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Abstract – Sjostrand Method is one of the subcriticality measurement techniques for the accelerator driven 

system (ADS). In this study, we investigated the uncertainty quantification of a spatial correction factor, Bell 

factor, due to cross-section data, using the random sampling method. As a result, the uncertainty of the Bell 

factor due to cross-section uncertainty is smaller than that of the subcriticality in dollar units, because the 

sensitivities of the Bell factor to cross-sections are cancelled between the area ratio and subcriticality. 

 

I. INTRODUCTION 

 

Accelerator-driven system (ADS) [1] is a system 

proposed as a nuclear transmutation technology to reduce 

half-life of High-Level Waste (HLW) and TRans Uranium 

(TRU) waste. This system couples a subcritical core with a 

spallation neutron source. To maintain a safe operation in 

ADS, the core should be kept in the subcritical state. 

The area ratio method, or the Sjöstrand method [2] is one 

of the subcriticality measurement techniques to monitor the 

subcritical state of a core. The absolute value of subcriticality 

can be obtained by analyzing the temporal variation of 

neutron density in a core due to the periodic injection of 

neutron pulses. This method is applicable to the ADS if an 

accelerator driven neutron source can produce periodic 

neutron pulses. 

 
Fig. 1. Concept of the Sjöstrand method. 

 

In practice, the subcriticality is measured by the temporal 

variation of neutron count rate, detected by a neutron detector 

in a system. As shown in Fig. 1, the time integral of measured 

neutron counts can be divided into two areas: One is the area 

due to prompt neutrons 𝐴𝑝 , and another is the area due to 

delayed neutrons 𝐴𝑑. The ratio of 𝐴𝑝 to 𝐴𝑑, which is called 

as “the area ratio”, yields a value of the subcriticality in dollar 

units: 

𝐴𝑝

𝐴𝑑

≈
−𝜌

𝛽eff

, (1) 

where 𝜌 is reactivity and the absolute value of negative 

reactivity −𝜌 means subcriticality; 𝛽eff is effective delayed 

neutron fraction. From here, we call the left and right hand 

sides of the equation as the area ratio “𝐴𝑅,” and 

subcriticality in dollar units “−𝜌$”, respectively. 

Equation (1) is approximately derived using the point 

kinetics model. In an actual subcritical core, the measured 

area ratio is not necessarily equal to the exact value of 

subcriticality in dollar units, due to distortion by spatial 

higher-order modes. In addition, the energy dependence of 

the neutron flux and the detector affects the area ratio [3]. 

Hence, in the actual measurement, the value of the area ratio 

is corrected. One of the correction methods is the use of Bell 

and Glasstone correction factor (the Bell factor) [4], 

obtained by a numerical calculation. The Bell factor 𝑓 is 

defined by the ratio of the subcriticality to the area ratio at a 

detector position 𝑟𝑑 as follows: 

𝑓(𝑟𝑑) ≡ −𝜌$ 𝐴𝑅(𝑟𝑑)⁄ . (2) 

By multiplying the measured area ratio by the Bell factor 𝑓, 

effects of the spatial higher-order mode and energy 

dependence in the area ratio can be corrected. 

 

Recently, we have been investigating the uncertainty of 

the Bell factor due to cross-section covariance. Previously, 

we quantified uncertainty of the Bell factor in a thermal core 

system, which is a simplified model of the Kyoto University 

Critical Assembly (KUCA) loaded with highly enriched 

uranium fuel [5]. In this study, we quantified the uncertainty 

in a fast reactor core based on the ADS design with minor 

actinide (MA) fuel proposed by JAEA [6]. 

