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Abstract – Recent subcritical benchmark evaluations include measured and experimental (typically 
systematic) uncertainties for system leakage multiplication. This work develops a methodology to also 
include uncertainties associated with the nuclear data which is used to infer leakage multiplication (the 
moments of the distribution of the number of neutrons emitted per fission, Pν).  

 
I. INTRODUCTION 

 
Subcritical multiplication experiments and simulations 

are important for a variety of applications including 
nonproliferation, safeguards, and criticality safety 
monitoring.  In recent years, LANL has designed and 
performed several subcritical benchmark experiments [1-3].  
Part of this work included an effort to understand 
uncertainties associated with subcritical measurements. An 
approach [4-5] to estimate the statistical uncertainties on 
three parameters was developed based upon the Hage-
Cifarelli formalism [6] of the Feynman Variance-to-Mean 
method [7]. The benchmark evaluations extended this to 
include experimental (mostly systematic) uncertainties using 
the same method as in critical experiment evaluations [1-2].  
This work extends the methodology to include uncertainties 
in nuclear data used in inferring leakage multiplication (in 
particular the first and second moment of the Pν 
distribution). 

 
II. BACKGROUND 

 
Prompt neutrons that are produced from fission are born 

immediately after the fission event (on a scale of 10-13 or 10-

14 seconds) and are therefore correlated in time.  Recording 
time information about detected neutron events can be used 
to determine characteristics of the system being measured.  
Many different time-correlated methods have been used 
since the 1950s and are still widely utilized today [8-9]. 

In recent years, LANL performed subcritical 
experiments which included the measured (statistical) 
uncertainties for three benchmark parameters: detector 
singles count rate (R1) i.e. the count rate in the detector 
system; the doubles count rate (R2) i.e. the rate in the 
detector system in which two neutrons from the same 
fission chain are detected; and the leakage multiplication 
(ML) i.e. the number of neutrons escaping a system per 
starter neutron. This methodology has been previously 
documented [4-5]. This work will focus on leakage 
multiplication results. 

The benchmark evaluations themselves estimate the 
experimental (systematic) uncertainties associated with each 
experiment.  This includes all uncertainties associated with 
the experiment (such as nuclear material mass, isotopics, 

detector placement, etc.).  This is achieved via simulations 
using a standard sensitivity/uncertainty approach [10]. 

The benchmark evaluations do not include uncertainties 
in the nuclear data used to infer leakage multiplication. This 
is because nuclear data uncertainties are not included in 
measurement or experimental uncertainties in benchmark 
evaluations (for example, a critical benchmark would never 
have an uncertainty for any particular cross-section). 
Including nuclear data uncertainties is the focus of this 
work. 
 
III. METHODOLOGY 
 
1. Measured and nuclear data uncertainties 

 
Reference 6 provides the Hage-Cifarelli equations 

which relate the singles (R1) and doubles (R2) counting rates 
to leakage multiplication (ML), spontaneous fission rate 
(FS), (α,n) neutron emission rate (Sα), and detector 
efficiency (ε).  
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The terms )1(Sν , )2(Sν , )1(Iν ,and )2(Iν are the first 

and second factorial moments of the Pν distribution where S 
refers to the isotope producing spontaneous fission neutrons 
and I refers to the isotope undergoing induced fission.  
These are defined by: 
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where ν is the number of neutrons emitted per fission with 
probability Pν.  These distributions depend upon the isotope 
that undergoes fission.  For induced fission the probability 
distribution depends upon the energy of the neutrons that 
caused the fission events. 

The singles and doubles counting rates are obtained by 
constructing Feynman histograms; the moments of these 
histograms are used to determine the value and uncertainty 
of R1 and R2.  Previous work document the equations used 
to calculate these parameters [4-5]. 

If one assumes that starter neutrons in a system are 
purely from spontaneous fission, then one can set Sα to zero 
and Eq. 1 becomes: 
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Several approaches can be used to solve the Hage-

Cifarelli equations.  If (α,n) is set to zero, there are three 
unknowns in Eq. 4: the detector efficiency, spontaneous 
fission rate of the system, and leakage multiplication of the 
system.  The triples counting rates could be used to have an 
additional equation to solve for these unknowns. 
Assumptions can also be used to plug in “known” values for 
any of the parameters and solve for the others.  In this 
particular work, values will be plugged in for ε and the 
singles and doubles counting rates will be used to solve for 
the leakage multiplication and spontaneous fission rate. 

