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Abstract - BEAVRS is a highly-detailed PWR model based on two operational cycles of a commercial nuclear
power plant. As a benchmark to validate high-fidelity core analysis methods, BEAVRS provides measured
reactor data for Hot Zero Power (HZP) physics tests, boron letdown curves, and even three-dimensional in-core
flux maps at various burnups during Cycle 1 and Cycle 2. Recent work has been focused on the BEAVRS
uncertainty quantification of all the measured data, aiming to make this benchmark a true non-proprietary
international benchmark for the validation of high-fidelity tools. This paper details the quantification of
flux maps uncertainties through investigation of sources of error in all detector measurements. Detector
uncertainties together with errors introduced during data processing such as interpolation and realignment are
estimated for all axial measured data and thereby uncertainties of axially integrated radial data are derived.
In addition, time series analysis methods are used to calculate time-dependent detector uncertainty data, as an
alternative approach to estimating measurement uncertainties.

I. INTRODUCTION

In recent years, the importance of modeling and simu-
lation has been highlighted extensively in nuclear engineer-
ing. Plenty of research efforts aim to develop high-fidelity
multi-physics analysis tools for the simulation of current and
next-generation nuclear power reactors. Like all analysis tools,
verification and validation are essential to guarantee proper
functioning of the software and methods employed. Rele-
vant multi-physics benchmark measurements are especially
necessary to validate high-fidelity methods being developed
today.

BEAVRS [1], proposed by the Computational Reactor
Physics Group at the Massachusetts Institute of Technology in
2013, is a highly-detailed PWR benchmark with two cycles of
measured operational data used to validate high-fidelity core
analysis methods. This PWR depletion benchmark captures
the fine details of fuel assemblies, burnable absorbers, in-core
fission detectors, core loading and reloading patterns of a
commercial nuclear power plant during the first two cycles of
operation. It also provides measured reactor data for Hot Zero
Power (HZP) physics tests, boron letdown curves, and three-
dimensional in-core flux maps from fifty-eight instrumented
assemblies, enabling analysts to develop extremely detailed
reactor core models that can be used for testing and validation
of coupled neutron transport, thermal-hydraulics, and fuel
isotopic depletion.

The BEAVRS benchmark specifications and data pack-
ages have been publicly released online http://crpg.mit.
edu/, with continuous updates to reflect more improved
knowledge of the core and measured data. The specifications
have been used by many groups to assess model parameters
and measured data, but the benchmark has been lacking asso-
ciated uncertainties, thus rendering it difficult for analysts to
accurately assess sources of discrepancies in computational re-
sults. Recently, a series of uncertainty quantification work has
been carried out to address these deficiencies, aiming to make
BEAVRS a true non-proprietary international benchmark for
the validation of high-fidelity tools.

Since the BEAVRS measurements were performed a long
time ago and very little data exists that can be used to evaluate
the uncertainties, a variety of methods are used to assess a
best estimate of uncertainty. For example, standard deviations
of the assembly enrichments are calculated from detailed as-
sembly loadings in two cycles. For the control rod worth and
low power physics tests data such as critical boron concen-
trations and isothermal temperature coefficients, more recent
data using similar measurement techniques are used as the
basis for quantifying uncertainty. Uncertainty estimation is
also made on the hot full power boron let down curves through
both statistical analysis and code calculation. A complete and
rigorous documentation of the work surrounding BEAVRS
uncertainty quantification is planned to be released in the near
future.

This paper focuses on uncertainty quantification of the
flux maps measured by axial fission detectors at various bur-
nups. The first section investigates sources of error for oper-
ational nuclear data and estimates all flux map uncertainties,
while the second section uses time-series analysis tools to
quantify time-dependent fluctuations in reactor operations as
an alternative to estimate the measurement uncertainties.

