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Abstract - A novel method for direct and simultaneous estimation of the core kinetic parameters and its absolute
reactivity is proposed. The method is based on the well known Feynman-Y method and is computationally
intensive. The method does not rely on any pre-calculated or pre-measured physical quantity of the core,
rather requires only the detector readings from an in-pile noise measurement and a set of delayed neutron
group yields and the associated decay constants. The method is implemented and used for the analysis of
subcritical configurations of the MAESTRO core in the MINERVE zero power reactor in order to measure
its integral kinetic parameters,i.e., effective delayed neutron fraction βeff and the prompt neutron generation
time Λ, in addition to the absolute reactivity ρ. Uncertainty analysis shows that the associated uncertainties
are reasonably small. Additionally, Feynman-Y curves are calculated for small time gates (down to 10-5 s),
revealing an asymptotic approach to negative values. This is used to extract the detectors’ dead time assuming
that detector count losses due to dead time are the main contribution for this phenomenon. Finally, a new
random sampling technique is proposed for obtaining Feynman-Y curve. The random sampling method has the
advantages of producing less fluctuating curves and eliminating temporal correlations between successive time
gates. Its major disadvantage is its dependence on CPU intense computations. Nonetheless, this method is
implemented and compared to standard successive sampling technique.

I. INTRODUCTION

A set of neutron noise measurements have been performed
at the MINERVE zero power reactor at Cadarache research
center in France [1] during September 2014. This experimen-
tal campaign was conducted in the framework of a tri-partite
collaboration between CEA, PSI and SCK-CEN [2, 3]. These
measurements were simultaneously and independently pro-
cessed and analyzed in the framework of a collaboration be-
tween CEA, Ben-Gurion University of the Negev, and the
Israeli Atomic Energy Commission. The main purpose of the
campaign was to obtain the core kinetic parameters using vari-
ous existing and novel noise techniques and compare it with
recent measurements [4]. The last time a similar campaign
was performed in MINERVE was in 1975 and the core con-
figuration was different [5]. This campaign is a continuation
of a previous campaign that aimed at determining the delayed
neutron fraction βeff in the MINERVE reactor using in-pile
oscillations technique [6].

The MINERVE reactor is a pool-type (∼120 m3) reactor
operating at a maximum power of 100 W with a corresponding
thermal flux of 109 n/cm2·s [1]. The core is composed of a
driver zone, which includes 40 standard highly enriched MTR-
type metallic uranium alloy plate assemblies surrounded by a
graphite reflector. An experimental cavity, in which various
UO2 or MOX cladded fuel pins can be loaded in different
lattices, reproducing various neutron spectra [1, 7], is located
in the center of the driver zone. An oscillator piston, capable
of moving periodically and vertically between two positions
located inside and outside of the core is located inside the
experimental zone. A general view of the MINERVE reactor
is shown in Fig. 1, together with schematic drawings of the

reactor geometrical configuration and the MAESTRO core
configuration [8].

Figure 1. Experimental layout of the MINERVE during the
noise measurements campaign in Sep. 2014.

During the measurement campaign, neutron noise ex-
periments were conducted in two different subcritical states
marked as “Acq16” and “Acq19”. The different criticality
states were obtained by inserting one of the four control rods
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into the core. The reactor configuration was that of the MAE-
STRO program [8], representing a PWR spectrum in the cen-
tral experimental cavity (see Fig. 1). Two large fission cham-
bers with approximately 1g of 235U have been installed next
to the driver zone (denoted n◦670 and n◦671 in Fig. 1). In
order to minimize flux disturbances in the detectors during
measurement, reactor criticality was controlled by control rod
B1, which is far from the two detectors. These subcritical
measurements have been conducted at zero power with count
rate around 4×104 cps. Both measurements lasted 5500 sec-
onds and with core negative reactivity of 230 and 117 pcm,
respectively, measured by pre-calibrated rod-drop experiment.
The experimental configuration of the two subcritical measure-
ments is summarized in Table I.

Table I. Pile noise measurements during the Sep. 2014 experi-
mental campaign that are analyzed.