There are several possible techniques to determine the 
efficiency of a detector system; this work will utilize 252Cf 
source measurements.  For 252Cf measurements it is 
assumed that Sα = 0 and ML = 1.  This reduces equation 4 to: 

 

  SS FR )1(1 νε=  (5) 
 
One can rearrange and solve for efficiency: 
 

  
)1(

1

SSF
R
ν

ε =  (6) 

Since the terms in this equation are uncorrelated, one simply 
uses a quadratic sum of the derivatives to solve for the 
efficiency uncertainty: 
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 Here, δR1 is a statistical uncertainty and the uncertainty 
in FS is given by a 252Cf source certificate. Previous work 
[4-5] assumed )1(Sνδ was 0 because nuclear data 
uncertainties are not included in measurement or 
experimental uncertainties in benchmark evaluations. The 
value and uncertainty of )1(Sν will be discussed in the 
following sections. 
 Once the efficiency and corresponding uncertainty are 
determined, one can proceed to solve for leakage 
multiplication using Eq. 4. Rearranging and substitution in 
Eq. 4 results in the quadratic equation: 
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 This quadratic equation can be solved to determine 
leakage multiplication: 
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 The uncertainty in leakage multiplication is: 
 

  CovSSM T
L =δ  (10) 

 
with a sensitivity vector of: 
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and a covariance matrix given in Eq. 12 at the bottom of the 
page. Note that previous work did not include uncertainties 
associated with )1(Sν , )2(Sν , )1(Iν , and )2(Iν . 
 The partial derivatives in Eq. 11 are: 
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 The covariance term between the singles and doubles 
counting rates in Eq. 12 is calculated using the moments of 
the Feynman histograms which is described in a previous 
work [4-5].  
 The covariance between the reduced first and second 
factorial moments of the Pν distribution for a single isotope 
can be found by applying Eq. 2-3 to the standard covariance 
equation: 
 

  )2()1()2()3()2()1( 23),( νννννν −+=Cov  (20) 
 
Application of this equation, however, is not useful because 
the moments of the Pν distribution are directly measured 
(not the probabilities). For that reason, this equation cannot 
be used for this work as it would give covariance values that 
are unrealistically high. For this work, it is assumed that the 
covariance associated with all nuclear data terms is equal to 
zero. This simplifies the covariance matrix to that of Eq. 21 
on the following page. In the future this covariance will be 
further investigated. 
  
2. Experimental uncertainties 

 
 Experimental uncertainties are determined in the same 
manner as critical experiment evaluations in the ICSBEP 
handbook. Individual benchmark evaluations estimate the 
experimental uncertainties associated with each 
configuration. These are typically systematic uncertainties. 
They include all uncertainties associated with the 
experiment (such as nuclear material mass, isotopics, 
detector placement, etc.).  This is achieved via simulations 
using a standard sensitivity/uncertainty approach [10]. 
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IV. EXPERIMENT INFORMATION 
 
1. Experiment overview 
  
 This methodology was applied to the subcritical 
benchmark experiment of the BeRP ball (a 4483 g sphere of 
alpha-phase weapons grade plutonium) reflected by 
tungsten [2].  Eight configurations were measured in which 
the BeRP ball was surrounded by tungsten reflectors of 
varying thicknesses: 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 2.75, and 3.0 
inches. Fig. 1 shows the 3.0 inch-thick W configuration with 
the top reflectors removed. 
 

 
Fig. 1. 3.0 inch-thick Tungsten-Reflected Configuration 
with Top Reflectors Removed. 
 
2. Detector systems 
 

The detector setup consisted of two NPOD detectors 
[11], one SNAP detector [12], and a ~140% LN2-cooled 
HPGe detector [13] as seen in Fig. 2.  The two NPOD 
neutron detectors were both located so that the face of the 
detectors were 50 cm from the center of the BeRP ball (the 
NPODs are the detectors on the same cart as the BeRP ball 
and tungsten reflectors).  The SNAP neutron detector 
(detector behind the assembly in the background of Fig. 2) 
was located so that the center of the 3He tube was 100 cm 
from the center of the BeRP ball.  The HPGe gamma 
detector with bismuth shield was setup such that the front 
face of the detector was 150 cm from the center of the BeRP 
ball. Only the NPOD results are used in this work. 
 

 
Fig. 2. 3.0 inch-thick Tungsten-Reflected Configuration. 
 
