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Abstract - A capability to generate a single realization of resonance parameters in the unresolved resonance
region for use throughout a single neutron transport simulation and its applications to nuclear data bench-
marking are presented. This approach differs from the typical probability table treatment in which, effectively,
a new realization of resonance structure is sampled at each cross section calculation event. The capability is
implemented in a continuous-energy Monte Carlo code and used to demonstrate the calculation of expected
value tallies which more rigorously account for the effects of unresolved resonance structure. The expected
values computed by averaging results of independent simulations, each using a single, distinct realization of
resonance structure, are observed to be in good agreement with results obtained by using a new realization of
resonance parameters for each cross section calculation. However, the range of results computed with each
of several realizations of resonance structure can be several times larger than that which is expected as a
result of statistical uncertainty. That is, uncertainty in the precise, energy-dependent resonance structure of
cross sections in the unresolved region induces an additional, intrinsic uncertainty that cannot be reduced
by simulating a greater number of neutron histories. In simulations of an intermediate/fast spectrum system,
the 95% confidence interval of k∞ eigenvalues computed with different realizations of resonance structure is
∼300 pcm greater than the purely statistical interval which is ordinarily reported.

I. INTRODUCTION

Nuclides with structured neutron cross sections that have not
yet been resolved in energy to the precision of individual reso-
nances are said to have an unresolved resonance region (URR).
This situation may arise due to insufficient experimental pre-
cision in cross section measurements or, more generally, as
a result of a lack of experimental data on which to perform
a resolved resonance evaluation. In such cases, neither the
resonance parameters (i.e., resonance energies and partial re-
action widths) nor pointwise data representations of individual
resonances are available in the URR. Cross sections must in-
stead be described by average resonance parameters and the
theoretical distributions of those parameters [1].

This is a fundamentally different type of uncertainty than is
usually discussed when dealing with resolved resonances. To
be sure, there are uncertainties in resolved resonance data
which can impact simulation results. However, the uncer-
tainties on resolved resonance parameters propagate to uncer-
tainties on cross section values, not the underlying resonance
structure. Thought of another way, resolved resonance param-
eters are deterministic and result in energy-dependent cross
section values with some uncertainty — typically no more
than a few percent for the principal reactions of the nuclides
which are most relevant to nuclear science and technology ap-
plications. Contrast this with the stochastic nature of the URR
in which the energy and partial widths of any single resonance
are entirely unknown and must be randomly sampled from
theoretical distributions.

To mitigate the problem of unknown URR resonance struc-
ture, the probability table method was developed [2]. This
method relies on the pre-generation of discrete cross section
magnitudes and associated probabilities at discrete energies
and temperatures. These discrete data are then sampled within
Monte Carlo transport simulations according to their probabil-
ities. Probability tables provide a better model of resonance
structure — and the resulting self-shielding effects — than
average cross sections because, at a given energy and temper-
ature, a range of cross section magnitudes may be sampled.
More recently, an approach by which a new realization of
resonance parameters is sampled on-the-fly and cross sections
are calculated directly at each event in the simulation was
introduced [3]. This direct, on-the-fly scheme represents a
generalization of the probability table method in that it treats
the energy, temperature, and cross section magnitude variables
continuously, rather than in a discrete fashion.

A natural alternative to probabilistic re-generation of URR
resonance structure within a simulation is to generate a single
realization of resonance parameters at the start of a simulation
and use that same, unchanging realization throughout. Such
a realization is still probabilistic in the sense that it is gener-
ated by sampling resonance parameters from distributions, but
once sampled, a single set of resonance parameters is valid
in all cross section calculations, for all neutron histories, as
is the case in nature. Similar solutions were briefly explored
for modeling the resonance structure of URR cross sections
prior to the advent, and subsequent widespread adoption, of
the probability table method [4, 5]. However, the methods
employed to actually generate resonance realizations often
made very crude approximations [5, 6]. Use of the resulting
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fine structure cross sections in Monte Carlo calculations was
generally intractable from a computational perspective. Due
to the great expense of both generating resonance realizations
and utilizing the continuous-energy cross section values from
those realizations in any meaningful calculation, these alter-
nate methods were largely abandoned in favor of probability
table treatments.

