peak fuel temperature is discussed in response to the uncertainty 
propagation. Beyond the conventional sampling techniques, two additional advanced sampling techniques 
(i.e. Importance Sampling and Reliability Method) were tested. Another objective of the coupling is to 
optimize the design for the potential to improve the safety performance. The peak fuel temperature during 
the ABTR ULOHS is minimized by perturbing the Doppler feedback coefficient and radial expansion 
feedback coefficient. Three optimizers supported by Dakota have been tested and finally a hybrid method is 
recommended for the SAS4A/SASSYS-1 system optimization in the future due to its efficiency for the global 
optimum. 

 
I. INTRODUCTION 

 
Advancements in the knowledge of nuclear reactor 

performance have led to an increased need to perform 
Uncertainty Quantification (UQ) in the advanced reactor 
domain. The role of uncertainty quantification spans many 
facets in the nuclear industry, including system design and 
optimization, licensing, and probabilistic risk assessment [1]. 
SAS4A/SASSYS-1, developed and maintained by Argonne 
National Laboratory, is a system level safety analysis code 
for Sodium-cooled Fast Reactors (SFRs) [2]. The Dakota 
software, maintained by Sandia National Laboratory, is an 
uncertainty quantification and optimization toolkit that has 
been in development for over 20 years [3]. Dakota and 
SAS4A/SASSYS-1 have recently been coupled via a Python 
interface to extend the capabilities of the Argonne SFR code 
for transient safety analyses. In uncertainty quantification 
mode, Dakota samples user-specified parameters, performs 
SAS4A/SASSYS-1 transient simulations with those 
parameters, and quantifies statistical metrics during post 
processing. Several sampling-based techniques were applied 
to propagate uncertainties in the transient simulations. The 
results were compared against those obtained by using a 
similar uncertainty quantification toolkit, RAVEN [4]. In 
addition to traditional sampling techniques, more advanced 
uncertainty quantification methodologies supported by 
Dakota were explored, including the Importance Sampling 
method and Reliability Method. These techniques were 
developed for Dakota to reduce the computational costs when 

the problem involves a large number of uncertainties. Dakota 
is also capable of design optimization for both local and 
global optima; the transient simulations were chosen to 
demonstrate the optimization capability. A few optimizers 
were tested in this paper with the consideration of efficiency. 
It should be noted that many of the uncertain parameters and 
the associated bounds in this study are chosen only for 
demonstration purposes and problem simplification, and are 
not rooted in a mechanistic uncertainty analysis. 
 
II. DAKOTA AND SAS4A/SASSYS-1 COUPLING  

 
A Python interface has been developed to couple Dakota 

with SAS4A/SASSYS-1 at Argonne. The Dakota executable 
is available pre-compiled via the Sandia National Laboratory 
website [3], and coupling with SAS4A/SASSYS-1 (or any 
software) is accomplished via a black-box interface. Dakota 
supports the invocation of a simulation code by either direct 
linkage or a system call. During the system call, the external 
code is initiated and data communication between Dakota 
and SAS4A/SASSYS-1 occurs through parameter and 
response files. Because the system call is more 
straightforward, it is applied to invoke the SAS4A/SASSYS-
1 simulations in this study. Uncertain parameters are 
identified in the SAS4A/SASSYS-1 input template and 
replaced with the values generated by Dakota. The response 
values of interest from the SAS4A/SASSYS-1 simulation are 
saved for processing by Dakota. Fig. 1 illustrates this 
coupling scheme. 
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Fig. 1. Dakota and SAS4A/SASSYS-1 Coupling Scheme 

 
A Dakota input file defines the method, variables, 

interface, and responses for the uncertainty quantification and 
design optimization. The sampling method or optimization 
functions are identified in the method section. Uncertain 
variables, probability distributions, and upper and lower 
bounds are specified in the variable section. The interface 
section defines the driver file name, the parameter file for the 
random values generated by Dakota, the SAS4A/SASSYS-1 
input template, and the response file for saving the 
SAS4A/SASSYS-1 simulation results. The interface searches 
for the uncertain variables in the input template file and 
replaces them with the values generated by Dakota to create 
a new SAS4A/SASSYS-1 input. The total number of the 
responses is specified as Dakota input and the target 
responses along with the selection criteria are defined in the 
Python interface.  

