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Abstract - Uncertainty Analysis in Modelling (UAM) benchmark initiated by the OECD/NEA focuses on
studying the propagation of uncertainties in the modelling of Light Water Reactors (LWRs). Its Phase I pin cell
exercises consider multi-group microscopic cross section uncertainties. The objective of the present study is to
include fuel behaviour uncertainties into the benchmark framework and determine their relative importance
on the total neutronics output uncertainty. The output uncertainty has been propagated statistically from the
input uncertainties by applying statistically perturbed input parameters to fuel behaviour code FINIX and
deterministic lattice code DRAGON. Results are presented for two neutronics output parameters. The study
has been performed for the TMI-1 test case of the UAM benchmark’s cell physics exercise I-1.

I. INTRODUCTION

Nuclear data and nuclear fuel behaviour parameters are,
in part, used as input data in the modelling of nuclear reac-
tors. Alas, due to measurement inaccuracies, imperfections
in fuel fabrication, and lack of knowledge related to certain
phenomena, uncertainties in the input parameters and certain
models cannot be completely eliminated. Therefore, the out-
put of a best estimate model is also uncertain. The epistemic
uncertainty of the model output can be estimated, e.g., with
stochastic uncertainty analysis in which a best estimate model
is repeatedly evaluated with statistically perturbed input data.
This yields, given uncertainty distributions (i.e., distributions
that describe the uncertainties) of the input parameters, uncer-
tainty distributions of the output parameters. It is also possible
to identify the major sources of the uncertainty with sensitivity
analysis.

The cell physics Exercise I-1 TMI-1 PWR of the
OECD/NEA UAM-LWR (Uncertainty Analysis in Modelling
for Design, Operation and Safety Analysis of LWRs) bench-
mark [1] studies the output neutronics uncertainties due to only
the nuclear data uncertainties in a pin cell case of the Three
Mile Island Pressure Water Reactor. In this work, we will
extend the benchmark case by considering its multiphysics
aspects. The uncertainties in the nuclear data, fuel fabrication,
and fuel behaviour models are accounted for.

More specifically, the original benchmark considers mi-
croscopic neutron cross sections σ(E), fission neutron yields
ν(E), and fission spectra χ(E, E′) for each nuclide as the
sources of the input uncertainty. For simplicity, we account
only for the cross section uncertainties. Additionally, material
densities ρ(Ti), geometry parameters such as fuel outer radii
r(Ti), and regional temperatures Ti are considered as uncertain.
These are the input parameters for the neutronics calculations
and the output parameters of the fuel behaviour calculations.
The uncertain input parameters of the fuel behaviour calcula-
tions include fuel fabrication dimensions, thermal hydraulic
boundary conditions, and model parameters. All these param-
eters are inherently positive.

In this work, the output uncertainty will be quantified with
a novel statistical uncertainty analysis method called CFENSS–
SRS (Coupled Fuel Behaviour and Neutronics Stochastic

Sampling with Simple Random Sampling). The method was
developed in the course of the study.

It is shown that the uncertainties originating from nu-
clear fuel behaviour can cause a 20 % to 70 % increase in the
uncertainties of the neutronics output parameters. We also
demonstrate that the use of a simple zero-cut-off method for
handling sampled negative values of inherently positive param-
eters leads to skewed uncertainty distributions of the output
parameters.

II. THEORY

Microscopic neutron cross sections are both nuclide and
reaction-wise effective cross-sectional areas of a nucleus. They
can be understood as inherently positive energy dependent con-
tinuous variables. In literature they are generally processed
and condensed into discrete energy groups and, in statistical
uncertainty propagation, the formed multigroup microscopic
cross sections are perturbed with respective multigroup covari-
ances [1,2]. This approach is valid for traditional deterministic
neutronics codes. Alternatively, for stochastic Monte Carlo
neutronics codes, the input uncertainties have been introduced
to the continous energy microscropic cross sections [3, 4].

Concerning the nuclear data perturbations, the CFENSS–
SRS approach can be employed to introduce nuclear data
uncertainties to both the deterministic and the Monte Carlo
codes. Moreover, the approach accounts for nuclear fuel un-
certainties which are an important source of uncertainty often
neglected in the neutronics calculations. Here we shall cover
the main theory of the CFENSS–SRS method while a more
detailed description can be found in Ref. [5].