In the previous uncertainty quantification of the Bell 

factor, the following two-step analyses were carried out: (1) 

Covariance evaluation of few-group homogenized cross-

section through lattice calculations and (2) Uncertainty 

quantification of the Bell factor and subcriticality in core 

analysis. However, in the previous method, there is a 

problem: the larger number of collapsed energy groups 

requires higher calculation cost of covariance evaluation 

using the General Perturbation Theory (GPT) in the lattice 

calculation. This is because one GPT calculation is required 

for each collapsed/homogenized cross-section. In this study, 

to make the calculation scheme more efficient, we propose an 

improved method: Utilization of random sampling method 

[7]. 
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II. THEORY 

 

1. Bell factor 
 

Firstly, let us explain the calculation method of the Bell 

factor. When neutron flux 𝜙(𝑟, 𝑡, 𝐸) at position 𝑟, time 𝑡 

and energy 𝐸 is numerically evaluated by a calculation 

code, neutron count 𝐴 of a detector response is calculated 

[8] as 

𝐴(𝑟𝑑) = ∭ Σ𝑑(𝑟, 𝐸)𝜙(𝑟, 𝑡, 𝐸) 𝑑𝑉 𝑑𝑡 𝑑𝐸, (3) 

where Σ𝑑(𝑟, 𝐸) is the macroscopic detection cross-section, 

𝑟𝑑 is the detector position. The neutron flux must be 

calculated by solving a fixed source problem, where the 

pulsed neutron source is given as the external neutron 

source. Now, let us consider the time integral of the periodic 

flux 𝜙(𝑟, 𝑡, 𝐸) over the period of neutron pulse, 𝜙̃(𝑟, 𝐸). 

This integral value is equivalent to time integral of neutron 

flux due to a single pulse over the infinite time. 

Consequently, the integral flux 𝜙̃(𝑟, 𝐸) can be calculated by 

the time-independent neutron transport equation, and the 

neutron counts 𝐴 can be expressed as follows: 

𝐴(𝑟𝑑) = ∬ Σ𝑑(𝑟, 𝐸)𝜙̃(𝑟, 𝐸) 𝑑𝑉 𝑑𝐸. (4) 

The value of area ratio is calculated by Eq. (5) since 𝐴 =
𝐴𝑝 + 𝐴𝑑. 

𝐴𝑅(𝑟𝑑) =
𝐴𝑝(𝑟𝑑)

𝐴𝑑(𝑟𝑑)
=

𝐴𝑝(𝑟𝑑) 

𝐴(𝑟𝑑) − 𝐴𝑝(𝑟𝑑)  
 

=
∬ Σ𝑑(𝑟, 𝐸)𝜙̃𝑝(𝑟, 𝐸) 𝑑𝑉 𝑑𝐸 

∬ Σ𝑑(𝑟, 𝐸){𝜙̃(𝑟, 𝐸) − 𝜙̃𝑝(𝑟, 𝐸)} 𝑑𝑉 𝑑𝐸 
, 

(5) 

where 𝜙̃𝑝(𝑟, 𝐸)  is integral flux calculated by considering 

contribution only from prompt neutrons. 

 

2. Effective delayed neutron fraction 
 

In order to calculate the subcriticality in dollar units, 

additional calculations of the effective neutron multiplication 

factor 𝑘eff and the effective delayed neutron fraction 𝛽eff are 

necessary. These values can be obtained from the 𝑘eff -

eigenvalue calculation, not from a fixed source calculation. If 

the total number of delayed neutron precursor groups is six, 

𝛽eff is calculated using the fundamental mode of forward and 

adjoint fluxes 𝜑(𝑟, 𝐸) and 𝜑†(𝑟, 𝐸) as follows [8]: 

𝛽eff = ∑
∫ 𝐼𝑑,𝑖

† (𝑟) 𝐹𝑑,𝑖(𝑟) 𝑑𝑉

∫ 𝐼†(𝑟) 𝐹(𝑟) 𝑑𝑉

6

𝑖=1

, (6) 

where variables 𝐹 , 𝐹𝑑,𝑖 , 𝐼†  and 𝐼𝑑,𝑖
†

 are respectively defined 

as: 