With an independent realization treatment, there is a further
question: how does one know that the single realization gener-
ated accurately represents the true resonance structure which
exists in nature? The answer, of course, is that one cannot
ever make that determination. In fact, the sampled resonance
structure will invariably be a poor representation of nature, at
least with respect to cross section values at specific energies.
Though a sampled ensemble of resonances will constitute a
viable realization of nature because it is reconstructed from
a set of resonance parameters that is drawn from a distribu-
tion of physically allowable values, no single realization can
be trusted more or less than any other realization to repre-
sent the single, true cross section resonance structure which
exists in nature. It would take an infinite number of realiza-
tions to stumble upon the correct ensemble, and one could not
even recognize it if he did because the resonance parameters
which describe the actual URR resonances are, by definition,
unknown. For this reason, some efforts were aimed at develop-
ing methods for generating a recommended realization [7] and
also quantifying integral calculation uncertainties that arise
from a lack of knowledge of the true URR resonance struc-
ture [4, 8]. These efforts, too, were largely abandoned with
the adoption of the probability table method.

Motivated by the notion that a single, persistent URR realiza-
tion is, in many ways, a better model of nature and enabled
by modern computational resources, it is appropriate to revisit
single URR resonance structure realizations for use in Monte
Carlo simulations. This work explores the implications of the
root cause of the URR phenomenon, which is to say a lack
of knowledge of precise resonance structure, as they relate to
uncertainties in critical benchmark simulation results.

The ability to compute more rigorous expected values via in-
dependent URR realizations and the loss of that ability when
using probability tables are discussed further in Section II. The
implementation of the capability to generate independent reso-
nance ensembles and utilize them within a transport simulation
are outlined in Section III. Results of simulations performed
with a continuous-energy Monte Carlo neutron transport code
which demonstrate the calculation of expected values and
corresponding uncertainties are presented in Section IV. A
summarizing discussion is found in Section V.

II. INDEPENDENT REALIZATIONS VS. PROBABIL-
ITY TABLES

One shortcoming present in both the probability table and
direct methods is the generation of what is effectively a new

realization of resonances at each event. Both methods as-
sume that neutrons, at a given energy, experience resonance
structure that is independent of all structure previously en-
countered. The direct approach explicitly generates a new
realization while the probability table method does so implic-
itly by sampling cross section magnitudes which represent
different realizations. Both of these models are unphysical
and result in an artificial averaging over all possible resonance
structures whereas, in nature, a single resonance structure
exists.

A solution to the above dilemma is to generate independent re-
alizations of URR resonance structure and utilize each of these
realizations throughout its own independent Monte Carlo trans-
port simulation. By doing so, expected value tallies which are
more rigorous than those obtained from simulations relying on
probability tables are accessible. The value obtained by taking
the mean of the tally results of N independent simulations,
each using cross sections from one of N independent URR
resonance structure realizations throughout, gives the expected
value for the tally. This is in contrast to taking the mean of the
tally results of N independent simulations, each using probabil-
ity tables, which gives a value that is based on N simulations
which each utilize cross sections representing several different
realizations of resonance structure at once. As a consequence,
it is not guaranteed that simulations using probability tables or
direct calculations must reproduce true expected value tallies.
In general, the re-generation of a new resonance structure at
each event will introduce a bias in calculated results. This
difference between results computed with probability tables
and those computed by averaging independent simulations can
be illustrated with a simple example:

If there is a point-source at E0,

S (E) = S 0

∫ ∞

−∞

dEδ(E − E0), (1)

and there are exactly two equiprobable resonance struc-
tures,

Σ1(E0 → E1) = 0;
Σ1(E1 → E2) = ∞;

Σ1(E2) = 0
(2)

and

Σ2(E0 → E1) = ∞;
Σ2(E1) = 0;
Σ2(E2) = 0,

(3)
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one concludes that two independent simulations, each utilizing
a different one of the two possible realizations, yield an expec-
tation of 0.5 interactions for each of the S 0 source particles,
whereas probability tables yield 0.75. The probabilities of the
possible outcomes are summarized in Table I.

TABLE I. Probabilities

Interactions
Method 0 1 2

Probability tables 0.5 0.25 0.25
Independent realizations 0.5 0.5 0.0

Another advantage of independent realizations relative to prob-
ability tables is that if a nuclide’s cross sections are calculated
at a specific energy, identical cross section values will be com-
puted in subsequent calculations at that same energy (cf. [2, 3]).
As a corollary, cross section values computed at energies
which neighbor one another will reflect the correlated res-
onance structure between the two energies. That is, if cross
section values are computed at a resonance energy once, all
cross sections computed very close to that energy will have a
similarly large magnitude. This can be important in fine-group
spectrum calculations which require the same resonance struc-
ture to be experienced by all neutrons, at all events, in order to
reveal the peaks and valleys in reaction rate tallies which occur
across energy as a result of individual resonances.