After the SAS4A/SASSYS-1 simulation finishes, the 
Python interface converts the binary SAS4A/SASSYS-1 
output files (PRIMAR4.dat and CHANNEL.dat) into CSV 
files and searches for the target responses. The present 
interface has four output filters for the SAS4A/SASSYS-1 
simulation results: ‘max’ for the maximum value, ’min’ for 
the minimum value, ’begin’ for the beginning value of the 
simulation, and ‘end’ for the value at the end of the 
simulation. Users choose the channels on which the filters are 
applied, where a user-defined SAS4A/SASSYS-1 “channel” 
can represent a single assembly or a group of assemblies with 
similar characteristics. If the channels are not specified, the 
interface will search for the target through all the channels in 
the system. 

The responses of interest are written in a result file and 
returned to Dakota for the quantification of the statistical 
metrics. Means, standard deviations, and 95% confidence 
intervals are computed for each of the responses. In addition, 
Dakota calculates the most common statistics between 
uncertainties and responses of interest, such as the 
covariance, Pearson coefficient, simple, partial, and rank 

correlations. The Pearson coefficient is a measure of the 
linear correlation between two variables and its value is in a 
range between +1 to -1, inclusive. A Pearson coefficient with 
a large absolute value means that two variables are strongly 
correlated. A positive Pearson coefficient stands for a 
positive correlation while a negative value indicates that the 
two variables are inversely correlated. 
 
III. ABTR TRANSIENT MODELS AND 
UNCERTAINTIES 
 

The uncertainty quantification and design optimization 
capabilities were demonstrated for the Advanced Burner Test 
Reactor (ABTR) described in [5]. The ABTR is a conceptual 
design developed by Argonne during the Global Nuclear 
Energy Partnership’s Advanced Burner Reactor Program. It 
features a thermal power of 250 MW and is intended to 
incinerate the trans-uranium from Light Water Reactors. The 
SAS4A/SASSYS-1 ABTR model for the transient analysis 
includes sodium pool as the primary heat transport system, a 
Direct Reactor Auxiliary Cooling System (DRACS) for 
decay heat removal, and two Intermediate Heat Exchangers 
(IHXs) connected to the intermediate loops. 

Two unprotected transient events were considered in this 
study to evaluate the impacts of the uncertainties on the safety 
margins and test the design optimization libraries in Dakota. 
The Unprotected Loss of Heat Sink (ULOHS) transient is 
initiated when the intermediate pumps trip and heat rejection 
via the steam generator is reduced to zero at the beginning of 
transient. The primary loop pumps do not trip and continue 
to operate in a nominal state throughout the simulation. 
During the ULOHS, the inlet coolant temperature increases, 
resulting in a negative reactivity feedback contribution due to 
radial core expansion that shuts down the reactor. Another 
transient utilized in this study is the Unprotected Transient 
Overpower (UTOP) when one or more control rods are 
accidentally withdrawn and the reactor scram systems fail to 
response. The SAS4A/SASSYS-1 UTOP model assumes that 
external reactivity of 30 cents is inserted over 15 seconds. 
During the transient, both radial core expansion and control 
driveline expansion contribute large negative feedbacks to 
compensate for the positive external reactivity. 

The parameters in Table 1 were used to demonstrate the 
uncertainty quantification capability of the coupling. These 
uncertainties were selected primarily based on the reactivity 
responses during the ULOHS and UTOP events. For some 
oxide fueled cores, the Doppler effect contributes a large 
positive feedback during the ULOHS and therefore is 
considered here as well. Although the reactivity coefficients 
are usually correlated due to the nuclear data uncertainties 
[6], the above variables are assumed to be independent and 
they are uniformly distributed within 25% of their nominal 
values. It should be noted that these uncertainties and the 
associated bounds were selected for demonstration purposes. 
A more comprehensive uncertainty quantification study 
focusing on both reactivity coefficients and heat transport 



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, 
Jeju, Korea, April 16-20, 2017, on USB (2017) 

parameters was conducted on the Experimental Breeder 
Reactor II Balance-of-Plant tests [7]. 
 
Table 1. Nominal Values of Uncertain Parameters for ABTR 
ULOH Transient [8] 
Uncertain Parameters Nominal 
Vessel Length and Expansion Coefficient 1.46´10-4 m/K 
Control Rod Drive Expansion Coefficient 2.0´10-5 K-1 
Control Rod Feedback Coefficient -24.0 $/m 
Doppler Feedback Coefficient -1.37´10-3 ∆k/k 
Radial Expansion Feedback Coefficient -4.17´10-3 $/K 
 

The boiling margin is an important measure of the 
reactor safety during the transient, as sodium boiling can be 
correlated with fuel damage and will affect core reactivity. 
SAS4A/SASSYS-1 tracks the coolant temperature along with 
the saturation value on a channel basis so the boiling margin 
can be calculated accordingly. The peak fuel temperature of 
each channel reported by SAS4A/SASSYS-1 is also of 
particular interest, as this is a good indicator of the timing, 
magnitude, and location of fuel failure. 
 