II. FLUX MAP UNCERTAINTIES

The BEAVRS reactor contains 58 assemblies that can
be accessed by in-core detectors through the central guide
tubes. Figure 1 shows these positions, where six U-235 fission
chambers with varying fissile masses are used to perform the
measurements. When measurements are being taken, multiple
passes are performed to adequately measure all 58 assemblies.
All detectors are passed through one common assembly for
signal normalization. The detectors are inserted from the
bottom until they reach the top and pulled back to measure the
axial fission rate over 61 axial locations.

http://crpg.mit.edu/
http://crpg.mit.edu/
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Fig. 1. Instrument tube locations.

1. Extracting Detector Signals and Processing Data

The raw measurement data for one detector in one pass
includes 61 axial detector signals, background signal, gain
factor of the detector, and core power. The normalized axial
flux can be obtained from the detector signals by removing the
background, adjusting the gain on the detector and dividing
the power, as indicated by Equation 1.

φi jk =
(Di jk − Bi j) ×Gi j

P
(1)

where φ is the calculated flux, D is the detector signal, B is
the background signal, G is the gain factor of the detector, P
is the core power, and i, j, k indicate the spatial position of a
measurement (i, j for radial assembly position and k for axial
location).

Radial assembly flux maps are obtained by integrating
over all axial points, as indicated by Equation 2.

φi j =

K∑
k=1

φi jk (2)

However, the measurements are not usable as is and fur-
ther post-processing is needed to filter the noisy data (such as
missing data points and misalignments), which includes:

(1) Interpolation: In some of the detector signals, zero
points exist where the detector failed to record. These
zero points are removed by performing a linear interpo-
lation/extrapolation between/from the nearest two neigh-
bors.

(2) Re-alignment: It is observed that not all signals are
aligned with each other since the starting position of
the recording can differ slightly. However, signals can
be realigned according to grid depressions of the signal
since grid positions are fixed.

(3) Spline Fitting: Detector signals need to be put on an
axial coordinate grid corresponding to points that range
from the bottom to the top of the active fuel. A second-
order spline fit is used to map from measured data axial
locations to an axial map with data points exactly at the
Top of Active Fuel (TAF) and Bottom of Active Fuel
(BAF).

A Python script was developed to do the post-processing
of the raw detector data. The final flux maps, including ax-
ial distributions and axially integrated radial maps of all 58
assemblies, are generated by this script.

2. Estimating Uncertainty of Axial Detector Data

Generally, both the uncertainty of the measured signals,
i.e., detector inaccuracy, and the errors introduced from post-
processing should be analyzed and combined to evaluate final
uncertainty of the processed data.

The uncertainty of each axial detector data can be ex-
pressed using Equations 3 and 4,
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where δd, δb, δg, and δp are the uncertainties of the detector
signal, background, gain factor, and core power respectively.
These sources of uncertainty contribute to the measurement
uncertainty
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, while
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,
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)
align

and
(
δφ
φ

)
spline

are the
uncertainties introduced from interpolation, realignment and
spline fitting.

A. Detector Uncertainties

As shown in Equation 3, the uncertainty of the axial flux
has contributions from detector signal, background, gain factor,
and the core power measurements.

All types of measured data are gathered and statistical
analysis is used to determine the ranges and distributions of
the measurements, as shown in Figure 2 for Cycle 1. It is
found that:

(1) The background values are very small, mostly provided
by readings of 0 or 0.001. Accounting for the small-
est division of the detector (0.001), uncertainty of the
background can be estimated as half the smallest digit
(i.e. δb = 0.0005). It should be noted that background is
subtracted from detector signal and the detector signal
is generally greater than 0.1 (0.41 on average), which
implies from Equation 3 that both the effects of B and δb

are less than 0.1% for most cases.
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Fig. 2. Ranges and distributions of four types of measured
data in Cycle 1.

(2) The gain factors are discrete values which are selected
before each pass. As there are only a few well spaced-
out values, it is believed that the detector error caused
by using different gain factors is negligible compared to
other sources, i.e. δg is 0.

(3) For almost all of the measurements the core operates at
a power on the order of 1000 MWth. As power is very
important for normalization and values are reported with
decimals, it can be safely assumed that its uncertainty
(δp) is less than 1.0, which also means that δp/P is under
0.1%.

