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Abstract - The multipoint approach proves to be an efficient method for the neutron kinetics of nuclear reactors
and accelerator-drive systems. In the present work some features of multipoint kinetics are discussed with
reference to standard discretization schemes, both in space and in energy. In the second part of the paper a
physically-base approach to construct a multipoint model is presented. It is shown how the parameters of the
model can be derived through a Monte Carlo simulation evaluating transfer probabilities and characteristic
times. Some results are obtained for an idealized fast system to evidence the properties of the multipoint
parameters. At last, a standard point kinetic model is reconstructed from the multipoint equations, showing the
relationship between the classic integral parameters of a multiplying systems and the multipoint parameters.
This allows to consider a multipoint model for inverse applications aiming at the experimental determination
of integral parameters.

I. INTRODUCTION

In the study of nuclear reactors it is of great importance
to accurately simulate the spatial and spectral effects during
transient situations. In many applications only the very sim-
ple point kinetic model is used. This model is particularly
advantageous when dealing with inverse problems, e.g. for the
interpretation of kinetic experiments to reconstruct integral
parameters such as reactivity or effective delayed neutron frac-
tions, from flux measurements [1]. However, point kinetics is
not suitable at all for applications to large reactors or uncou-
pled systems characterized by large spatial distortions during
transients. It is also well-known that point-kinetic results
may be on the unsafety side, as the values of the power may
turn out to be lower than the exact ones. A full space-energy
approach may be computationally too intensive in many appli-
cations. Alternatively, the multipoint approach can prove to
yield adequate results in many applications with an acceptable
computational effort.

The idea of the multipoint method is based on subdividing
the reactor phase space (geometrical domain and/or energy
range) into separated subdomains and assuming that the char-
acteristic function (amplitude) for each subdomain evolves
according to a point-like equation, including coupling terms
with the other subdomains, due to neutron streaming in space
and transfer in energy through collisions. Therefore a sys-
tem of coupled first-order ordinary differential equations is
obtained.

The multipoint model was proposed by Avery in the the-
ory of coupled reactors [2, 3]. Later several formulations were
proposed in different frameworks [4, 5, 6, 7].

In this paper some basic aspects of the multipoint formu-
lation are considered, starting from simple physical config-
urations. The attention is focused separately on spatial and
spectral effects. For spatial problem the criticality problem
is analysed, giving some attention also to the full eigenvalue
spectrum of the multipoint equations.

One attractive feature of the multipoint method is the pos-
sibility of its application to inverse problems for the interpreta-

tion of kinetic experiments, in particular for the measurement
of integral parameters in source-driven experiments carried
out in subritical assemblies for the assessment of accelerator-
driven technology. In many situations point kinetics has
proved to yield unsatisfactory results [8]. In this work the
point kinetic model is reformulated starting from the multi-
point one, in order to relate the standard integral parameters
of point kinetics to the multipoint parameters.

A physical-based general approach for the formulation
of the multipoint equations is thoroughly discussed. The pa-
rameters are related to probabilities associated to the transport
and collision phenomena within the system. Such parameters
are evaluated using a Monte Carlo approach: results for a
challenging fast system configuration are presented.

The general features of the method are described in the fol-
lowing without directly introducing the source term. However,
the contribution of an external source can be readily included.
Therefore, the method is applicable for the description and the
simulation of an accelerator-driven system.

II. SPACE MULTIPOINT THEORY

The multipoint method can be rigorously derived through
a standard separation-projection procedure, generalizing the
Henry’s process to derive the point kinetic equations [7]. We
are using here formulations based on a direct approach. If one
focuses on space aspects only, a multipoint set of equations
can be obtained by direct discretization of the spatial variable
by means of a standard discretization scheme. Of course, this
is not what is done in effective multipoint models, because
standard discretization schemes require to set the spatial mesh
to values that can effectively account for the physical process
of neutron motion. Therefore, due to the values of cross
sections in realistic systems, the number of points may turn
out to be too large and far from matching the philosophy
of the multipoint approach. This is the reason why more
sophisticated procedures must be used, such as the already
mentioned separation-projection technique or the physical here
proposed. However, the use of spatially discretized equations
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may prove useful to understand the numerical features of the
multipoint framework.