Data set Acq16 Acq19

Control rod height [mm] B1@399 B1@449
Core power [W] 0 0
Duration [s] 5500 5500
Integral fission rate F [s-1] 4.28×109 8.43×109

Reactivity [pcm] -230 -117

In this paper, a novel method is presented, which enables
the direct and simulaneous estimation of three of the reactor
core’s integral parameters, e.g., the effective delayed neutron
fraction βeff the prompt neutron generation time Λ, and the
core absolute reactivity ρ. The method is based on the well
known Feynman-Y method [9, 10] and was previously applied
to two parameters, βeff and ρ [4].

Various new sampling techniques are proposed, studied,
and implemented to obtain the variance-to-mean ratio curves,
e.g., successive and random sampling of the detector’s read-
ings. The obtained curves are then fitted using a multi-mode
delayed reactivity model, accounting for 1 prompt + 6 de-
layed neutron groups. Furthermore, analysis of the acquisition
system dead time is pursued by studying the discrepancies
between the Feynman-Y curves and the analytic models for
small time gates, i.e., T . 10−3 seconds.

Finally, the effect of the different sampling methods of the
detectors’ signal is studied. It is shown that random sampling
methods, which eliminate the temporal correlations between
adjacent time gates (is exist), produce slightly different results
compared to the commonly and widely used successive sam-
pling technique. Different random sampling techniques are
proposed, implemented, and analyzed.

II. THE FEYNMAN-Y METHOD

Each point on the Feynman-Y curve is obtained in the
following manner. Each measurement of a total duration T̃
is divided into NT segments (or time gates) of duration T
(where NT = T̃/T ). Define a series of random variables
{XT (n)}NT

n=1, where XT (n) is the number of neutron detections in

the nth segment. The expectation value E(XT ) and the variance
Var(XT ) are evaluated, where the Feynman-Y function (the

variance to mean ratio) is defined by:

Y(T ) =
Var(XT )
E(XT )

− 1 . (1)

Once the Feynman-Y curve is obtained, the data is fit-
ted on an analytic expression, from which the reactivity, the
delayed neutron fraction or the neutron generation time can
be estimated. Two analytic models for the Feynman-Y are
usually used: with and without an explicit reference to the
delayed neutrons. To simplify notations, the model neglecting
the effect of the delayed neutrons is referered to as the Prompt
Reactivity Analysis (PRA), and the model incorporating the
delayed neutrons is referred to as the Delayed Reactivity Anal-
ysis (DRA) [4].

1. Prompt Reactivity Analysis (PRA)

The most basic fit model [9], the PRA model, is given by:

Y(T ) = Y∞ ×
(
1 −

1 − e−αpT

αpT

)
, (2)

where αp ≡
βeff−ρp

Λ
, ρp is the prompt reactivity, βeff is the de-

layed neutron fraction and Λ is the prompt neutron generation
time. Eq. (2) is the single energy point-wise prompt neutrons
model [11] and it is only applicable for T < 0.1 s.

2. Delayed Reactivity Analysis (DRA)

A generalization of Equation (2) to a 1-prompt and 6-
delayed neutron groups [12, 13] can be written in the following
form:

Y(T ) = C ×
7∑
j

2A j

α j
H0(α j)

(
1 −

1 − e−α jT

α jT

)
, (3)

where the coefficients A j are determined by the transfer func-
tion

H0(ω) =
1 − iω

(∑6
k=1

βk
λk+iω

)
iω

(
Λ +

∑6
k=1

βk
λk+iω

)
− ρ

=

7∑
j=1

A j

iω + α j
(4)

and the coefficients α j are the roots of the Inhour equation

−α j

Λ +

6∑
k=1

βk

λk − α j

 − ρ = 0 . (5)

Notice that although Eq. (4) has a large number of parameters,
the fit is done using two parameters, i.e. ρ and C. Moreover,
once the roots of the Inhour equations are found, the residua
A j are given explicitly by

A j =

1 −
(∑6

k=1
α jβk

λk+α j

)
Λ +

∑6
k=1

λkβk

(λk−α j)2

. (6)