In the CFENSS–SRS method the nuclear data of a nuclear
data library is first processed into continuous energy format.
The data remains unprocessed apart from a simple interpola-
tion between the data points. Assuming a full within-group
correlation a set of groupwise multiplicative perturbation fac-
tors Pg can be applied to the pointwise nuclear data:

σg,perturbed = Pg · (σE1 , ..., σEn ) = (PgσE1 , ..., PgσEn ), (1)

so that (E1, ...,En) ∈ [Ẽg, Ẽg−1]. Here the perturbation formula
is written for the cross sections although it applies also for
other nuclear data. It is noted that possible summations rules
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must be preserved during the perturbation step. The perturba-
tion factors are based on the uncertainty data and introducing
them in the early stage of the processing chain ensures that
they will propagate through the whole nuclear data process-
ing chain. Furthermore, this allows processing the perturbed
data either into a continuous energy nuclear data library for
the Monte Carlo codes or into a multigroup format for the
deterministic lattice codes.

The perturbation factors are generated from the group-
wise covariance data of the energy group averages available
in evaluated nuclear data libraries. It is applied to respective
multigroup best estimate cross sections to compute the per-
turbation factors via Simple Random Sampling. Generating
uncorrelated perturbation factors requires, for example, a spec-
tral decomposition [6] or a Cholesky-like decomposition [3] as
the multigroup covariance data is generally correlated between
the energy groups.

The nuclear data covariance matrices are not always valid
covariance matrices as in some cases the data do not either
meet the condition of positive-semidefinity or follow the sum-
mation rules in case of redundant covariance data. However,
the data can be corrected, e.g., by computing the nearest sym-
metric positive-semidefinite covariance matrix in the sense of
a weighted Frobenius norm [7]. It is also possible to find the
nearest matrix that is consistent with the redundancies [8].

Similar to the nuclear data, the fuel behaviour uncertain-
ties are reported as the best estimate and the variance of a
parameter. The best estimate is typically taken to be the mean
value of the uncertainty distribution. For simplicity, the pa-
rameters are often assumed as mutually independent and thus
the covariance matrices reduce into a set of one-dimensional
variances. [9] Therefore, acquiring their perturbation factors
requires only the knowledge of a univariate distribution for
drawing the samples with the uncertainty data being mathe-
matically valid without further processing.

Following the Principle of Maximum Entropy [10, 11,
12, 13, 14] yields a truncated normal distribution as the Maxi-
mum Entropy Probability Distribution of an inherently posi-
tive parameter with prescribed mean and covariance [13, 15].
Alas, currently there exists no sampling method for even a
one-dimensional arbitrary truncated normal distribution as,
given the means and covariances, there exists no analytical
or numerical method to compute the parameters of the distri-
bution [5, 15]. With limited uncertainties (. 60 %) a normal
distribution can be used as an approximation for the nuclear
data while resampling the negative values. The univariate
nuclear fuel parameters, in turn, can be sampled from the
truncated normal distribution with a symmetric 2.5 % cut-off
while approximating the distribution parameters with those
of a normal distribution [9]. With limited uncertainties, both
approximations are practical [5].

For simplicity, the sampling was performed with Simple
Random Sampling as opposed to stratified sampling meth-
ods such as Latin Hypercube Sampling. A sufficient sample
size was determined with a coverage approach based on tol-
erance intervals [16, 17, 18, 19]. For instance, for studying
uncorrelated univariate parameters 93 samples is enough for
reaching a two-sided one-dimensional tolerance interval with
the probability of 95 % for the population coverage of 95 %.