𝐹(𝑟) = ∫ 𝜈Σ𝑓(𝑟, 𝐸) 𝜑(𝑟, 𝐸) 𝑑𝐸, (7) 

𝐹𝑑,𝑖(𝑟) = ∫ 𝜈𝑑,𝑖Σ𝑓(𝑟, 𝐸) 𝜑(𝑟, 𝐸) 𝑑𝐸, (8) 

𝐼†(𝑟) = ∫ 𝜒(𝑟, 𝐸) 𝜑†(𝑟, 𝐸) 𝑑𝐸, (9) 

𝐼𝑑,𝑖
† (𝑟) = ∫ 𝜒𝑑,𝑖(𝑟, 𝐸) 𝜑†(𝑟, 𝐸) 𝑑𝐸. (10) 

 

3. Uncertainty quantification using random sampling  
 

In order to easily treat larger number of energy groups 

in core analysis, the random sampling method is used in the 

present uncertainty quantification. Figure 2 shows the whole 

uncertainty quantification scheme. 

In a conventional two-step (lattice-core) core analysis, 

few-group homogenized cross-sections are firstly evaluated 

by energy collapsing and spatial homogenization in the 

lattice calculation. After that, the core calculation using the 

few-group homogenized cross-sections is carried out. 

In the previous study, the uncertainty quantification 

scheme included (1) covariance evaluation among few-

group homogenized cross-section by the GPT in the lattice 

calculation and (2) uncertainty quantification of the Bell 

factor and subcriticality in core analysis. In step (1), a GPT 

calculation is required for each few-group homogenized 

cross-section. This requires large calculation cost when 

larger number of collapsed energy groups is taken into 

account to accurately analyze core calculation.  

In this study, to solve this problem, the covariance 

evaluation for few-group homogenized cross-sections is not 

carried out. Instead, the random sampling of microscopic 

cross-sections for the lattice calculation is performed 

followed by the two-step core analysis.  

In the core calculation, evaluation of the target 

parameters, such as the Bell factor and subcriticality, is 

performed using each randomly perturbed few-group 

homogenized cross-section sample.  

Finally, the uncertainty of target parameters is 

estimated from the statistical processing of the target 

parameter samples obtained by core calculations using 

randomly perturbed cross-sections.  

 
Fig. 2. Calculation scheme for uncertainty analysis. 
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In the new method using the random sampling method, 

the calculation cost for uncertainty quantification does not 

depend on the number of collapsed energy groups. 

Therefore, the uncertainty quantification can be performed 

with a certain number of samples regardless of the number 

of collapsed energy groups. It should be noted that accuracy 

of estimated uncertainty depends on the total number of 

samples 𝑁 used in the random sampling method. For a 

parameter 𝑋 of which probability distribution is well 

approximated by the normal distribution, the relative 

statistical error 𝑆𝜎𝑋 of the evaluated standard deviation 𝜎𝑋 is 

estimated by: 

𝑆𝜎𝑋

𝜎𝑋

≈
1

√2(𝑁 − 1)
 . (11) 

For example, if 𝑁 = 1000, the relative statistical error will 

be around 2 %. 

 

4. Sensitivity Analysis  
 

To verify the results of random sampling, and to analyze 

the cause of uncertainty, we performed the sensitivity 

analysis using direct method in the core calculation. The 

sensitivity analysis is based on a simple forward difference 

quotient as follows: 

Σ𝑖

𝑋

𝜕𝑋

𝜕Σ𝑖

≈
Σ𝑖

𝑋(Σ𝑖)

𝑋(Σ𝑖 + ΔΣ𝑖) − 𝑋(Σ𝑖)

ΔΣ𝑖

, (12) 

where the left-hand side of the equation is the relative 

sensitivity of a neutronics parameter 𝑋 to a nuclear data Σ𝑖  in 

the core calculation, and ΔΣ𝑖 is the finite difference of Σ𝑖 . 