In the DRA model the procedure is a bit more complicated
since the dependence of Y(T ) on ρ is implicit (via Eqs. 4–6).
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By denoting βeff =
∑6

j=1 β j and ε j = β j/βeff, Eq. (4) may be
rewritten in the following form

H0(ω) =
1 − iωβeff

(∑6
k=1

εk
λk+iω

)
iω

(
Λ + βeff

∑6
k=1

εk
λk+iω

)
− ρ

, (7)

and the Inhour equation (Eq. 5) as

−α j

Λ + βeff

6∑
k=1

εk

λk − α j

 − ρ = 0 . (8)

Thus, assuming that ε j are known (e.g., [14]), it is possible to
link between the kinetic parameters and the reactivity using
curve fitting.

Note that for both models, one usually assumes knowl-
edge of two of the three parameters ρ, βeff, and Λ, in order
to estimate the third parameter. This can be done either by
calculation or by experimental measurement, leaving the third
parameter as a degree of freedom to be evaluated using the
Feynman-Y curve fitting.

III. RESULTS AND ANALYSIS

1. Direct Estimation of Integral Parameters

Usually, in order to calculate some integral kinetic pa-
rameter of the core, the other parameters, including the core
reactivity, are assumed to be known (e.g., previously measured
or calculated). For example, in order to evaluate βeff, the core
reactivity ρ and the prompt neutron lifetime Λ need to be
known. Gilad et al. [4] showed that it is possible to simulta-
neously evaluate both ρ and βeff, assuming a global minimum
exists over the two-dimensional parameter space for the er-
ror in the multidimensional fits. The obtained curves using
this method exhibit better agreement with the observed results
with respect to the curves obtained using the pre-calculated
reactivity, as shown in Fig. 2.

Figure 2. The Feynman-Y curves for both detectors in both
subcritical experiments and the corresponding best fitted
curves obtained by using the given ρ (solid red lines) and
the global minimum in the (ρ,βeff) parameter space [4].

In this paper, all three parameters, i.e., ρ, βeff, and Λ
are simultaneously fitted and the best fit over the (ρ, βeff,Λ)
parameter space is obtained, assuming global minimum exists
for the fit error. The error in the fit is evaluated for each point
in the (ρ, βeff,Λ) parameter space by the sum of the squares
of the differences between the measured data and the fitted
Feynman-Y curve. The error is calculated according to the
following formula

e2(ρ, βeff,Λ) =

N∑
l=1

[
FYl − Y (Tl|ρ, βeff,Λ)

]2 , (9)

where FYl is a measured data point l and Y (Tl|ρ, βeff,Λ) is the
fitted curve for given (ρ,βeff,Λ) set of values, evaluated at point
Tl.

It was already shown [4] that this error’s behavior over
the (ρ, βeff) parameter space exhibits a global minimum, which
enables the simultaneous estimation of both ρ and βeff. It
is shown that the error defined in Eq. (9) exhibits a global
minimum also in the three-dimensional space (ρ,βeff,Λ), en-
abling the direct and simultaneous estimation of ρ, βeff, and
Λ without the need for preliminary measurements. The error
behavior over the three-dimensional parameter space (ρ,βeff,Λ)
is shown in Figs. 3, 4, and 5.

Figure 3. The error in the multidimensional fit, as defined in
Eq. (9), over the three-dimensional parameter space (ρ,βeff,Λ),
shown at constant Λ cross sections. The error values range
between 0.008 (dark blue) and 0.7 (yellow).

The best fitted curves obtained using this method are
shown in Fig. 6. The obtained curves show good agreement
with the measured data with no significant biasing in the nor-
malized residuals. It should be noted that non of the parame-
ters were calculated or measured prior to the analysis. Rather,
they are evaluated simultaneously and directly from the de-
tector’s readings, which is the only measured input for this
method. It should be noted that spatial higher mode compo-
nents of Y values were not corrected [15].