III. CALCULATIONS

The calculations were performed in the framework of
the TMI-1 hot full power pin cell exercise of the UAM
benchmark and consider only fresh fuel. Deterministic lat-
tice code DRAGON 5.0.1 [20] and fuel behaviour code
FINIX 0.15.6 [21, 22] were used for the neutronics and fuel
behaviour calculations, respectively. The codes were coupled
using the fuel rod temperature, density, and geometry data
from FINIX’s output as the input of the DRAGON code. This
allowed propagating the nuclear fuel input uncertainties to
the neutronics calculation. The DRAGON code required a
regionally homogeneous step temperature profile while FINIX
applied a continuous linearly interpolated profile. Rowland’s
parabolic model was used to compute the effective homoge-
neous fuel temperature while the gas gap and the cladding
temperatures were simply volume averaged due to a low neu-
tron absorption [23]. EXCELT tracking module and SHI
self-shielding module with Livolant-Jeanpierre model, Nord-
heim distributed model and Riemann integration method were
used in the DRAGON calculations for a higher best estimate
accuracy [20].

Of the nuclear data, only neutron cross section uncertain-
ties were propagated. The evaluated neutron cross section
covariance matrices were processed with a C++ code ECTS
0.93 beta (Evolved Covariance Tool Set) to reconstruct valid
positive semidefinite covariance matrices. The code utilized
a slightly modified NJOY2012.50 [24] to process the covari-
ances into the groupwise format. The covariance data was
obtained by supplementing relative covariance matrices from
ENDF/B-VII.1 evaluation [25] with relative low-fidelity co-
variances [26] where no high-fidelity data were available.
Thus, it was assumed that the relative covariances were gener-
alizable for other evaluations with the low-fidelity covariances
being gathered for the ENDF/B-VII.0 evaluation. The ap-
proach was based on Refs. [1, 27]. The perturbation step was
performed with a Python code before processing the data into
a slightly modified XMAS-172 [28] multigroup DRAGLIB
format with an NJOY99.396 [29] extended with a DRAGR
module used for converting the data to the DRAGLIB format
used by DRAGON.

The CFENSS–SRS method can be applied also to the fis-
sion neutron yield ν(E) and the fission spectrum χ(E, E′). In
this study, however, they were accounted for by assuming the
validity of a 42.5 % share of the total uncertainty 0.512 % con-
tributed to the ν(E) and χ(E, E′) of 235U and 238U in Ref. [30].
The neglected source of uncertainty was included by assuming
the sources to be independent as described in the evaluated
nuclear data.

The fuel behaviour uncertainties were adopted from
Ref. [9]. The parameters with their mean values and the limits
of the truncated normal distributions are listed in Tab. I. Ma-
terials properties such as thermal conductivity are described
in FINIX as experimental correlations, for which only the un-
certainty around the nominal value is given. The parameters
were sampled with the Python code. It is notable that tem-
perature uncertainties were not introduced directly but rather
propagated by FINIX from the input uncertainties of Tab. I.
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Parameter BE ±∆

Cladding outer diameter (10.92 ± 0.06) mm
Cladding thickness (0.673 ± 0.025) mm
Pellet outer diameter (9.40 ± 0.02) mm
Fuel enrichment (4.850 ± 0.003) atom −%
Density (% of the theoretical) (93.8 ± 1.6) %

Coolant pressure (15.51 ± 0.31) MPa
Coolant inlet temperature (561 ± 3) K
Coolant mass flux (3460 ± 69) kg m−2 s−1

Fuel thermal conductivity ±10 %
Fuel thermal expansion ±15 %
Cladding thermal conductivity ±5 W m−1 K−1

Cladding thermal expansion ±30 %
Gas thermal conductivity ±0.02 W m−1 K−1

Coolant heat transfer ±5 %

TABLE I: Perturbed fuel behaviour parameters with their nom-
inal or best estimate (BE) values and one-dimensional uncer-
tainties.

IV. RESULTS AND ANALYSIS

The results are divided into two parts: the primary results
discuss the share of the nuclear fuel uncertainties in the neu-
tronics calculations, while the secondary results consider the
sampling distribution’s impact on the shape of the response
distribution. Two neutronics responses, namely the effective
multiplication factor keff and νΣf, were studied. The responses
are treated individually without considering any correlation
between them.

1. Effect of Fuel Behaviour and Nuclear Data Uncertain-
ties

The results of the uncertainty analysis are presented in
Tabs. II and III. The results consist of three different sampling
runs. The first and the second run considered solely the cross
section or the fuel uncertainties, while the third run considered
both the nuclear fuel parameters and the cross sections to be
uncertain.