(4) Detector signal is the final component. While the accu-
racy of the detector is relative to specific measurements,
literature indicates that for normal reactor applications
the uncertainty is on the order of 1% [2]. Therefore, it
can be concluded qualitatively that the detector signal
dominates the measurement uncertainty.

Now the question becomes how to evaluate the uncertainty
of measured data more accurately. Quantitatively, measure-
ment uncertainty can be evaluated by performing repeated
measurements and calculating the variance. Even though the
reactor core monitoring is mostly carried out only once for
each assembly, there are certain locations that receive multiple
measurements for redundancy. For example in Cycle 1 of
BEAVRS, there are about 180 cases each that have 2 or even
3 repeated measurements by the same detector in the same
assembly. These multiple measurements are performed with
the reactor core under almost the same conditions, such as
control rod positions, boron concentration, and coolant status.
Core power as well as other measured parameters such as back-
ground and gain factor of the detector may be slightly different
but they will be accounted for in calculating axial flux. So the
multiple measurements can be regarded as repeated data and
their uncertainty represents the accuracy of the measured data.

Figure 3 is an example of multiple measurements, showing the
independent axial signals, mean and relative sample standard
deviation (RSTD) of every axial measurement point.

Fig. 3. Multiple measurements example. Assembly H11 was
measured twice by Detector 3. The average and relative sam-
ple standard deviation (RSTD) is calculated for every axial
measurement point.

Since there are only 2 or 3 replicated measurements for
each data point, the variance estimate is not likely to be ac-
curate. Thus, gathering the data over all multiple cases and
averaging them are necessary to obtain a reliable uncertainty
estimate.

Here we assume the measurement uncertainty is related
only to the detector signal amplitude. This means that the
multiple measurement cases with similar mean value have
similar uncertainty, therefore we can group the data points by
amplitude and estimate an average uncertainty for each group.
Specifically, the relative sample standard deviations are gath-
ered and used to calculate the uncertainties of all groups. To
make the estimate more conservative, a 95% confidence value
is adopted as the resulting uncertainty. In calculation, all the
data are sorted and the value at the 95% position is selected.
Note that the data points in one replicated measurement case
follow the same Gaussian distribution. For each double re-
peated measurements case, it can be demonstrated that the
relative sample standard deviation follows a distribution given
by Equation 5 and the 95% confidence value is actually equal
to 2 times the true standard deviation i.e. 2σ.

f (s) =
4
√

2πσ
e−

s2

σ2 (5)

There are 10725 multiple measurements in Cycle 1 and
they are divided into 30 groups by signal amplitude with equal
number of data points in each group. The 95% confidence
values are calculated for each group, thus a table of signal
ranges and measurement uncertainties is obtained, as shown
in Figure 4 and Table I.

As can be seen in Figure 4, the axial measurement un-
certainty is generally around 2−12% and is dependent on
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signal amplitude, i.e. the greater the signal, the smaller the
uncertainty. This look-up table will be applied to all detector
signals.

Fig. 4. Axial signal uncertainty from all multiple measure-
ments in Cycle 1. Top: A plot of the average and relative sam-
ple standard deviation of all multiple measured data points;
Bottom: A plot that divides the data points into groups and cal-
culates the 95% confidence values for all groups to represent
as a measurement uncertainty table.

Figure 5 shows the distribution of uncertainties inside the
multiple measurements group, which is roughly consistent
with the distribution given by Equation 5.

Fig. 5. Distribution of uncertainties inside the multiple mea-
surements groups.

B. Uncertainty from Data Processing

To analyze the uncertainty caused by data post-processing
such as interpolation , realignment, and spline fitting, a method
of observing the variation before and after the processing is

used.

Interpolation
Interpolation is performed when a single data point is un-
recorded. To estimate the error of interpolated data, we simply
eliminate points that were properly recorded one-by-one and
then compare the axial relative error with the recorded data.
Figure 6 displays all the interpolation errors and their averages
along with axial locations. It is observed that the interpolation
error is dependent on location and is greater near endpoints or
grid spacers. Here again we use the 95% confidence strategy
for each location. The 95% confidence values are collected as
a look-up table to estimate the uncertainty of every interpola-
tion performed during processing.