 The NPOD detectors produce list-mode data which is a 
time list of every neutron interaction event that was 
recorded in the detectors.  The data produced can be 
analyzed using many different methods.   
 For the benchmark evaluation, detailed and simplified 
models were created.  All eight configurations were 
modeled to include the plutonium sphere, cladding, tungsten 
reflectors, aluminum stand (and stand guide), aluminum 
base plate, all 3 carts, all 4 detector systems, and the 
concrete room. Fig 3 shows the MCNP®6 model for the 3.0 
inch-thick W configuration. All simulations were performed 
using MCNP®6 [17] with ENDF/B-VII.1 [18] cross-
sections. Ref. 2 includes detailed information of the 
measured plutonium sphere, reflectors, and detector systems. 
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Fig. 3. 3.0 inch-thick Tungsten-Reflected Configuration 
(two views of NPOD detectors). 
 
3. Nuclear data 
 
 Table 1 shows the first and second factorial moments for 
252Cf, 240Pu, and 239Pu.  The 252Cf and 240Pu data are taken 
directly from published works [16-17].  For 239Pu induced 
fission, a distribution for thermal neutron energies was first 
obtained.  The average number of neutrons emitted, )1(Iν , 
for fission of 239Pu induced by thermal neutrons has been 
reported as 2.876 [16].  This cannot be directly applied to 
the BeRP ball measurements, since the bare BeRP ball is a 
fast system.  An MCNP simulation of the bare BeRP ball 
calculated that the average neutron energy causing fission 
was 1.98 MeV. From ENDF/B VII.1, the average number of 
neutrons emitted in fission of 239Pu induced by neutrons at 2 
MeV is 3.178.  In addition, an F4 tally multiplier was 
performed for fission to weight the ENDF/B VII.1 239Pu 
average number of neutron emitted in fission based on the 
energy of neutrons causing fission.  This resulted in a value 
of 3.182 for the first factorial moment, )1(Iν , shown in 

Table I.  The second moment, )2(Iν , was determined from 
the first moment using a data table which relates the first 
and second moments of the Pν  distribution for 239Pu induced 
fission [18].  The uncertainty values in the moments were 
set so that the relative uncertainty was the same as for 
thermal-induced fission (a method recommended by nuclear 
data experts).  This work assumes for the BeRP ball 
measurements that all spontaneous fission events occur in 
240Pu and all induced fission events occur in 239Pu.  This is a 
valid assumption given the isotopic content in the BeRP ball 
and the properties associated with these isotopes [1-2]. 
 

Table I. Factorial moments of neutron emission from 
fission.   

 
 
4. Experimental uncertainties 
 
 Section 2 of Ref. 2 describes the experimental 
uncertainties in detail. As mentioned, these are obtained by 
applying direct perturbation theory to simulation results. For 
the tungsten evaluation, 46 different parameters were 
included in the experimental uncertainties. For leakage 
multiplication, the parameters that were major contributors 
to the combined uncertainty included: plutonium sphere 
radius, tungsten shell thickness, plutonium assay 
(percentage of Pu inside the BeRP ball), and detector 
deadtime. 
 
V. RESULTS 
 
1. Measured and theoretical uncertainties 
 
 The measured values and uncertainties are given in 
Section 1 of Ref. 2 and are reproduced in Table II.  They are 
calculated by setting the uncertainties of all of the nuclear 
data terms in Eq. 12 to 0.  
 
Table II. Measured leakage multiplication values and 
uncertainties.

 
  
 It has been shown in previous work [19] that the 
measured uncertainty is dominated by the uncertainty of the 
Cf-252 source certificate (used to determine the detector 
efficiency in Eq. 6). An uncertainty which will be referred 
to here as the “theoretical” uncertainty is obtained by setting 
all terms in Eq. 12 to 0 except for the detector efficiency. It 
therefore is the minimum possible measurement uncertainty 
and is the uncertainty due only to the reported uncertainty in 
the Cf-252 source emission. Table II also includes the 
“theoretical” uncertainty. 
 
 
 

3.757 ± 0.010 2.154 ± 0.005 3.182 ± 0.010

5.976 ± 0.009 1.894 ± 0.015 4.098 ± 0.011

Cf-252 Pu-240 Pu-239

)1(Sν

)2(Sν

)1(Iν

)2(Iν

)1(Sν

)2(Sν

Case
Tungsten 
thickness 

(in.)
ML

Measured 
uncertainty

Measured 
uncertainty 

(%)

Theoretical 
uncertainty 

(%)
1 0.0 3.371 0.030 0.90 0.88
2 0.5 4.505 0.041 0.91 0.91
3 1.0 5.770 0.053 0.92 0.92
4 1.5 7.042 0.066 0.93 0.93
5 2.0 8.391 0.079 0.94 0.94
6 2.5 9.833 0.093 0.94 0.94
7 2.75 10.483 0.099 0.94 0.94
8 3.0 11.264 0.107 0.95 0.94



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, 
Jeju, Korea, April 16-20, 2017, on USB (2017) 

2. Experimental uncertainties 
 
 The combined experimental uncertainties (calculated 
using a quadratic sum of the uncertainties of all evaluated 
experimental parameters) is given in Section 2 of Ref. 2 and 
is reproduced in Table III. 
 