1. The space discretized model

Let us refer to a simple one-group problem, let us also
define a (n+1)-point spatial grid and a vector φ containing the
values of the scalar fluxes at each point of the grid. The dis-
cretized balance equations in the absence of a neutron source
take the form:

1
v

d
dt
φ(t) = F̂φ(t) − L̂φ, (1)

where the loss matrix L̂ and the fission matrix F̂ are related
to the material properties of the domain, the physical model
adopted and the discretization scheme. For instance, in a
simple homogeneous one-dimensional plane medium of width
l, with a uniform grid characterized by the mesh length h
and using the diffusion model while disregarding delayed
emissions, the loss matrix L̂ is tridiagonal, with lii = 2 D

h2 + Σa

and li,i+1 = li,i−1 = − D
h2 , while F̂ is a diagonal matrix whose

elements are simply equal to νΣ f . In this case the matrices
have dimensions n-1 because boundary conditions impose
φ0 = φn = 0. A criticality theory may be developed from the
above model, by studying the steady-state version of Eq. (1)
and introducing a coefficient 1/k in front of the fission term,
thus moving to an eigenvalue problem. Matrix L̂ is a very
peculiar one, that is a tridiagonal Toeplitz matrix, characterized
by constant elements on each of the descending diagonals, for
which an analytical formula for the eigenvalues is available [9],
leading, with some algebraic manipulations, to an expression
for the spectrum of the k eigenvalues

km =
νΣ f

2Dn2

l2

(
1 + cos

(mπ
n

))
+ Σa

, m = 1, . . . , n − 1 (2)

for an n interval mesh. In the limit n→ ∞, using

lim
n→∞

n2
[
1 + cos

(
(n − q)π

n

)]
=
π2q2

2
,

we obtain the spectrum for the k eigenvalues as

kq =
νΣ f

D
π2q2

l2
+ Σa

, q = 1, . . . ,∞, (3)

where we use q = n−m, so that now k1, the highest eigenvalue
can be truly interpreted as k. In Fig. 1 we show the spectrum
of the eigenvalues as a function of the number of intervals in
the mesh: we represent all the eigenvalues for a given mesh
dimension with the same color; it is interesting to observe that
all eigenvalues are real and that the mth eigenvalue, whose first
appearance is when the number of intervals is equal to m + 1,
is really an approximation to the mth k eigenvalue, to which it
converges monotonically as the number of meshes increases.

For a non-homogeneous medium the same formulation
of the problem applies as well, provided one replaces the

5 10 15 20 25
n-1

k1

k2

k3

k4
k5
⋮

Fig. 1. The k eigenvalue spectrum for a one-dimensional
homogeneous slab as a function of the number of points in the
spatial mesh.

constant values D,Σa, νΣ f with the corresponding values eval-
uated at the mesh points D j = D

(
x j

)
,Σa , j = Σa

(
x j

)
, (νΣ f ) j =

νΣ f

(
x j

)
; in this case, however, the Toeplitz nature of the tridi-

agonal matrix L̂ − 1
k F̂ is lost and the analytical form for the

spectrum is no more available, but a numerical evaluation of
the required determinant remains feasible.

2. A physical approach to multipoint model

A general approach is possible, grounded on a physical
basis: we consider a reactor as subdivided into a set of non
overlapping geometrical parts, whose union covers the full
domain, and we try to build a proper balance model. Let us
start for simplicity with a 2-zone system, and ask how the
number of neutrons born in each zone - which at time t are
everywhere in the system - can vary over time. The balance
equations in the absence of an external source, that can be
written almost immediately, read:

dN1

dt
= ν (a11N1 + a12N2) −C1N1

dN2

dt
= ν (a21N1 + a22N2) −C2N2 .