This method provides not only the best estimate for ρ,
βeff, and Λ, but also a measure for the uncertainties associ-
ated with the values of these parameters, originating from
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Figure 4. The error in the multidimensional fit, as defined in
Eq. (9), over the three-dimensional parameter space (ρ,βeff,Λ),
shown at constant reactivity ρ cross sections. The error values
range between 0.008 (dark blue) and 0.7 (yellow).

Figure 5. The error in the multidimensional fit, as defined in
Eq. (9), over the three-dimensional parameter space (ρ,βeff,Λ),
shown at constant βeff cross sections. The error values range
between 0.008 (dark blue) and 0.7 (yellow).

the correlations between the core reactivity and the kinetic
parameters. Just as the values of these parameters are obtained
from the location of the global minimum of the error in the
three-dimensional parameter space (ρ,βeff,Λ), the associated
uncertainties can be evaluated by examining its near surround-
ings.

Let us mark the point of global minimum of the fit error e2

(Eq. 9) in the parameter space (ρ,βeff,Λ) by r0. Any deviation
from the global minimum, in any direction, i.e., r0 + dr, is
bound to increase the error in the fit. Hence, for any small
number ε, there exist a connected closed surface in the pa-
rameter space which encloses a volume in which the error in
the fit is bounded by ε, i.e., e2(r0 + dr) 6 e2(r0) + ε. Two
dimensional cross sections of this volume for different values
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Figure 6. Feynman-Y curves for both detectors in both sub-
critical experiments and the corresponding best fitted curves
obtained by using multidimensional fit (solid black lines) and
the global minimum in the (ρ,βeff,Λ) parameter space.

of ε are shown in Fig. 7. The values of ε in these figures are set
such that they bound volumes of 1–5% increase in the minimal
fit error e2(r0).

This procedure for estimating the associated uncertainties
in the core reactivity and the kinetic parameters has the ad-
vantage of accounting for the complex correlations between
these physical quantities. Examination of Fig. 7 reveals that
βeff is the most sensitive parameter with respect to the fit error
(in terms of absolute sensitivity). An increase of 1% in the fit
error can change βeff by 10–15 pcm, whereas Λ is changed by
1 µs and ρ by 3–6 pcm.

The kinetic parameters and the core reactivity along with
their associated uncertainties (taken at 1%) are summarized in
Table II.

Data set ρ [pcm] βeff [pcm] Λ [µs]

Acq16 det1 -301±6 750±15 92.5±1
(±2.0%) (±2.0%) (±1.0%)

Acq16 det2 -312±6 726±15 95.5±1
(±1.9%) (±2.0%) (±1.0%)

Acq19 det1 -222±6 703±15 98.0±1
(±2.7%) (±2.1%) (±1%)

Acq19 det2 -199±6 742±15 100.0±1
(±3.0%) (±2.0%) (±1%)

Table II. The kinetic parameters and the core reactivity, ob-
tained using the global minimum method described above,
along with their absolute and relative (in parentheses) associ-
ated uncertainties (taken at 1% change in the fit error e2).

2. Dead Time Effect

Usually, the minimal time gate width considered for
prompt and delayed models is ∼10-3 s. However, when ex-
amining the behavior of the measured Feynman-Y curves
and comparing them to the analytic models for small time
gates, i.e., in the interval [10-5,10-3] seconds, discrepancies
emerge [16–18], as shown in Fig. 8. While the models asymp-
totically approach zero, the measured Feynman-Y curves does
not. This behavior is observed in all our subcritical measure-



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

1%

2%

3%

4%
5%

720 730 740 750 760 770 780

eff  [pcm]

90

91

92

93

94

95

 [
s]

1%
2%

3% 4%
5%

720 730 740 750 760 770 780

eff  [pcm]

-305

-300

-295

 [p
cm

]

1%

2%3%4%5%

90 91 92 93 94 95
 [ s]

-305

-300

-295

 [p
cm

]

Figure 7. Two dimensional cross section of the volumes in the
parameter space for which the fit error e2 is increased by 1–5%.
The cross sections are taken through the global minimum r0.