Fig. 6. A representation of axial interpolation uncertainty.
Top: Interpolation errors along with axial locations. Bottom:
Interpolation uncertainty table using 95% confidence values
for all locations.

Axial Re-alignment
Re-alignment of axial signals is carried out such that axial
signals are provided over the active fuel length. The positions
of the axial data are moved up or down in re-alignment, with
the lost edge points being calculated using extrapolation. Axial
measurements are re-aligned by 1 or 2 axial positions, and
in some rare situations 3 axial positions. Figure 7 shows an
example of the effect of grid re-alignment.

Two sources of error stem from re-alignment. The first
part is the error that comes from extrapolation of end points.
A similar method of interpolation is used to estimate the er-
ror of these extrapolations, i.e. comparing normal measured
data with extrapolated data. Figure 8 shows the gathering of
extrapolation errors i.e. the relative errors caused by extrapo-
lations in 6 grid positions and the 95% confidence values of
these errors. Again, this data will be used as a look-up table
to estimate error of axial points which are extrapolated when
re-alignment is performed.
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group signal amplitude uncertainty group signal amplitude uncertainty group signal amplitude uncertainty

1 [3.79E-05, 8.75E-04) 11.7% 11 [3.17E-03, 3.40E-03) 5.7% 21 [5.00E-03, 5.18E-03) 2.5%
2 [8.75E-04, 1.21E-03) 12.4% 12 [3.40E-03, 3.65E-03) 5.0% 22 [5.18E-03, 5.35E-03) 1.8%
3 [1.21E-03, 1.53E-03) 11.6% 13 [3.65E-03, 3.88E-03) 4.6% 23 [5.35E-03, 5.50E-03) 2.3%
4 [1.53E-03, 1.83E-03) 9.9% 14 [3.88E-03, 4.10E-03) 3.6% 24 [5.50E-03, 5.68E-03) 1.8%
5 [1.83E-03, 2.07E-03) 9.9% 15 [4.10E-03, 4.29E-03) 3.2% 25 [5.68E-03, 5.88E-03) 1.9%
6 [2.07E-03, 2.26E-03) 7.1% 16 [4.29E-03, 4.44E-03) 3.4% 26 [5.88E-03, 6.13E-03) 2.4%
7 [2.26E-03, 2.51E-03) 7.7% 17 [4.44E-03, 4.57E-03) 2.5% 27 [6.13E-03, 6.41E-03) 2.5%
8 [2.51E-03, 2.73E-03) 5.2% 18 [4.57E-03, 4.70E-03) 2.4% 28 [6.41E-03, 6.73E-03) 2.1%
9 [2.73E-03, 2.96E-03) 6.7% 19 [4.70E-03, 4.85E-03) 2.5% 29 [6.73E-03, 7.31E-03) 2.6%
10 [2.96E-03, 3.17E-03) 6.0% 20 [4.85E-03, 5.00E-03) 2.6% 30 [7.31E-03, 2.22E-02) 5.3%

TABLE I. Measurement uncertainty table in Cycle 1.

Fig. 7. Example of re-alignment error.

Secondly, even after all the signals are re-aligned, the
measured locations themselves can be erroneous due to the
fluctuations of starting positions or the detector moving speeds.
During the re-alignment, it is found that more than half of the
assemblies are shifted by 1 or more axial measured grids. To
simplify the problem, here we assume that, at 95% confidence,
the uncertainty of the measurement position is within one
measured grid length, i.e., every measurement point can be
wrongly recorded as much as its upper or lower point. There-
fore, the position-related uncertainty of each signal can be
calculated as the larger error between the current point and its
two neighboring points. It should be noted the positional error
is sensitive to the location or the variation of of the signal. In
a flat region like the middle core, the signal may change about
1% within one grid while around the endpoints this number
can be as high as 30%. The re-alignment uncertainty is deter-
mined as the combination of extrapolation error and position
error.