(4)

A neutron is generated - in this scheme - only via a fission
process. Hence, for instance, a fission can happen in zone
1 generating ν new neutrons, but loosing the original one:
this event can be induced by a neutron born in zone 1 with
a probability per unit time a11 or by a neutron originated in
zone 2 with a probability per unit time a12; the same processes
can happen in zone 2, but there is also the possibility that a
neutron in zone 1(2) is absorbed (or leak out of the system)
with probabilities per unit time C1(2).

In order to be more explicit, for instance, the quantity
a12N2 is the contribution of neutrons generated in zone 2
that produces a fission zone 1 at time t and thence are in
zone 1 at time t itself. To write down these equations we
considered solely two physical processes to happen, in both
zones: the production of ν neutrons by a fission process and
the absorption of neutrons in each of the reactor zones; this
approach implies that the material properties of the system
are assumed to be stationary. If, as in many realistic cases,
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the material properties are changed, either because of control
operations, or accidental events or feedback phenomena, the
parameters must be updated during the transient. If this is the
case, an approximation is implicit, to neglect the effect of the
time delay needed to transport neutrons from the zone where it
was generated by a fission process to the zone where finally it
will be absorbed, giving origin or not to a new fission process.
However the time scale associated to the neutron transport is
much faster than any other physical phenomena involved in
the changes of the material properties of the system.

Naturally the quantities Ni are by themselves not directly
measurable. On the other hand the quantity a11N1 + a12N2
being the total fission rate in zone is, in principle, an experi-
mental observable.

Within this scheme a consistency requirement is implicitly
assumed: namely, the subdivision of the system in (spatial)
zones must be performed in such a way that each one of them
contains fissile materials. This is consistent with the assumed
philosophy underlying lumped models [2]. It must be observed
that the choice of the subdivision of the spatial domain is
not unique: the model obtained must be anyway assessed
on physical grounds and validated to assure the quality of
the results. For instance, a quite natural suggestion could be
to "equalize" the values of the total content of the neutron
importance - that is the integral over a zone of the product of
the importance and the neutron flux - in each of the zones.

The coefficients just introduced define coupling matrices
for the system. This approach recalls, in many aspects, the
collision probability method used in integral neutron transport
[10]. Equations (4) can be written in matrix form - so to be
easily generalizable to a M zone reactor - as:

d
dt

N(t) = νÂN(t) − ĈN(t), (5)

where Ĉ is a diagonal matrix with elements
(
Ĉ
)

ii
= Ci and ob-

viously
(
Â
)

i j
= ai j. An eigenvalue equation can be generated

by considering an artificial time independent system, where
only ν/k neutrons are generated by fission. The multiplication
eigenvalue k is then determined by:

det
[
ν

k
Â − Ĉ

]
= 0. (6)

Again we have M values for k, but in principle they can be
real or even complex: however we know by the previous
example that in the large M limit they must become real,
approximating the true spectrum of k values, at least when
adopting the diffusion model.

The inclusion of delayed neutrons does not present partic-
ular difficulties:

dN
dt

= ν(1 − β)Â · N − Ĉ · N +

Nd∑
α=1

λαC
(α)

dC(α)

dt
= βανÂ · N − λαC(α) ,

(7)

with the same meaning as before for the matrices Â, Ĉ; here
β =

∑Nd
α βα; we indicate with C(k) the concentrations of pre-

cursors for the kth family of delayed neutrons in all the zones
of the reactor, with decay constant λα, respectively.

This heuristic approach to space multipoint kinetics gen-
erates a richer physics than the naïve one obtained by space
discretization, because, in general, all zones are coupled, not
only near neighbours.

In a realistic situation, the evaluation of the coupling
matrices can be carried out effectively by the Monte Carlo
method. This approach is particularly viable in the case the
properties of the system are stationary, such as for subcrit-
ical experiments, where the transient is caused by neutron
source variations. In the case of transients induced by material
changes, the matrices should be evaluated along the evolution
to account for such changes, as previously pointed out.