We shall first focus on the effective multiplication factor.
The output uncertainty due to the cross sections is 0.390 %
(run A) while the uncertainty due to the fuel parameters is
0.265 % (run B). Combining these two with the well-known
summation in quadrature yields an uncertainty of 0.472 %.
The value is well within the 95 % confidence interval of the
corresponding sampled uncertainty of 0.484 % (run C). There-
fore, it is plausible that the uncertainty contributions of the
cross sections and the fuel parameters are not strongly depen-
dent as the summation in quadrature applies for uncorrelated
parameters.

It is also noted that all three sampled relative uncertainties
are outside each other’s confidence intervals, implying that
the differences are likely the consequence of the perturbations
and not due to chance alone. This is more clear from Fig. 1a.
Including the nuclear fuel uncertainties increases the total
uncertainty around 24 %.

Sources of
uncertainty n m̄ v̄rel [%]

A) Cross keff 411 1.410167 0.390
sections νΣf 0.100 cm−1 0.867

B) Fuel keff 1000 1.408507 0.265
behaviour νΣf 0.098 cm−1 1.086

C) Fuel and keff 407 1.408534 0.484
cross sections νΣf 0.098 cm−1 1.444

TABLE II: Sample sizes n, arithmetic means m̄, and relative
standard deviations v̄rel for two neutronics output parameters
with three different sources of uncertainty. The minimum
sample size was set to be 93 samples based on the tolerance
intervals while the final sample size was determined by the
available computational resources.

Sources of
uncertainty p ∆m̄ ∆v̄rel [%]

A) Cross keff 0.40 53 pcm 0.365; 0.419
sections νΣf 0.32 8.4E−5 cm−1 0.811; 0.930

B) Fuel keff 0.07 23 pcm 0.254; 0.277
behaviour νΣf 0.18 6.6E−5 cm−1 1.040; 1.135

C) Fuel and keff 0.93 66 pcm 0.453; 0.520
cross sections νΣf 0.87 1.4E−4 cm−1 1.351; 1.550

TABLE III: Parametric 95 % confidence intervals for the arith-
metic means and the relative standard deviations with their χ2

normality test p-values.

Including the 42.5 % share of the neglected nuclear data
uncertainty sources yields 0.485 % and 0.553 % as the propa-
gated neutronics uncertainty due to nuclear data uncertainty,
and the total combined uncertainty of nuclear fuel and nuclear
data, respectively. The values can be compared to the values
published for the UAM benchmark. The corresponding 95 %
confidence intervals of the neutronics uncertainty and the total
combined nuclear data and fuel uncertainty are now [0.454;
0.521] and [0.520; 0.590], respectively. The deterministic
result of 0.512 % presented in Ref. [30] is within the interval
for the nuclear data uncertainty.

The results for the νΣf are 0.867 % (run A), 1.086 %
(run B) and 1.444 % (run C). Similar to the keff, the total un-
certainty of 1.390 % summed in quadrature from runs A and
B is well within the 95 % confidence interval of the run C. The
increase in the relative uncertainty is now 67 %. Also these
results are outside each other’s confidence intervals, as shown
in Fig. 1b, which implies the differences to be statistically
significant.

2. Shape of a Response Distribution

As a secondary result, it was shown that the shape of
the output distribution depends quite strongly on the approxi-
mation of the input uncertainty distributions. The empirical
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Fig. 1: Relative standard deviations for (a) keff and (b) νΣf
with their 95 % confidence intervals. ’XS’ refers to the cross
sections as the source of the uncertainty.

cumulative distribution functions (ECDFs) of the keff for all
three runs are presented in Fig. 2 alongside with the fitted
CDFs of the normal distribution. The ECDFs visualize the
data without additional distorting assumptions. The respec-
tive approximated probability distribution functions (PDF) are
shown in Fig. 3. These are similar to the fitted PDFs as can
be expected based on the p-values. Similar results for the νΣf
are gathered in Figs. 4 and 5. The best estimate value of the
run A differs from the runs B and C due to a slightly different
temperature profile used in the neutronics calculations. Runs
B and C used a temperature profile from the FINIX calcula-
tions while the run A used the temperature profile defined in
the benchmark specifications.