Spline Fitting
Spline fitting is used to put the detector signals on an axial
coordinate grid corresponding to points that range from the
bottom to the top of the active fuel. The error introduced
in spline fitting is found negligible because the second order

Fig. 8. A representation of axial extrapolation uncertainty.
Top: Distribution of extrapolation errors for 6 axial locations.
Bottom: Extrapolation uncertainty table using 95% confidence
values for all locations.

spline fit is quite accurate and the errors are less than 10−10.(
δφ

φ

)
spline

≈ 0 (6)

C. Combining Uncertainties

Finally, the uncertainties of all axial signals can be quan-
tified by calculating all independent uncertainties using the
look-up tables and combining them together using the uncer-
tainty Equation 4. Specifically, the following steps will be
performed for every axial signal.

(1) The measurement uncertainty
(
δφ
φ

)
m

is determined accord-
ing to the amplitude of calculated axial data.

(2) If this data point is interpolated, an interpolation error(
δφ
φ

)
intp

is determined according to its location on the
lookup table.

(3) If this data point is realigned, an extrapolation error(
δφ
φ

)
align

is determined according to its location. Further-
more, the measured position uncertainty is calculated as
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the larger error between the current signal and its two
neighboring points.

(4) The square root of sum of squares of all uncertainties

is calculated as the resulting uncertainty
(
δφ
φ

)
i jk

for each

data point.

Figures 9 and 10 show combined axial signal uncertainty
for two assemblies in Cycle 1 and Cycle 2 respectively. As
can be seen from the two figures, the axial measurement uncer-
tainty has a large range based on location, just like the signal
itself. But for most of the measured data, the main contri-
bution to the uncertainty is from the detector inaccuracy and
position error. This value is generally around 3 to 5%. For the
endpoints, the relative uncertainties increase noticeably since
the signals are small and sensitive to location.

Fig. 9. Combined uncertainty of axial detector measurement -
Assembly L05 on Day 54 in Cycle 1.

Fig. 10. Combined uncertainty of axial detector measurement
- Assembly H06 on Day 42 in Cycle 2.

3. Uncertainty of Axially Integrated Radial Data

Uncertainty of axially integrated radial assembly data can
be evaluated by accounting for the errors of all axial points in
one assembly, as indicated by Equation 7,

(
δφ

φ

)
i j

=

√∑K
k=1

(
δφ

)
i jk

2

φi j
(7)

where i, j represent the radial assembly position and k the
axial location.

For example, in Assembly L05 shown in Figure 9, an
integrated uncertainty of 0.83% is obtained by substituting the
axial uncertainties into the equation.

The uncertainties of all assembly data at all burnups are
calculated this way. Figure 11 gives the full core radial detector
measurements together with the calculated uncertainties under
HZP conditions in Cycle 1. Furthermore, by gathering all
assembly uncertainties in the whole cycle, it is found the
average uncertainty of radial measurements is around 1.0%
for both Cycle 1 and Cycle 2 and the 95% confidence value is
1.4%.

The multiple measurements can also be used to quantify
uncertainty of radial data in a different way. Similar to the
treatment with the axial multiple signals, all multiple measure-
ment cases of radial data are collected and statistics computed
to estimate uncertainty of radial data, as shown in Figure 12.
There are 179 cases of multiple measurements in Cycle 1. The
95% confidence value is 1.8%. Note again that the distribution
of RSTD of the multiple measurement is consistent with the
theoretical analysis, i.e. using Equation 5.

It should be noted that the two ways to estimate radial
uncertainty are somewhat independent and can be compared
against each other. Figures 13 and 14 compare the assembly
uncertainty distributions obtained from both approaches for
Cycle 1 and Cycle 2 respectively. It can be seen that the
two ways give similar 95% confidence uncertainties for both
cycles, which reaffirms the provided value as a good estimate.
Note that the calculated uncertainty distributions in the lower
figures are much different from the upper distributions of
multiple measurement RSTD’s. This is not surprising since the
calculated uncertainty is the expectation of real uncertainties.
All the assemblies have similar flux and are measured by the
same set of detectors so the uncertainties roughly follow a
Gaussian distribution.