Using the relative sensitivity coefficients obtained by 

Eq. (12), the variance 𝜎𝑋
2 of the parameter 𝑋 is estimated by 

the “sandwich formula”: 

(
𝜎𝑋

𝑋
)

2

= ∑ ∑ {(
Σ𝑖

𝑋

𝜕𝑋

𝜕Σ𝑖

)
cov(Σ𝑖 , Σ𝑗)

Σ𝑖 ∙ Σ𝑗

(
Σ𝑗

𝑋

𝜕𝑋

𝜕Σ𝑗

)}

𝑗𝑖

, (13) 

where cov(Σ𝑖 , Σ𝑗) means the covariance between two 

nuclear data Σ𝑖  and Σ𝑗. To quantify uncertainty in the core 

calculation using this method, the covariance of few-group 

homogenized cross-sections must be evaluated from the 

samples of them. 

 

III. CALCULATION GEOMETRY AND CONDITION 

 

1. Target System 
 

In this study, uncertainty quantification is carried out 

for one-dimensional cylinder geometry, in order to 

investigate magnitude and spatial distribution of uncertainty 

in a subcriticality measurement of MA loaded ADS. This 

system is a simplified model based on a cylindrical model of 

an ADS design proposed by JAEA [6]. This system is a fast 

reactor system loaded with a MA fuel and a Lead-Bismuth 

Eutectic (LBE) spallation target in the center of the core. 

 

2. Lattice Calculation 
 

In the evaluation of few-group homogenized cross-

section and covariance using the random sampling method, 

SCALE 6.2.1 system with the V7-238 cross-section library 

and the 56groupcov7.1 covariance library [9] are used. The 

random sampling of cross-sections is performed by SCALE 

6.2.1/Sampler module. The number of sample is 1000, which 

makes about 2 % of statistical error on the evaluated standard 

deviation. 

The spatial homogenization and energy collapsing 

(“lattice calculation”) of cross-section is carried out 

considering the whole core of the two-dimensional cylinder 

ADS design. By the neutron transport calculation of SCALE 

6.2.1/NEWT module, the cross-sections are collapsed into 7 

groups and homogenized into 4 regions, i.e., LBE (LBE 

Target + LBE Buffer), Core (MA core + Gas plenum), 

Reflector and Shield. However, the SCALE 6.2.1/NEWT 

transport calculation code cannot directly handle cylindrical 

r-z geometry. Therefore, a coordinate transformation to 

Cartesian geometry is performed conserving the average 

chord length in each region. The transformed geometry for 

homogenization and collapsing calculation is shown in Fig. 

3.  

 
Fig. 3. Calculation geometry for homogenization and 

collapsing calculation. 

 

Here, the left boundary condition is reflective, and the other 

boundary conditions are vacuum. To save calculation time, 

mesh division for this calculation is coarse, i.e. 2 × 2 for the 

whole system. This coarse mesh calculation produces a 

few % of systematic error in the 7 group homogenized cross-
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sections relative to the fine mesh calculation of 5 cm × 5 cm 

width. But, because the neutron flux is converged, it is 

expected that this discretization error does not have a large 

influence on the estimated uncertainty using the random 

sampling method. The material composition is set as same as 

the original ADS system. The group structure for energy 

collapsing is shown in Table I. 

 

Table I. 7-group energy structure 

Group Upper energy Corresponding 238 groups 

1 20 MeV 1-17 

2 1.36 MeV 18-38 

3 400 keV 39-45 

4 85.0 keV 46-57 

5 9.50 keV 58-71 

6 683 eV 72-85 

7 100 eV 86-238 

 0.0001 eV  

 

Using the NEWT module, 1000 samples of perturbed cross-

sections obtained from the Sampler module are homogenized 

and collapsed, and each 7 group homogenized cross-section 

is used in the successive core calculation for uncertainty 

quantification by random sampling method. In addition, 

using these 1000 samples of 7 group homogenized cross-

sections, the standard deviation and covariance of 7 group 

homogenized cross-sections are evaluated for the uncertainty 

quantification by sensitivity analysis. 