ments.
The fact that the measured Feynman-Y curves asymptoti-
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Figure 8. The discrepancies between the asymptotic behavior
of the analytic models and the measured Feynman-Y curves
as the time gates decrease. The inset shows the full range of
the Feynman-Y curves.

cally approach negative values for small time gates is indica-
tive of the count losses due to detector dead time [11, 16, 17,
19–21]. According to these references, the non-correlated part
of the variance-to-mean ratio depends linearly on the dead
time according to

Yτ(T ) = Y(T ) − 2Rτ , (10)

where Y(T ) is either the prompt or delayed variance-to-mean
formula given in Eqs. (2) and (3), R is the mean count rate,
and τ is the dead time of the acquisition system. Hence, as T ,
decreases, Y(T )→ 0 and the expression for τ approaches τ =
Yτ(T )/2R. The evaluated effective dead times for the different
measurements and the different detectors are summarized in
Table III.

Dead time [ns] det1 det2

Acq16 78 77
Acq19 87 88

Table III. Estimated values for the detectors’ dead time using
the Feynman-Y curves for small time gates (see Fig. 8).

It should be noted that for such small time gates, i.e., less
than 100 µs, the fact that the Feynman-Y curves assume nega-
tive values can also be indicative of other effects in addition
to count losses due to dead time, e.g., temporal correlations
between adjacent time gates.

3. Random vs. Successive Sampling Techniques

The conventional sampling technique for Feynman-Y
curves calculations is successive sampling of the detector sig-
nal [22, 23]. For each time gate T , the signal is divided into
successive (non-overlapping) segments of data, as illustrated
in Fig. 9. The variance and mean values of the detector counts
for each time gate T are calculate for each segment.

The successive sampling technique has the clear advan-
tages of simple implementation and fast execution, but is obvi-
ously biased due to temporal correlations between successive
segments. However, the effect of this bias on the Feynman-Y
method is rather unclear. In short, opinions on this issue range
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Figure 9. Illustration of a conventional successive sampling.

between the need to change the basic classic equation (Eq. 2)
so it accounts for these correlations, through the proposition to
insert waiting times between successive time gates to reduce
the correlations’ effect, and the statement that there are no
experimental evidence for the existence of these correlations
(see discussion in ref. [11] page 62).

In order to study this effect (and out of pure curiosity), a
random sampling technique is applied to the signal. A single
detection time is chosen uniformly at random and a time gate
T is opened from that point. This process is repeated a variable
number of times, depending on the time gate T and on the
requirement that on average most detections are sampled. This
sampling method has an obvious bias, since each time gate
starts with a detection. Moreover, overlapping is allowed, as
illustrated in Fig. 10. If temporal correlations exist between
successive time gates and affect the Feynman-Y analysis, than
this type of sampling should eliminate this effect.

Figure 10. Illustration of a random sampling.

A comparison of Feynman-Y curves obtained (from the
same data) by using conventional successive sampling and
by using different random sampling techniques is shown in
Fig. 11. Overall, the different Feynman-Y curves seem to
overlap for most time gates. The middle panel shows that
random sampled curves with large number of samples per time
gate (rand1, rand2, rand3) exhibit less fluctuating behavior
with respect to other curves. The bottom panel shows that the
random sampling curves deviate from the successive sampling
one for small time gates, starting from T . 10−2 s. This
behavior is exhibited in all our subcritical measurements for
all detectors.

The different random sampling curves differ only in the
number of segments chosen randomly for each T , i.e., the
rand0 curve is calculated using the same number of successive
segments per T , the rand1 curve is calculated using 105 seg-
ments per T , the rand2 curve is calculated using 10 times the
number of successive segments per T , and the rand3 curve is
calculated using the larger number of segment between rand1
and rand2 per T .

Preliminary analysis suggest that the sampling technique
has a notable effect on the fit results of the Feynman-Y method.
However, the deviation of the random sampled curves from
the successive sampled one for small time gates may indicate
an insufficient number of samples used. If that is the case,
variance-to-mean values are obtained using only part of the
available data and may be prone to errors. The results are
summarized in Table IV.