III. MEASURING TIME-DEPENDENT UNCER-
TAINTY

The uncertainty quantification work that has been per-
formed so far has dealt with analyzing the sources of un-
certainty at individual burnups, where each burnup step is
regarded as independent of neighboring burnup steps. How-
ever, this section aims to characterize how reaction rates vary
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Fig. 11. Radial assembly measurements with uncertainties calculated from axial uncertainties at HZP in Cycle 1. The top number
is normalized assembly signal while the bottom number is its uncertainty.

Fig. 12. Distribution of radial data uncertainty calculated from
axial uncertainties in Cycle 1.

over short time intervals using predictive models in order to
determine whether calculated reaction rates follow any ob-
servable trend. By fitting BEAVRS data to such trends, any
deviation from these trends can be regarded as an alternative
method for uncertainty quantification. For this section, time-
dependent trends are best modeled when core conditions are
approximately at full power and not interrupted by temporary
shutdowns and sudden fluctuations, so the burnup set is re-
stricted to those points above 90% power. Figures 15 and
16 illustrate the full set of burnup points in Cycle 1 and 2

Fig. 13. Comparison of assembly uncertainty distributions
obtained from two approaches in Cycle 1.

respectively, where the green points denote full power points.
Previous BEAVRS uncertainty quantification work looked

at using linear models to fit BEAVRS data [3]. While this
was an accurate model for first-order fitting, using a linear
regression model was not wholly accurate due to the volatile
power history for Cycle 1 that calls in question the steady-state
requirements for such fitting to be appropriate. Moreover, a
linear fit cannot be conducted without knowing the BEAVRS
reaction rates a priori, and neglects taking into account any
of the actual operating conditions within the reactor. Instead,
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Fig. 14. Comparison of assembly uncertainty distributions
obtained from two approaches in Cycle 2.
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Fig. 15. Cycle 1 burnup points. Full power points are indicated
by green points (above 90% power). The list of full power
points (in MWd/kg) are 1.02, 1.51, 2.16, 3.30, 4.61, 6.49, 7.51,
8.70, 9.80, 11.08, 12.34.

this paper focuses on using more predictive models that can be
used to capture higher-order effects observed within the reactor.
Before such discussions, however, the role of tilt-correction
on BEAVRS reaction rates data must be explained.

1. Correcting for Tilt at Hot Zero Power

BEAVRS data contains a significant NW-SE tilt at HZP
despite a symmetric core loading pattern. This asymmetry can-
not be explained merely by errors in detector measurements.
This creates an issue since simulations for core calculations
typically produce symmetric results for symmetric core load-
ing patterns. Thus, comparing BEAVRS data to data from
deterministic codes creates a systemic error due to this tilt.
The leading hypothesis to explain this tilt is that an uneven
distribution of water gaps was introduced during core loading.
It is possible to induce such a tilt in simulation tools and com-
pare this data to post-processed BEAVRS data, however the
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Fig. 16. Cycle 2 burnup points. Full power points are indicated
by green points (above 90% power). The list of full power
points (in MWd/kg) are 0.23, 1.14, 2.11, 3.20, 4.04, 5.23, 6.52,
7.71, 8.73, 9.36, 10.43.

exact source of this error is not exactly known. Instead, the tilt
in BEAVRS data is corrected for in order to make the reaction
rates eighth-core symmetric, and this correction needs to be
accounted for as as an additional source of error. For every
burnup, the best x-y plane that fits the 58 measurements is
found and adjusted for. Moreover, once this tilt is removed,
symmetric positions are extrapolated from known readings, as
the radial reaction rate map is now symmetric. The magnitude
of the tilt decreases over burnup for both Cycle 1 and Cycle
2 [4]. The following section utilizes tilt-corrected BEAVRS
data as a basis for comparison to data from simulation tools.