Table III. Leakage multiplication combined experimental 
uncertainty. 
Case Tungsten Thickness (in.) Uncertainty % 

1 0.0 0.020 0.6 
2 0.5 0.029 0.6 
3 1.0 0.036 0.6 
4 1.5 0.055 0.8 
5 2.0 0.077 0.9 
6 2.5 0.105 1.1 
7 2.75 0.121 1.2 
8 3.0 0.149 1.3 

 
 
3. Nuclear data uncertainties 
 
 The nuclear data uncertainty was determined by setting 

( ) ( ) 0),( 2111 ==== δεττδδ RRCovRR  in Eq. 12 
and is shown in Table IV. 
 
Table IV. Leakage multiplication nuclear data uncertainty. 
Case Tungsten Thickness (in.) Uncertainty % 

1 0 0.01 0.24 
2 0.5 0.01 0.26 
3 1 0.02 0.27 
4 1.5 0.02 0.27 
5 2 0.02 0.27 
6 2.5 0.03 0.28 
7 2.75 0.03 0.28 
8 3 0.03 0.28 

 
4. Combined uncertainties 
 
 The combined uncertainties are estimated using a 
quadratic sum of the measured, experimental, and nuclear 
data uncertainties. The combined uncertainties are shown in 
Table V. 
 
 
 
 
 
 

Table V. Leakage multiplication combined uncertainty. 
Includes measured, experimental, and nuclear data 
uncertainties. 
Case Tungsten Thickness (in.) Uncertainty % 

1 0.0 0.04 1.11 
2 0.5 0.05 1.14 
3 1.0 0.07 1.15 
4 1.5 0.09 1.25 
5 2.0 0.11 1.34 
6 2.5 0.14 1.45 
7 2.75 0.16 1.52 
8 3.0 0.19 1.65 

 
 Fig. 4 shows the leakage multiplication uncertainty 
results. It can be seen that the uncertainties due to nuclear 
data are fairly small (this is the uncertainties in )1(Sν , 

)2(Sν , )1(Iν ,and )2(Iν only). 
 

 
Fig. 4. Leakage multiplication (ML) uncertainties (in %) for 
the BeRP ball reflected by tungsten. 
 
 Table VI gives the percentage of contribution from each 
source of uncertainty: measurement, experimental, and 
nuclear data.  It can be seen from this table that the 
measurement uncertainties are the largest contributors to the 
total uncertainty when little tungsten reflection is present.  
For the configurations with thick tungsten reflection, 
however, the experimental uncertainties are larger than the 
measurement uncertainties.  It can be seen that the 
percentage of contribution from nuclear data is always fairly 
small (2-5%) and decreases as a function of tungsten 
thickness; it should be noted that this uncertainty actually 
increases as a function of tungsten thickness, but slower 
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than the increase in experimental uncertainties, which 
results in a decrease in the percent contribution. 
 
Table VI. Contribution (in %) of measured, experimental, 
and nuclear data uncertainty 
Tungsten Thickness 

(in.) meas % exp % nuc data % 

0.0 65% 30% 5% 
0.5 64% 31% 5% 
1.0 65% 30% 5% 
1.5 56% 39% 5% 
2.0 49% 47% 4% 
2.5 42% 54% 4% 

2.75 39% 58% 3% 
3.0 33% 64% 3% 

 
 
VI. CONCLUSIONS 
 
 An uncertainty approach for subcritical benchmark 
experiments was expanded to include uncertainties 
associated with nuclear data used to infer leakage 
multiplication (the uncertainties in �̅�𝑣𝑆𝑆(1) , �̅�𝑣𝑆𝑆(2) , �̅�𝑣𝐼𝐼(1) , and 
�̅�𝑣𝐼𝐼(2) only). It was shown that the nuclear data uncertainty 
results in only a small increase in the combined leakage 
multiplication uncertainty (since the contribution is smaller 
than the measured and experimental uncertainties).  
 
VII. FUTURE WORK 
 
 Critical and subcritical benchmark evaluations are used 
for nuclear data validation. In the future, we hope to provide 
guidance on nuclear data evaluations (such as �̅�𝑣 ) using 
recent subcritical benchmark evaluations.  
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