IV. RESULTS 
1. Uncertainty Quantification 
 

After coupling Dakota and SAS4A/SASSYS-1, the 
capability to perform uncertainty quantification was 
demonstrated for the advanced reactor system level safety 
analysis. The primary sampling techniques supported by 
Dakota include Monte Carlo (MC) sampling, Latin 
Hypercube Sampling (LHS), and Grid sampling. These basic 
sampling techniques are simple and straightforward 
approaches for uncertainty propagation. Moreover, when a 
large number of uncertainties are investigated simultaneously 
or the understanding of complex reactor system is 
incomplete, the number of evaluations required by these basic 
sampling techniques quickly becomes prohibitive and more 
advanced uncertainty quantification methods are required. 
Therefore, Dakota supports more robust methods for 
uncertainty propagation, including the Reliability Method 
and the Importance Sampling method for the failure analysis. 
In this study, both the basic and advanced methods were 
tested using ABTR transients. 

 
A. Conventional Sampling-based Techniques 

 
SAS4A/SASSYS-1 was coupled with RAVEN and the 

demonstration of the uncertainty quantification was 
published in reference [8]. The new coupling between 
SASSYS/SASSYS-1 and Dakota was applied to repeat the 
previous uncertainty quantification analysis. Both RAVEN 
and Dakota support the following three sampling techniques: 

 
• Grid Sampling method: A N-dimensional grid is 

discretized into segments and each dimension is 

represented by an uncertain variable. Sampling is 
performed at each node of the grid and therefore all 
possible combinations of the uncertain variables are 
evaluated. The number of sample points required by grid 
sampling depends exponentially on the input dimension. 
 

• Monte Carlo method: A random sampling is conducted 
based on a specific distribution between the lower and 
upper bounds on each of the input variables. This is the 
most straightforward approach for uncertainty 
propagation. 

 
• Latin Hypercube Sampling method: A method 

explores the input space where the uncertain domain is 
subdivided into N segments [3]. The relative length of 
each segment is determined by the probability 
distribution of the corresponding uncertainty. Every 
subgroup of the uncertain variable is randomly assigned 
to a sample only one time. There is no restriction on the 
number of bins for each uncertainty, but LHS requires all 
the uncertain variables to have the same number of bins. 
The total number of samples equals the number of bins 
for each variable. According to the Dakota manual, LHS 
technique requires fewer samples than the MC method 
for the same statistical accuracy [3]. 
 

 
Fig. 2. Latin Hypercube Sampling Technique Supported by 
RAVEN and Dakota 
 

The MC and LHS techniques were applied in Dakota 
with 1000 samples. The peak fuel temperature during the 
ABTR ULOHS transient was selected as the response of 
interest for the uncertainty quantification. The statistics 
generated from RAVEN and Dakota are compared in Table 
2. The MC results from the two uncertainty quantification 
toolkits are in good agreement. As expected, the MC and 
LHS techniques can achieve the same accuracy as the grid 
sampling technique with a much smaller population.  
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Table 2. Uncertainty Quantification of the Peak Fuel 
Temperature in ABTR ULOHS from RAVEN and Dakota 
 RAVEN Dakota 
 Grid MC MC LHS 
Samples 2000 1000 1000 1000 
Mean, K 822.8 822.9 822.8 822.8 
Std. Dev. 1.27 1.19 1.18 1.18 
Skewness 0.26 0.17 0.16 0.19 
Kurtosis 2.23 -0.95 -0.99 -1.01 
Cumulative Distribution 
Function for 5%, K 

820.8 821.1 821.1 821.1 

Cumulative Distribution 
Function for 95%, K 

825.6 824.8 824.8 824.8 

 
The impacts of the uncertainties on the peak fuel 

temperature are quantified by the Pearson Coefficients shown 
in Table 3. Since the radial core expansion contributes a large 
negative feedback during the ULOHS transient, a small 
change of the radial expansion feedback coefficient will 
impose a large effect on the net reactivity feedback. 
Therefore, both RAVEN and Dakota show a large positive 
Pearson value for the radial expansion feedback coefficients 
in Table 3. Control rod driveline expansion also provides a 
large amount of reactivity and therefore the related 
parameters have significant impacts as well. Since the ABTR 
design used in this study features metallic fuel, the feedback 
of the Doppler effects is small so that its impact is relatively 
insignificant. Fig. 3 and Fig. 4 show the impacts of the 
uncertainties on the minimum boiling margin and peak fuel 
temperature during the ABTR ULOHS transient. 
 