III. SOME RESULTS

In this Section we present the values of the multipoint
matrices obtained by Monte Carlo evaluation of the required
rates. The evaluations have been carried out using the code
MCNP6 [11]; as a first step we estimated the probabilities that
neutrons born uniformly in zone j ultimately fission in zone i
or that neutrons from zone j are absorbed (or leak) anywhere in
the system in steady state conditions. The source neutrons are
assumed spatially uniformly distributed, which of course is an
approximation that looks reasonable in a fast reactor system
as the one under consideration. As a result we obtain the
probability matrix {pi j} and the probability absorption vector
{c j}.

Fig. 2. Geometry used for the test case. Fuel regions are shown
in red and yellow, lead ones in blue, see text for details. This
plot was obtained by the model in MCNP6 and the numbers
identify different MCNP6 cells. For the present approach we
identify zone 1 with the union of cells 101 and 201, zone 2
with the union of cells 102 and 202, and so on. The problem
is bi-dimensional, having used reflecting surfaces as bounds
along the z direction.

As a second step the prompt neutron generation times
associated to neutrons generated in zone j, Λ j, are estimated
as the average time value from the birth of a neutron to its
death. This was done by tallying the times at which each
neutron born in zone j is absorbed anywhere in the system
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and evaluating the mean. As a consequence we set

ai j =
pi j

Λ j
, C j =

c j

Λ j
, (8)

which are the multipoint parameters needed in model (7).
A comment concerning the Monte Carlo simulations is

here in order. Unlike what has to be done for normal simula-
tions, here every neutron history is terminated whenever the
neutron either is absorbed or leaks out of the system, with-
out the need to simulate the secondary neutrons emitted by
fission. In fact, recalling the previous definitions of the multi-
point parameters, only the information on the birth and on the
death of the neutron is needed. As a consequence, the present
method can be applied to any type of system, including even
supercritical reactors. Furthermore, the computational burden
is reduced with respect to standard simulations and it does not
depend on the value of the multiplication factor.

We used a physically challenging non symmetric hetero-
geneous geometry, shown in Figure 2, to better investigate the
implications of zone subdivisions. The system is a solid lead
parallelepiped of 150×100×100 cm3 volume with cylindrical
fuel insertions of 10 cm radius. The problem is made effec-
tively bi-dimensional by using reflective bounding surfaces in
the z direction.

We used lead in the blue areas, while fuel is a mixture of
oxygen and uranium. The 235U atomic fraction was 25% in
cells 103 and 106, while in the other four was chosen so to fix
ke f f , ranging from ∼ 22.6% for ke f f = 0.94 to ∼ 26.6% for
ke f f = 1.

ke f f ν k2 k3 k4 k5 k6

0.99 2.61811 0.779 0.743 0.731 0.667 0.561
0.98 2.61847 0.778 0.735 0.731 0.659 0.555
0.97 2.61871 0.778 0.732 0.726 0.652 0.548
0.96 2.61891 0.777 0.732 0.718 0.644 0.542
0.95 2.61914 0.777 0.732 0.710 0.637 0.535
0.94 2.61934 0.777 0.732 0.702 0.630 0.529

TABLE IV. Higher order k-eigenvalues. ν values have been
obtained by fixing the highest multiplication eigenvalue to the
ke f f value obtained from simulation.

ke f f = 0.99 ke f f = 0.94
zone (z) Λz [µs] Λz,leak [µs] Λz [µs] Λz,leak [µs]

1 1.29 1.09 1.41 1.15
2 2.25 2.98 2.45 3.13
3 2.52 2.48 2.53 2.49
4 1.73 2.21 1.89 2.35
5 3.16 7.45 3.42 7.85
6 2.52 2.53 2.53 2.54

TABLE V. Values of the characteristic mean absorption times
Λz and mean leakage times Λz,leak for neutrons generated in
all zones and for two values of ke f f .