The three samples are compared in Fig. 6 alongside with a
fourth run applying a simple zero-cut-off method for removing
the sampled negative values. The resampling of the negative
values during the perturbation step yields approximately sym-
metrical distributions while the zero-cut-off method leads to a
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Fig. 2: Empirical cumulative distribution functions (solid black
curves) of keff for runs (a) A, (b) B, and (c) C with their fitted
normal distribution counterparts (dashed red curves).
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Fig. 3: Kernel density estimates of the probability distribution
functions (solid black curves) of keff for runs (a) A, (b) B, and
(c) C alongside with fitted normal distribution PDFs (dashed
red curves). The green and blue dashed vertical lines mark
unperturbed best estimate values and sample means, respec-
tively.
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Fig. 4: Kernel density estimates of the probability distribution
functions (solid black curves) of νΣf for runs (a) A, (b) B, and
(c) C alongside with fitted normal distribution PDFs (dashed
red curves). The green and blue dashed vertical lines mark
unperturbed best estimate values and sample means, respec-
tively.
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Fig. 5: Empirical cumulative distribution functions (solid black
curves) of νΣf for runs (a) A, (b) B, and (c) C with their fitted
normal distribution counterparts (dashed red curves).

skewed distribution. The statistically non-significant p-values
(> 0.05) of the χ2 normality tests presented in Tab. III imply
that there is no statistically significant deviation from a nor-
mal distribution. However, the actual output distribution can
not be simulated using stochastic uncertainty analysis with-
out a method to draw samples from general truncated normal
distributions with a known mean and a covariance.

-2000 -1500 -1000 -500 0 500 1000 1500 2000
∆keff [pcm]

0

20

40

60

80

100

120

PD
F

XS (r) + fuel
Fuel
XS (r)
XS (z)

(a)

0.004 0.002 0.000 0.002 0.004
∆νΣf [cm−1]

0

50

100

150

200

250

300

350

400

450

PD
F

XS (r) + fuel
Fuel
XS (r)
XS (z)

(b)

Fig. 6: Kernel density estimates (i.e., approximated probability
distribution functions) of the samples presented in Tab. II for
(a) keff and (b) νΣf. Keywords ’XS’ and ’fuel’ denote the
source of the input uncertainty with the ’XS’ referring to
the microscopic cross sections. The method for handling the
sampled negative cross section values is represented by ’r’ or
’z’ corresponding to the resampling of the negative values and
the simple zero-cut-off approach, respectively. All three runs
in Tabs. II and III applied the resampling approach.
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V. CONCLUSIONS

Combined nuclear fuel and neutronics uncertainty analy-
sis was performed on a TMI-1 pin cell case in the framework
of the UAM benchmark. It was shown that accounting for
the nuclear fuel uncertainties yields 24 % and 67 % higher
relative output uncertainties for keff and νΣf, respectively. The
fuel uncertainties should therefore be accounted for if the re-
searcher wishes to present a significant second digit of the
uncertainty value. Even though the uncertainties in the fission
neutron yield and the fission spectrum were not considered
here, the results indicate that the fuel behaviour uncertainties
should be considered in multiphysics neutronics calculations.
Although beyond the scope of the present work, the role of
thermal hydraulic uncertainties may be speculated to have a
similar importance.

Additionally, it was demonstrated that fuel behaviour and
nuclear data uncertainties could be handled as independent
sources of uncertainty at least with a reasonable accuracy.
With larger sample sizes, it is likely that at least weak depen-
dencies may be found.

It was also shown that the sampling method affects the
shape of the output uncertainty distribution. Resampling of
the negative values of inherently positive parameters leads to
approximately symmetrical distributions while a crude zero-
cut-off method yields skewed distributions.

It is noted that this study considered only one computa-
tional case of fresh fuel and two output neutronics parame-
ters. Thus, the results should be confirmed in other reactor
conditions and pin cell types before presenting more general
conclusions.
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