Table 3. Comparisons of the Pearson Coefficients for Peak 
Fuel Temperature in ABTR ULOHS 
Uncertain Parameters RAVEN Dakota 
  Grid MC MC LHS 
Vessel Length and 
Expansion Coefficient 

0.09 0.11 0.08 0.06 

Control Rod Drive 
Expansion Coefficient 

-0.22 -0.17 -0.20 -0.20 

Control Rod Feedback 
Coefficient 

0.12 0.13 0.12 0.12 

Doppler Feedback 
Coefficient 

0.05 0.07 0.04 0.05 

Radial Expansion 
Feedback Coefficient 

0.96 0.97 0.97 0.97 

 

 
 
Fig. 3. Effects of the Three Most Important Uncertainties in 
Reactivity Feedback on Minimum Boiling Margin during 
ABTR ULOHS Transient by MC Sampling 
 

 
Fig. 4. Uncertainty Quantification of Peak Fuel Temperature 
during ABTR ULOHS Transient by MC Sampling 
 
B. Importance Sampling Method 
 

Importance Sampling provides another method to 
estimate the failure probability in a more efficient way than 
the traditional sampling-based techniques. This method 
preferentially samples on the important regions or the failure 
region of interest, and then appropriately weights the samples 
to obtain an unbiased estimate of the failure probability [3]. 
The Importance Sampling method is expected to be 
applicable for advanced nuclear systems when the safety 
margins are small. Instead of a large number of response 
function evaluations required by the conventional sampling-
based methods, the Importance Sampling method reduces the 
computational cost by sampling near the failure region on the 
uncertain domain. 
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The ABTR Unprotected Transient Overpower (UTOP) 
scenario was used to demonstrate the Importance Sampling 
method supported by Dakota-SAS4A/SASSYS-1. It was 
assumed that an external reactivity of between 10 cents and 
70 cents is added to the core over a period of 5 to 100 seconds; 
all other systems operate in their nominal states for the 
duration of the transient. Uniform distributions were applied 
for both uncertainties. A failure region where the boiling 
margin is less than 400 K was selected for demonstration 
purposes and problem simplification. The Importance 
Sampling method involves two steps: an initial Latin 
Hypercube Sampling is performed to generate the importance 
density, shown as the background in Fig. 5; successive 
samples are then centered around the points near the failure 
region. As shown in Fig. 5, the Importance Sampling 
preferentially focuses on the area where the boiling margin is 
below 400K and computes the failure probability of 10.5% 
based on the specified uncertainty domain. 

 

 
Fig. 5. Importance Sampling Approach for the Boiling 
Margin Below 400K 
 
C. Reliability Method 
 

The Reliability Method provides an alternative approach 
to the conventional sampling-based techniques when the 
uncertainty quantification analysis is computationally 
demanding. The algorithm of the Reliability Method was 
developed to compute the statistics in the tails of the response 
distribution in a more efficient way than sampling-based 
approaches. The Reliability Method addresses the problem to 
locate the most probable points and integrate the approximate 
probabilities. Given a set of uncertain variables and specified 
distributions, the probability that the response function is 
below or above a certain level is calculated [3]. In advanced 
nuclear system safety analysis, the Reliability Method can be 
applied to efficiently identify the region within a certain 
confidential interval. The Cumulative Distribution Function 

(CDF) of the safety metrics, such as boiling margin, can be 
calculated by the Reliability Method. 

An ABTR UTOP transient was used to demonstrate the 
Reliability Method in the Dakota-SAS4A/SASSYS-1 
package. It is assumed that external reactivity of between 10 
cents and 70 cents is added to the core over a period of 
between 5 and 100 seconds, while all other systems operate 
nominally for the duration of the transient. Uniform 
distributions are applied for both uncertainties. The margins 
to coolant boiling are considered here as the response of 
interest. The Reliability Method in Dakota generates the 
approximate values of the cumulative distribution functions 
for the prescribed response levels in a range from 420K to 
485K, as shown in Fig. 6. Based on the uncertainty 
distributions and their upper/lower bounds, the probability 
that the minimum coolant boiling margin is less than 420K 
during the ABTR UTOP transient is expected to be 28.4%. 