The analysis was performed using the global minimum
method described above. Comparison of the results to those
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Figure 11. Feynman-Y curves obtained using successive and
random sampling (Acq16, det1). The top panel illustrates
the range [10-3,100] s, whereas the middle and bottom panels
zoom-in on the range [10-1,100] and [10-3,10-2] s, respectively.

given in Table II shows that both rand1 and rand3 seems reli-
able, whereas rand0 and rand2 tend to deviate from the values
obtained by successive sampling, especially underestimating
βeff.

IV. CONCLUSIONS

A novel method for direct and simultaneous estimation
of the core kinetic parameters and its absolute reactivity is
presented. The method is based on the well known Feynman-Y
method and is computationally intensive. The method does not
rely on any pre-calculated or pre-measured physical quantity
of the core, rather requires only the detector readings from an
in-pile noise measurement and a set of delayed neutron group
yields and the associated decay constants. Thus, this novel
approach eliminates the need for prior reactivity calibrations,
e.g., rod-drop or stable period analysis.

The method is implemented and used for the analysis
of subcritical configurations of the MAESTRO core in the
MINERVE zero power reactor in order to measure its integral
kinetic parameters,i.e., effective delayed neutron fraction βeff

and the prompt neutron generation time Λ, in addition to the
absolute reactivity ρ. It is found that the results obtained
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ρ [pcm] βeff [pcm] Λ [µs]

Acq16 det1

rand0 -297 698 91.0
rand1 -307 720 93.5
rand2 -293 680 89.0
rand3 -308 725 94.0

Acq16 det2

rand0 -287 722 94.5
rand1 -310 712 96.5
rand2 -289 682 91.5
rand3 -314 726 98.0

Acq19 det1

rand0 -212 680 95.5
rand1 -225 710 100.0
rand2 -220 694 97.5
rand3 -225 710 100.0

Acq19 det2

rand0 -202 724 100.0
rand1 -200 721 98.4
rand2 -200 728 99.5
rand3 -203 730 100.1

Table IV. The kinetic parameters and the core reactivity, ob-
tained using the global minimum method described above,
using different random sampling techniques of the detector
signal.

using this method closely resemble results that were obtained
using a one-d and two-imensional fits on the βeff parameter
where both ρ and Λ were calculated and measured prior to the
analysis [2, 3]. This method is a generalization of the method
proposed by [4] in which only Λ was calculated prior to the
analysis and both βeff and ρ were simultaneously fitted.

This method provides not only the best estimate for ρ, βeff,
and Λ, but also a measure for the uncertainties associated with
the values of these parameters, originating from the correla-
tions between the core reactivity and the kinetic parameters.
The procedure for estimating the associated uncertainties in
the core reactivity and the kinetic parameters has the advan-
tage of accounting for the complex correlations between these
physical quantities. The Uncertainty analysis shows that the
associated uncertainties are reasonably small (1–3% for all
parameters), and that βeff is the most sensitive parameter with
respect to the fit error (in terms of absolute sensitivity).

The effect of count losses due to detector’s dead time was
examined by calculating the Feynman-Y curves for small time
gates (down to 10-5 s), revealing an asymptotic approach to
negative values. This is used to obtain the detectors’ dead
time assuming that detector count losses due to dead time are
the main contribution for this phenomenon. The experimental
measurements were performed in zero power and relatively
low count rates, but the effect of the dead time, although small,
is still detectable,

Finally, a new random sampling technique is proposed, in
various configurations, for obtaining Feynman-Y curve. The
random sampling method has the advantages of producing
less fluctuating curves and eliminating temporal correlations
between successive time gates. Its major disadvantage is its
dependence on CPU intense computations. Nonetheless, this
method is implemented and compared to standard successive

sampling technique. It is shown that Feynman-Y curves ob-
tained by random sampling techniques deviate from the ones
obtained by conventional successive sampling for small time
gates, which might result from the fact that random sampling
eliminate temporal correlation between successive data seg-
ments. However, it may also indicate an insufficient number
of samples used. If that is the case, variance-to-mean values
are obtained using only part of the available data and may be
prone to errors.
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