The probability matrices and absorption vectors for two
values of ke f f are presented in Table I, II, where also fission

and leakage probabilities are reported. It can be clearly seen
that the probability matrix are largely dominated by diagonal
elements. Furthermore, one can observe the effect of the sub-
criticality is apparently not very strong, although such slight
differences produce a large reactivity change: as for other
reactor physics problems the parameters of the model have
to be accurately evaluated. For the present results the Monte
Carlo accuracies obtained are below 0.1%. Table III collects
the values of the mean neutron absorption times corresponding
to all the zones of the system for different values of ke f f .

When considering systems characterized by low-
absorption non fuel materials, such as generally is for fast
systems and for the case here considered, the choice of ge-
ometrical splitting of the spatial domain into the multipoint
structure is marginal because the contribution to the rates from
non fuel portions of the zones is consequently low. For in-
stance, moving the boundary between region 2, 5 and 4, 6
by 50 cm to the right, it has been verified that the probability
matrix and absorption vector are slightly affected.

We now present some results for the spectrum at various
ke f f : however we do not have any way to know "a priori"
the precise value for ν to be used for the problem. Then a
first possibility is to fix the highest eigenvalue from (6) to the
corresponding ke f f value and use it for the evaluation of ν
to be used to extract higher order k eigenvalues. Results are
presented in Table IV. The analysis of higher order eigenvalues
is of interest to predict the potential presence of spatial effects
in time-dependent configurations [12].

As it can be immediately realized from the second colums
of Table IV there is a minimal increment of ν as ke f f decreases:
in fact, to decrease ke f f we decrease the 235U fraction, as it was
explained before; correspondingly the 238U fraction increases,
yielding a very small increment on the effective value of ν due
to fast fission in the incident neutron energy range above 1
MeV, where the fission cross section becomes relevant and ν
is sharply increasing.

It must be observed that the use of an effective value
of ν, determined in order to preserve the reference value of
ke f f from the Monte Carlo simulation, takes into account and
compensates in an overall fashion for all the effects associated
to the different effective fission, absorption and leakage proper
times for each zone. Formula (8) assumes equal characteristic
times for all phenomena, while, of course, physically they
may be quite different. In particular, the leakage times may
be significantly different, depending on the localization of the
zone under analysis, as can be clearly seen in Table V, where
the values adopted in formula (8) are compared to the mean
leakage times. As a last observation, the average fission times
are expected to be shorter than absorption times, because most
of the fission events happen in the same fuel region as the one
of the neutron birth.

An alternative more consistent procedure to avoid the
intermediate estimate of the number of secondary neutrons
emitted by fission, would consist in directly estimating the rate
of fission-emitted neutrons, thus obtaining the values of the
probabilities p̃i j, so allowing to directly evaluate the elements
of νÂ as:

νai j =
p̃i j

Λ̃ j
, (9)
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Zone (z) Pleak Pcapt P f iss pz1 pz2 pz3 pz4 pz5 pz6

1 0.3356 0.3081 0.3563 0.2995 3.32 10−2 2.29 10−4 1.48 10−2 8.36 10−3 1.81 10−4

2 0.2683 0.3444 0.3872 3.30 10−2 0.3167 3.60 10−3 8.37 10−3 2.32 10−2 2.25 10−3

3 0.4176 0.2767 0.3057 2.36 10−4 4.67 10−3 0.2880 3.34 10−4 3.75 10−3 8.66 10−3

4 0.2853 0.3348 0.3798 7.91 10−2 2.09 10−2 4.96 10−4 0.2478 3.10 10−2 6.16 10−4

5 0.1875 0.3884 0.4241 2.04 10−2 9.56 10−2 4.88 10−3 3.07 10−2 0.2675 5.10 10−2

6 0.4195 0.2758 0.3046 1.85 10−4 3.08 10−3 8.65 10−3 4.57 10−4 4.22 10−3 0.2881

TABLE I. Probabilities for leakage (Pleak), capture (Pcapt), fission (P f iss) and zone-to-zone transmission for ke f f = 0.99.