 

 
Fig. 6. Reliability Probability of the Coolant Boiling Margin 
for ABTR UTOP Transient by the Reliability Method 
 
2. Optimization Capability  
 

The early development of the Dakota software primarily 
focused on optimization applications. Dakota utilizes a 
variety of optimizers to minimize (or maximize) the objective 
functions while satisfying user-defined constraints. The 
coupled Dakota and SAS4A/SASSYS-1 package was tested 
for design optimization, which has the potential to improve 
the safety performance of advanced reactor designs. The 
primary approaches available in Dakota are gradient-based or 
derivative-free methods. Gradient-based optimizers are the 
most efficient way to navigate to a local optimum in 
situations where gradients can be computed analytically and 
efficiently [3]. Since the derivatives of the simulation results 
from SAS4A/SASSYS-1 are not available, the gradient-
based approach is not applicable for design optimization by 
the Dakota-SAS4A/SASSYS-1 package. 

Several derivative-free methods were chosen to 
demonstrate the automated optimization capability. The 
Pattern Search (PS) and Evolutionary Algorithm (EA) 
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methods were applied for the local and global optimum of the 
SAS4A/SASSYS-1 results, respectively. In order to reduce 
the computational cost for global optimum, a hybrid method 
combining the pattern search and evolutionary algorithm 
methods was tested as well. 

The ABTR ULOHS transient was used to explore the 
optimization capabilities of the Dakota-SAS4A/SASSYS-1 
package. It was assumed that peak fuel temperature during 
the ULOHS transient can be minimized by perturbing the 
Doppler feedback coefficient and radial expansion feedback 
coefficient. The radial expansion feedback was selected 
because of its significant impact on the transient; the Doppler 
reactivity feedback is a parameter sensitive to the fuel 
temperature. The upper and lower bounds of the two 
parameters are specified in Table 4. It should be noted that 
these parameters depend on the reactor design and usually are 
not independent. However, for problem simplification and 
demonstration purposes, it is assumed that we are able to 
perturb these two parameters freely. 
 
Table 4 Design Constraints Used for the Dakota-
SAS4A/SASSYS-1 Optimization 

  Nominal Upper 
Bound 

Lower 
Bound 

Doppler Feedback 
Coefficient, ∆k/k 

-1.373´10-3 -1.028´10-3 -1.713´10-3 

Radial Expansion 
Feedback 
Coefficient, $/K 

-4.167´10-3 -3.128´10-3 -5.213´10-3 

 
A. Pattern Search Approach for Local Optimum 
 

The Pattern Search (PS) approach is a derivative-free 
local method that can be applied to optimization problems. 
An optimizer, called “Coliny Pattern Search,” is distributed 
within a collection of optimizers in Dakota [3].  The depiction 
of the pattern search algorithm is shown in Fig. 7. An initial 
guess is provided by users and the temporary optimum is 
found around the starting point. It executes successive 
iterations and makes progress towards an optimum. The 
algorithm is repeated until the convergence criteria are 
satisfied. 

 
Fig. 7. Pattern Search Algorithm [3] 

A demonstration test was conducted to find the 
optimized Doppler feedback coefficient and radial expansion 
feedback coefficient in the design domain identified in Table 
4 such that the peak fuel temperature during the ABTR UTOP 
transient is minimized. Fig. 8 illustrates the searching path of 
the demonstration example. The optimizer was initiated at the 
nominal point (-1.37´10-3, -4.17´10-3) and finally converged 
to an optimum (-1.71´10-3, -5.21´10-3), which is the lower 
bounds of the design constraints. This result is in good 
agreement with the observations shown in Table 3, as more 
negative values for both Doppler feedback coefficients and 
radial expansion feedback coefficient will reduce the peak 
fuel temperature during the ULOHS transient. 

 

 
Fig. 8. Searching Path of the Pattern Search Optimizer for 
Local Optimum 
 
B. Evolutionary Algorithm Approach for Global Optimum 
 

The pattern search approach introduced above is best 
suited for efficient navigation to a local optimum. However, 
it depends on the user’s guess and exhibits a limited ability to 
identify the global optimum when the behaviors of the 
responses are multimodal. Instead, Dakota supports the 
derivative-free global method Evolutionary Algorithm (EA). 
The evolutionary algorithm approach starts with a randomly 
selected population of design points in the domain; these 
points serve as “parents” and their values form a “genetic 
string”, analogous to DNA in a biological system. The best 
design points (i.e. those with lower objective function values) 
are allowed to survive and reproduce. The evolutionary 
algorithm approach simulates the evolutionary process by 
employing the mathematical analogs on the global level and 
identifying the design points that minimize the objective 
functions [3]. 