 

3. Core Calculation 
 

The uncertainty quantification of target neutronics 

characteristics, such as the subcriticality and the Bell factor, 

is carried out in the “core calculation”. The core geometry 

for the core calculation is approximated by a one-

dimensional cylindrical geometry. This geometry is a 

simplified model on the basis of ADS design by JAEA. For 

this simplification, the r-z model of ADS design is 

transformed into 1D cylinder to conserve the average chord 

length. In addition, the volume of MA core region is 

expanded to become 𝑘eff = 0.97, which is the design target 

of ADS in JAEA. The obtained 1D core geometry is shown 

in Fig. 4.  

 
Fig. 4. Calculation geometry for core calculation. 

 

A neutron source is located at the edge mesh of LBE 

Target region. For simplicity, the intensity of the neutron 

source is 1.0 neutrons/cm3/sec for 1st energy group, and zero 

for other groups. Here, the absolute value of neutron source 

does not affect the value of area ratio, but the relative energy 

spectrum is important to calculate the area ratio.  

The detector in the calculation is modeled as a point 3He 

detector. The absolute value of Σ𝑑 and that of flux does not 

affect the ratio of neutron count, but the relative energy 

dependence of Σ𝑑  is also meaningful. For simplicity, the 7 

group cross-section of Σ𝑑   is obtained by collapsing the 

absorption cross-section of 3He mixture located at the edge of 

B4C shielding as shown in Fig. 3. 

In this system, (1) the subcriticality in dollar units is 

evaluated by 𝑘eff-eigenvalue calculations without external 

neutron source, and the spatial dependencies of (2) the area 

ratio are evaluated by fixed source calculations with various 

neutron detector positions while the location of neutron 

source is fixed. The spatial dependencies of (3) the Bell 

factor is evaluated using the result of (1) and (2). In these 

calculations, we used an in-house one-dimensional diffusion 

code to evaluate the subcriticality, the area ratio and the Bell 

factor. This code solves the conventional finite-differential 

equations by Eigen library [10] for C++. 

The uncertainty of (1) the subcriticality in dollar units, 

(2) the area ratio and (3) the Bell factor are evaluated in two 

methods: (a) the random sampling using 1000 samples of 

the 7 group homogenized cross-sections, and (b) the 

sensitivity analysis using the unperturbed data and the 

covariance of 7 group homogenized cross-sections. In the 

case of (b) the sensitivity analysis, the perturbation size for 

the finite difference ΔΣ𝑖  is 1 % of the cross-section Σ𝑖 . The 

uncertainty of (3) the Bell factor is directly evaluated using 

the samples of the Bell factor or Eqs. (12) and (13), not by 

the propagation of the uncertainty of (1) the subcriticality in 

dollar units and (2) the area ratio. 

 

IV. RESULTS 

 

1. The spatial distribution of Bell factor and uncertainty 
 

As a result of uncertainty quantification using random 

sampling method, the effective neutron multiplication factor 

is evaluated as 𝑘eff  =  0.970 ± 0.011 (1.1 %), the effective 

delayed neutron fraction as 𝛽eff  =  0.00188 ± 0.00032 

(17 %) , and the subcriticality as −𝜌$  = 17.0 ± 7.2 [$] 
(43 %), respectively. Here, the uncertainty is one sigma of 

standard deviation obtained by the random sampling, and the 

number in parenthesis means the relative standard deviation. 

Figure 5 shows the value of Bell factor and its relative 

standard deviation at each detector position due to cross-

section uncertainty evaluated by random sampling method. 
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Fig. 5. The Bell factor and its relative standard deviation. 