2. Fitting Data from Simulation Codes to BEAVRS Data

Time-dependent BEAVRS uncertainty quantification
work initially used linear models to fit data for reaction rates
over burnup, and then transitioned to using reaction rates from
CASMO-5 lattice codes [5] and Simulate-3 nodal diffusion
simulator [6] as an additional basis for comparing to BEAVRS
data. It was observed that using CASMO/Simulate results
predicted the proper shape of burnup trends but induced a
persisting bias due to the methodologies and assumptions em-
bedded into the simulation models [3]. The discrepancy was
attributed as model bias, and this section serves to quantify
time-dependent uncertainty by correcting for this model bias
over short burnup intervals.

For the purposes of this analysis, only a subset of burnups
are going to be examined, as the highly volatile power history
makes it difficult to model reaction rates effectively over a
long burnup. Looking at a smaller burnup set does indicate
that there is higher precision in modeling phenomena than a
simple linear model.

Figure 17 plots reaction rates for CASMO/Simulate and
BEAVRS data for Assembly D10 at burnups 1.02, 1.51, and
2.16 MWd/kgHM. Looking at this region, it is clear that the
two plots behave similarly but are offset by some amount.
Defining this offset as model bias, the goal is to overlay the
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Fig. 17. Reaction rates for CASMO/Simulate and BEAVRS
data for Assembly D10 at 1.02, 1.51, and 2.16 MWd/kg.

BEAVRS data onto the CASMO/Simulate data, and then mea-
sure how much noise there is between this new data set and
CASMO/Simulate. This noise can be quantified as a measure
of time-dependent uncertainty. This is done for all assem-
blies over a subset of burnups for both cycles. The results
for burnup range 1.02, 1.51, and 2.16 MWd/kgHM in Cycle
1 are summarized in Figure 18. RMS for model bias for the
entire core for this burnup range is 1.8%, while the RMS for
time-dependent uncertainty is 0.9%

Fig. 18. Time-dependent uncertainty (top) and model bias
(bottom) values using CASMO/Simulate model for each as-
sembly over cycle 1 burnups of 1.02, 1.51, and 2.16 MWd/kg.
Assembly-weighted Model Bias: 0.018, Assembly-weighted
Time-Dependent Uncertainty: 0.009.

Assuming that burnup sets with non-overlapping points
are independent of each other, Simulate data is fit to the entire
burnup range, dividing the entire range into three subsets. For
Cycle 1, the entire burnup set is subdivided into the three
burnup ranges of [1.02, 1.51, 2.16], [3.30, 4.61, 6.49, 7.51],
and [8.70, 9.80, 11.08, 12.34] and error between Simulate
and BEAVRS is aggregated for these three subdivisions on
the same histogram. Similarly for Cycle 2, the entire burnup
range is subdivided into the subsets [0.23, 1.14, 2.11], [3.20,
4.04, 5.23, 6.52], and [7.61, 8.73, 9.36, 10.43]. Subdivision
of the entire burnup range is carried out in this manner since

it is believed that measurements errors would dominate over
short intervals but other physical deviations could come into
play over longer intervals that could mask the measurement
error. Figure 19 plots these errors between BEAVRS data and
SIMULATE data for Cycle 1, where the data is weighted by
the number of symmetric assembly positions.

Fig. 19. Histogram of relative error distributions over entire
burnup rate of Simulate Data vs. BEAVRS data with bias
correction for Cycle 1. RMS = 1.4%, 95% level = 2.7%.

Fig. 20. Histogram of relative error distributions over entire
burnup rate of Simulate Data vs. BEAVRS data without bias
correction for Cycle 1. RMS = 0.8%, 95% level = 1.6%.