Zone (z) Pleak Pcapt P f iss pz1 pz2 pz3 pz4 pz5 pz6

1 0.3408 0.3217 0.3375 0.2827 3.19 10−2 2.36 10−4 1.44 10−2 8.12 10−3 1.87 10−4

2 0.2726 0.3597 0.3677 3.18 10−2 0.2993 3.66 10−3 8.12 10−3 2.25 10−2 2.30 10−3

3 0.4177 0.2770 0.3052 2.30 10−4 4.43 10−3 0.2803 3.22 10−4 3.57 10−3 8.66 10−3

4 0.2899 0.3498 0.3603 7.51 10−2 2.01 10−2 5.09 10−4 0.2340 2.99 10−2 6.32 10−4

5 0.1907 0.4057 0.4035 1.96 10−2 9.10 10−2 4.97 10−3 2.96 10−2 0.2531 5.20 10−2

6 0.4196 0.2761 0.3043 1.81 10−4 2.92 10−3 8.65 10−3 4.40 10−4 4.01 10−3 0.2881

TABLE II. Probabilities for leakage (Pleak), capture (Pcapt), fission (P f iss) and zone-to-zone transmission for ke f f = 0.94.

where Λ̃ j is the characteristic mean fission time.

IV. ENERGY MULTIPOINT THEORY

The multigroup equations can already be considered as
a multipoint model on the energy variable: there are however
some modifications to be introduced, coming from the fission
or delayed spectrum: of the ν fission neutrons produced only
a fraction χ j is really produced in the jth energy group:



dNi

dt
= ν(1 − β)χi

∑
j

ai jN j−

−CiNi +

Nd∑
α=1

χ(α)
i λαC

(k)

dC(α)

dt
= βαν

∑
i j

ai jN j − λαC
(α) ,

(10)

where i = 1, . . . ,NG, α = 1, . . . ,Nd and χi(χ
(α)
i ) represents the

probability that a prompt (delayed from αth family) fission
neutron has its energy in the ith energy group.

It is worthwhile to remark that in the space multipoint
approach both prompt neutron numbers and delayed neutron
precursor numbers N,C are defined in the zone space, while
in energy multipoint the latter are clearly scalars. This fact,
as we shall see, requires some attention when building the
general multipoint kinetic equations.

In ref. [13] we studied in detail the multiplication eigen-
value spectrum within a multigroup diffusion theory. In par-
ticular we proved a general expression for the eigenvalue kn
which is associated with the nth spatial mode of the system
which turns out to be necessarily real: the proof derived essen-
tially from the peculiar form of the fission matrix - in that case
of rank 1.

This feature is in principle lost in the general approach
outlined in the static version of Eq. (10), because no general
assumptions can be made on the structure of the matrix Â, so
allowing again a richer physics: this in strict analogy to what
we noticed in the discussion on Eq. (6) and (7).

In the previous Section we briefly discussed the depen-
dence of the spectrum of k as a function of the number of
space intervals (see Fig. 1). Analogously, it is possible to
study the dependence of k on the number of energy groups in
a naïve multigroup approach for an infinite system: however it
can be shown that if one collapses macroscopic cross sections
preserving reaction rates, the value of k remains unchanged.

V. REACTOR INTEGRAL PARAMETERS FROM THE
MULTIPOINT MODEL

An important issue is the determination of integral param-
eters from local flux measurements. When using the simple
point kinetic model, spatial effects may cause large errors in
the prediction of integral parameters. Correction factors or
flux-signal combination techniques should be adopted to ob-
tain reliable values. The use of a multipoint model may prove
to be more effective.

It can be assumed that the system is represented by a
multipoint set of equations, where each point is associated to
a local flux detector. The response of a source-driven system
is described by a set of equations that takes the general form
as in Eq. (7), that includes also the contribution of delayed
neutrons, with an additional source term (a vector in the space
indexed by zones).