 

According to Fig. 5, the value of Bell factor exceeds unity 

when the detector is located in the reflector or the shielding 

region. The Bell factor is 𝑓 = 1.064 ± 0.022 (2.1%) at the 

end of shielding where the uncertainty is the largest in the 

reflector and shielding region. The Bell factor is 𝑓 =
0.897 ± 0.032 (3.6%) at the center of the core region where 

the uncertainty is the largest in all positions. The results 

shows the uncertainty of the Bell factor falls in the range 

below 4 %, which is smaller than that of subcriticality in 

dollar units, for all detector positions. Uncertainty of the Bell 

factor becomes smaller when the value of the Bell factor is 

close to unity, i.e., the difference between the area ratio and 

the subcriticality in dollar units is small.  

 

2. Sensitivity and Correlation Analysis 
 

First, Fig. 6 shows the results of sensitivity analysis for 

the subcriticality in dollar units to 7 group homogenized 

cross-sections of core region. Only the results of core region 

are shown in this paper, because the sensitivity coefficients 

to cross-sections of LBE, reflector and absorber regions are 

much smaller than that of the core region. 

 

 
Fig. 6. Relative sensitivity of −𝜌$ to 7g cross-sections of 

the core region 

 

In Fig. 6, the horizontal axis shows the cross-sections: Σa is 

absorption, 𝜈Σ𝑓  is production, 𝜒  is fission spectrum,  𝐷  is 

diffusion coefficient and  Σ𝑠  is scattering from 1st to 7th 

energy group, and 𝛽 is delayed neutron fraction from 1st to 6th 

group. Similarly, Fig. 7 shows the relative sensitivity of the 

area ratio of the detector position at 56 cm. In addition, Fig. 

8 shows the relative sensitivity of the area ratio at 46 cm, 

where the Bell factor is the closest to unity and the 

uncertainty of the Bell factor is the smallest in this calculation. 

 

 
Fig. 7. Relative sensitivity of 𝐴𝑅 at 56 cm (𝑓 =

1.0171 ± 0.0058) to 7g cross-sections of the core region 

 

 
Fig. 8. Relative sensitivity of 𝐴𝑅 at 46 cm (𝑓 =

0.99974 ± 0.00030) to 7g cross-sections of the core 

region 

 

From Figs 6-8, the relative sensitivities of the area ratio have 

similar values to that of the subcriticality in dollar units −𝜌$. 

Next, the results of the sensitivity analysis of Bell factor 

at 56 and 46 cm are shown in Figs. 9 and 10, respectively. 

 

 
Fig. 9. Relative sensitivity of Bell factor at 56 cm 

(𝑓 = 1.0171 ± 0.0058) to 7g cross-sections of the core 

region 

 

0%

1%

2%

3%

4%

0.8

0.9

1.0

1.1

1.2

0 50 100

R
elative D

eviatio
n
σ

f /f
(%

)

B
el

l F
ac

to
r 
f

Detector position rd (cm)

Bell F Relative Std.

LBE
Target

MA
Core

SUS
Reflector

B4C
Shield

-14

-9

-4

1

6

Σa νΣf χ D Σs β

R
e

la
ti

ve
 S

e
n

si
ti

vi
ty

 
C

o
ef

fi
ci

e
n

t 
o

f 
-ρ

/β
ef

f

1 ~ 7 1~6

1→
1 ~ 7

2→
1 ~ 7

-14

-9

-4

1

6

Σa νΣf χ D Σs β

R
e

la
ti

ve
 S

e
n

si
ti

vi
ty

 
C

o
ef

fi
ci

e
n

t 
o

f 
A
p
/A

d

1 ~ 7 1~6

1→
1 ~ 7

2→
1 ~ 7

-14

-9

-4

1

6

Σa νΣf χ D Σs β

R
e

la
ti

ve
 S

e
n

si
ti

vi
ty

 
C

o
ef

fi
ci

e
n

t 
o

f 
A
p
/A

d

1 ~ 7 1~6

1→
1 ~ 7

2→
1 ~ 7

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

Σa νΣf χ D Σs β

R
e

la
ti

ve
 S

e
n

si
ti

vi
ty

 
C

o
ef

fi
ci

e
n

t 
o

f 
B

e
ll 

Fa
ct

o
r 
f

1 ~ 7 1~6

1→
1 ~ 7

2→
1 ~ 7



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, 

Jeju, Korea, April 16-20, 2017, on USB (2017) 