From this histogram, it is clear that errors are skewed
towards the lower end, with a few large outliers on the higher
end. The RMS value for Cycle 1 is 1.4%, but taking a more
conservative error estimate of 95% confidence yields a much
higher error of 2.7% for Cycle 1. The main issue with using
these results is that the error between BEAVRS and Simulate
includes model bias. Figure 20 corrects for this bias over short
burnup intervals and plots the error between Simulate and
BEAVRS data with bias correction on a single histogram. The
95% confidence value of time-dependent uncertainty now is
1.6% for Cycle 1, and following a similar procedure for Cycle
2 yields a time-dependent uncertainty of 0.9%. The authors
interpret these results as suggesting that if model bias could
be completely corrected for, then the resulting time-dependent
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Burnup Subdivision Time-Dependent Uncertainty

Cycle 1

(1.02 1.51 2.16) (3.3 4.61 6.49 7.51) (8.7 9.8 11.08 12.34) 1.6%
(1.02 1.51 2.16 3.3) (4.61 6.49 7.51) (8.7 9.8 11.08 12.34) 1.7%
(1.02 1.51 2.16 3.3) (4.61 6.49 7.51 8.7) (9.8 11.08 12.34) 1.6%

Cycle 2

(0.23 1.14 2.11) (3.2 4.04 5.23 6.52) (7.71 8.73 9.36 10.43) 0.9%
(0.23 1.14 2.11 3.2) (4.04 5.23 6.52) (7.71 8.73 9.36 10.43) 1.0%
(0.23 1.14 2.11 3.2) (4.04 5.23 6.52 7.71) (8.73 9.36 10.43) 0.9%

TABLE II. Sensitivity analysis of time-dependent uncertainty and model bias based on burnup subdivison of each cycle.

uncertainty due to fitting data from reactor analysis software
to operational data is on the same order as axially integrated
measurement uncertainty. The uncertainty that arises from
measurement carries over throughout the core burnup and can
be used to explain the random fluctuations that occur when
trying to fit time-dependent trends.

To show that these results are not overly dependent on
how subdivisions are made, the same analysis is performed
by perturbing the subdivision endpoints. Table II summarizes
the results for 95% confidence time-dependent uncertainty
from data fitting to CASMO/Simulate, and it is clear that
these results are independent of burnup choice, as long as the
entire burnup range for the cycle is included. Thus, the 95%
confidence value of 1.6% to 1.7% for Cycle 1 and 0.9% to
1.0% for Cycle 2.

IV. CONCLUSIONS

The BEAVRS benchmark has been instrumental in show-
ing the efficacy of high fidelity modeling tools to model real-
istic PWR models. Recent work has been focused on quan-
tifying the uncertainty in areas of data measurement, data
processing, and time-series uncertainty. The flux map uncer-
tainties are obtained through a close investigation of sources
of error for all detector measurements. The results indicate
that axial measurement uncertainty is dependent on signal
amplitude and measured location, most of which is around
3% to 5% at the 95% confidence level. Radial assembly sig-
nal uncertainties are also analyzed using three independent
approaches: sum of axial uncertainties, statistics on multiple
axially integrated data, and time-dependent uncertainties. Re-
sults are summarized in Table III and demonstrate consistency
between the three approaches.

Future work involves looking at how model bias affects
results for each assembly. This includes more concrete val-
ues for uncertainty from tilt-correction, as well as obtaining
data from WIMS/Panther codes to use as an additional ba-
sis for comparison between BEAVRS data when calculating
time-dependent uncertainty. The ultimate objective in using
WIMS/Panther results instead of CASMO/Simulate is to show

Method of Uncertainty Quantification

Multiple
Measurements

Theoretical
Analysis of

Axial
Uncertainties

Fitting
Simulate
Burnup

Trends to
BEAVRS

data

Cycle 1 1.8% 1.4% 1.6%
Cycle 2 1.5% 1.4% 0.9%

TABLE III. Summary of results from uncertainty quantifica-
tion using three independent methods.

that time-dependent uncertainty remains consistent regardless
of the simulation tools being used to predict reaction rates
over burnup. Such results bring more credence to using nu-
clear codes to predict higher order effects observed within
actual reactor operations. Any further discrepancies that arise
after correcting for model bias should solely be due to the
uncertainty in the underlying BEAVRS data, namely from
measurement and post-processing data.
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