The application of an inverse approach to an experimental
measurement allows to estimate the elements of the character-
istic matrices of the model. The solution of an adjoint problem
is then used to project the above equations in order to retrieve
a point-like set of equations, in the frame of the well-known
Henry’s philosophy.
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Zone (z) ke f f = 0.99 ke f f = 0.98 ke f f = 0.97 ke f f = 0.96 ke f f = 0.95 ke f f = 0.94

1 1.29 1.31 1.34 1.36 1.39 1.41
2 2.25 2.29 2.33 2.37 2.41 2.45
3 2.52 2.52 2.52 2.53 2.53 2.53
4 1.73 1.76 1.80 1.82 1.86 1.89
5 3.16 3.11 3.26 3.31 3.37 3.42
6 2.52 2.52 2.53 2.53 2.53 2.53

TABLE III. Mean neutron absoprtion times Λ j [µs] for neutrons generated in the 6 zones of the system, for different values of
ke f f .

In the case of a space multipoint theory we introduce the
direct eigenvector of the matrix M̂ = (ν − 1)(1 − β)Â − Ĉ as
M̂N0 = ωN0, together with its adjoint M̂†ψ

0
= ωψ

0
, and

we write N in the usual factorized form N(t) = P(t)N0; after
projecting on ψ

0
, we obtain the set of equations



(
ψ

0
,N0

) dP
dt

= ω
(
ψ

0
,N0

)
P(t) +

Nd∑
α=1

λα
(
ψ

0
,C(α)

)
+

(
ψ

0
, S

)
d
dt

(
ψ

0
,C(α)

)
=

(
ψ

0
, d̂α · N0

)
P(t) − λα

(
ψ

0
,C(α)

)
,

(11)

where d̂α = βανÂ and also a source term is introduced, as
it is essential for applications to source-driven systems. The
case of energy multipoint theory takes a slightly different
form, because, as one can realize from equation (10) and
previously noted, the concentrations of delayed neutrons in
each family are now scalars, the vector character deriving
by their probabilities χ(α) to be produced in the given energy
group. Then, to be able to project delayed equations on ψ

0
,

we are required to multiply each of them by χ(α), which is
equivalent to introducing delayed emissivities:

(
ψ

0
,N0

) dP
dt

=ω
(
ψ

0
,N0

)
P(t)+

+

Nd∑
α=1

λα
(
ψ

0
,C(α)χ(α)

)
+

(
ψ

0
, S

)
d
dt

(
ψ

0
,C(α)χ(α)

)
=

(
ψ

0
, χ(α)

) (
d(α) · N0

)
P(t)

− λk

(
ψ

0
,C(k)χ(k)

)
;

(12)

where the matrix M̂ is
(
M̂

)
i j

= (ν − 1)(β − 1)χiai j −Ciδi j and(
d(α)

)
j
= βαν

∑
i ai j.

Equations (11) and (12) manifest a point-like structure.
Henceforth, the values of the kinetic parameters are included
in their coefficients, and can thus be easily retrieved. In an
inverse kinetic approach, each flux detector can be simulated
with the multipoint equations and the integral parameters may
be reconstructed by the projection formulae that are defining
the coefficients of Eqs. (11) and (12).

VI. CONCLUSIONS

The paper revisits the basic theory on which the multi-
point kinetic method is based. The features of the method are
investigated by the analysis of simple multipoint equations
based on standard space-discretized and energy multigroup
equations. This exercise allows to construct a consistent crit-
icality theory and to gain some physical insight through the
observation of the eigenvalue spectrum of the operator.

For realistic applications it is necessary to develop multi-
point models in the full space-energy domain: this is particu-
larly important in source-driven problems where neutrons are
injected at very high energies in a small volume of the system.
This can be naturally done within the proposed approach.

A general physically-based formulation of the multipoint
equations is then presented, together with a physical interpreta-
tion of the coefficients in terms of probabilities that allows their
evaluation, for instance, by direct Monte Carlo simulations. A
collapsing procedure, involving a separation-projection proce-
dure, leads to a point-like set of equations. In such a way, by
using an inverse approach based on the multipoint model to
interpret flux measurements from a multiple detector experi-
ment, the standard integral parameters can be reconstructed.
This procedure can be used fruitfully, for instance, in the in-
terpretation of flux measurements for the reactivity prediction
and monitoring of accelerator-driven systems, in cases where
relevant spatial and spectral effects come into play.
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