A demonstration case was developed to find the global 
optimum (i.e. the minimum peak fuel temperature) by 
perturbing the Doppler feedback coefficient and radial 
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expansion feedback coefficient in Table 4. Fig. 9 shows the 
searching path for the demonstration case with the 
evolutionary algorithm method. In the first generation, there 
are fifty random points covering the design domain and only 
ten points are selected to reproduce; the algorithm executes 
successive generations and finally converges to the region 
around the target (-1.71´10-3, -5.21´10-3) after the seventh 
generation. This is consistent with the target obtained by the 
Pattern Search algorithm. 
 

 
Fig. 9. Searching Path of Evolutionary Algorithm for Global 
Optimum 
 
C. Hybrid Method for Global Optimum 

 
The evolutionary algorithm method in Dakota is able to 

find the global optimum but requires extensive samples over 
the design domain. In order to reduce the computational cost 
of the evolutionary algorithm method, a hybrid method was 
applied to search for the global optimum. The hybrid method 
combines the global searching capability of the evolutionary 
algorithm approach with the efficiency of the pattern search 
method [3].  

In the demonstration case, both the Doppler feedback 
coefficient and radial expansion feedback coefficient were 
perturbed to find the global optimum (i.e. the minimum peak 
fuel temperature) according to the design domain in Table 4. 
As shown in Fig. 10, the hybrid method runs two successive 
generations under the random sampling mode such that the 
point of global optimum has been identified to a smaller 
region of interest. Then, it performs efficient local searching 
for the target. The target (-1.71´10-3, -5.21´10-3) is consistent 
with those obtained by the Pattern Search and Evolutionary 
Algorithm methods. 

Fig. 11 compares the evolution history and the number 
of SAS4A/SASSYS-1 simulations required for the optimum. 
In contrast to the pattern search algorithm, which is a local 
optimizer, the evolutionary algorithm approach searches for 

a global optimum but is more computationally expensive. It 
requires 50 samples in the first generation (each sample 
means one SAS4A/SASSYS-1 simulation) and 40 samples in 
the successive generations. In order to converge to the global 
optimum with the same accuracy, the evolutionary algorithm 
approach needs about three times more SAS4A/SASSYS-1 
evaluations than the pattern search approach. Compared with 
the evolutionary algorithm approach, the hybrid method 
searches for the global optimum in a more efficient way and 
it requires 168 SAS4A/SASSYS-1 simulations. Therefore, 
the hybrid method is recommended for SAS4A/SASSYS-1 
system optimization in the future. 

 

 
Fig. 10. Searching Path of Hybrid Method for the Global 
Optimum 
 

 
Fig. 11. Iteration History for Local, Global, and Hybrid 
Optimization Methods in Dakota-SAS4A/SASSYS-1 
Package 
 
 



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, 
Jeju, Korea, April 16-20, 2017, on USB (2017) 

V. CONCLUSIONS  
 

Dakota and SAS4A/SASSYS-1 were coupled via a 
Python interface to meet an increased need to perform 
uncertainty quantification in the advanced reactor domain. 
Dakota was applied to sample user specified parameters, 
drive SAS4A/SASSYS-1 transient simulations, and quantify 
statistical metrics as part of post processing. The 
SAS4A/SASSYS-1 simulation for the ABTR ULOHS 
transient was used to demonstrate the capability for 
uncertainty quantification. Several sampling-based 
techniques (e.g. MC, LHS) were applied to propagate the 
uncertainties existing in the simulation. The statistics from 
uncertainty quantification analysis by Dakota were compared 
against those obtained by RAVEN and good agreement was 
observed. Additionally, Dakota is capable of advanced 
uncertainty quantification methodologies (e.g. Reliability 
Method, Importance Sampling method) and these methods 
were tested on the ABTR UTOP transient.  

The Dakota toolkit also supports the optimization 
capability. For demonstration purposes, the Dakota-
SAS4A/SASSYS-1 package was applied to find the 
minimized peak fuel temperature during the ABTR ULOHS 
by perturbing the Doppler feedback coefficient and radial 
expansion feedback coefficient. Both local and global optima 
can be found with different optimizers but searching for the 
global optimum is far more computationally expensive. A 
hybrid method that combines the local and global optimizers 
is recommended for the SAS4A/SASSYS-1 system 
optimization in the future due to its efficiency for the global 
optimum. 
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