 
Fig. 10. Relative sensitivity of Bell factor at 46 cm  

(𝑓 = 0.99974 ± 0.00030) to 7g cross-sections of the 

core region 

 

From Figs.9 and 10, the relative sensitivity of the Bell factor 

is significantly different between these two positions: The 

relative sensitivity at 46 cm, where the Bell factor is almost 

unity, is much smaller than that at 56 cm. In addition, from 

the results of sensitivity analysis for other positions, the 

closer to unity the Bell factor is, the smaller the relative 

sensitivity of Bell factor becomes.  

Because the Bell factor 𝑓 is defined as the ratio of the 

subcriticality and the area ratio by Eq. (2), the sensitivity of 

Bell factor to a nuclear data Σ𝑖  can be obtained using the 

sensitivity of those values by following equation: 

Σ𝑖

𝑓

𝜕𝑓

𝜕Σ𝑖

=
Σ𝑖

−𝜌$

𝜕(−𝜌$)

𝜕Σ𝑖

−
Σ𝑖

𝐴𝑅

𝜕𝐴𝑅

𝜕Σ𝑖

. (14) 

This equation shows the relative sensitivity of Bell factor is 

given by the difference between that of the subcriticality and 

that of the area ratio. The sensitivity of Bell factor 

calculated by Eq. (14) using that of the area ratio and the 

subcriticality in Figs 6-8 is consistent with the results of Eq. 

(12) in Figs 9-10.  

When the detector is set at a position where the area 

ratio is just equal to the subcriticality in dollar units, i.e. Bell 

factor 𝑓 is unity. For such a detector position, Eq. (1) is 

satisfied, and by differentiating Eq. (1), the sensitivity of 

−𝜌$ is the same as that of 𝐴𝑅: 

𝜕(−𝜌$)

𝜕Σ𝑖

=
𝜕𝐴𝑅

𝜕Σ𝑖

. (15) 

In this case, by substituting Eq. (1) and Eq. (15) into Eq. 

(14), the relative sensitivity of the Bell factor approaches 

zero. In addition, as mentioned before in Figs. 6-7, the 

sensitivity of −𝜌$is almost the same as that of 𝐴𝑅 for other 

detector positions; thus the relative sensitivity of the Bell 

factor on Eq. (14) is small as shown in Fig. 9. Based on the 

sandwich formula, Eq. (13), this fact resulted in the small 

uncertainty of Bell factor as shown in Fig. 5. 

 

 

 

 

V. CONCLUSIONS 

 

We investigated the uncertainty quantification of the 

Bell factor, which is spatial correction factor in a 

subcriticality measurement using the Sjöstrand method, due 

to the uncertainty in cross-section data.  

In this study, the uncertainty of the Bell factor is 

evaluated by the random sampling method for a one-

dimensional cylinder system of a simplified ADS using 7 

group diffusion calculations. The result shows the uncertainty 

of the Bell factor due to cross-section uncertainty is smaller 

than that of the subcriticality in dollar units. In addition, the 

uncertainty of the Bell factor tends to become smaller when 

the area ratio and subcriticality in dollar units becomes closer.  

The sensitivity analysis of the Bell factor and related 

parameters to 7 group cross-sections is also performed. As a 

result, the sensitivity coefficients of the area ratio are close to 

those of the subcriticality in dollar units. In addition, the 

closer the area ratio to the subcriticality in dollar units is, the 

smaller the difference between the sensitivity coefficients of 

them are. Therefore, the sensitivity coefficient of the Bell 

factor and thus its uncertainty are cancelled out.  
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