In closing the discussion comparing the probability table
method with independent realizations, it is worth noting that,
in addition to the calculation of unbiased expected value tal-
lies, independent URR realizations enable a more accurate
calculation of those tallies’ uncertainties. It is actually a prin-
cipal advantage of independent URR realizations, relative to
probability tables, that because each simulation utilizing a
new, independent realization represents a viable realization of
nature, it is possible to determine an expected spread of tally
results which accounts for the stochastic uncertainty typical
of Monte Carlo simulations as well as the physical uncertainty
stemming from a lack of knowledge of URR resonance struc-
ture. The results presented in Section IV. demonstrate that
the spread of tally results obtained from independent simula-
tions using unchanging URR realizations — information that
cannot be ascertained from simulations in which the probabil-
ity table or direct methods are used — can be significant for
intermediate/fast spectrum systems.

III. GENERATING URR REALIZATIONS

The capability to generate single, nuclide-specific realizations
of URR resonance parameters for continued use throughout
a simulation is implemented in the continuous-energy Monte
Carlo transport code OpenMC [9]. This implementation re-
quires only straightforward modifications to the probability
table generation and direct calculation algorithms. The me-
chanics of sampling level spacings and partial reaction widths
are unchanged. At the initialization of a simulation, before any

neutron histories are run, starting from the resonance energy,
Eλ, of the highest-energy resolved resonance region resonance
with a given spin sequence (defined by orbital and total angu-
lar momentum quantum numbers, l and J, respectively), the
Wigner distribution for level spacings [10],

PW

(
Dl,J(Eλ)
〈Dl,J(Eλ)〉

)
=

πDl,J(Eλ)
2〈Dl,J(Eλ)〉

exp
(
−
πDl,J(Eλ)2

4〈Dl,J(Eλ)〉2

)
, (4)

is sampled to determine the distance in energy, Dl,J , to the
next resonance with that same spin sequence. Using this new
resonance energy as a starting point, another level spacing is
sampled to determine the placement of the next, and so on.
For each resonance energy that is sampled, partial widths for
reaction r, Γr, are sampled from a χ2 distribution [11],

Pχ2(µr)(y) =
exp

(
−

y
2

)
y
µr
2 −1

2µr/2G
(
µr
2

) ;

y ≡ µr
Γ

l,J
r

〈Γ
l,J
r (Eλ)〉

,

(5)

where µr(l, J) is a reaction channel-dependent number of de-
grees of freedom and the G

(
µr
2

)
term in (5) is the Gamma

function,

G
(
µr

2

)
=

∫ ∞

0
x
µr
2 −1e−xdx. (6)

This completes the specification of the corresponding reso-
nance. The process is terminated once several resonances
above the upper URR energy bound have been generated. Ex-
tension of the realization beyond the upper bound is needed
so that cross sections calculated at an energy just below the
bound have the appropriate contribution from resonances exist-
ing at both higher and lower energies. The result of neglecting
resonances above the upper URR energy bound would be di-
minished cross section magnitudes just below the crossover to
the fast energy region. A similar extension of the resonance
generating procedure to energies below the lower URR energy
bound is not required as the resolved resonance parameters
themselves can be used — albeit in a resonance formalism that
may differ from the one that was used in their evaluation —
to calculate a contribution to cross section values at the lower
end of the URR.

Once a complete realization of resonances — specified by their
resonance parameters — is generated over the required energy
range for each spin sequence, it can be utilized in a simulation.
Procedures presented in [3] can be extended easily enough to
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accomplish this as well. Instead of an on-the-fly generation
of an energy-localized realization of resonance parameters
and direct cross section calculation using those parameters,
the same realization of resonance parameters generated at the
initialization of a simulation is utilized in all cross section cal-
culations throughout a simulation. Whenever a nuclide’s cross
sections must be calculated within a simulation, a number of
resonances about the current neutron energy are identified, and
their parameters are used to compute the contributions of each
of those resonances to the partial cross section values at the
desired energy.

Generating new, independent resonance structure realizations
for independent transport simulations is as simple as chang-
ing the pseudo-random number generator seed used when
generating one set of resonances to a different value. Exam-
ples of independent realizations of URR resonance structure
generated in this manner are shown in Figure 1.
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σ
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[b
]

Realization 1

Realization 2

Realization 3

Fig. 1. Independent URR cross section realizations

IV. RESULTS AND ANALYSIS

The capability to utilize independent realizations of URR res-
onance structure is used in simulations of five systems. A
light-water reactor (LWR) pin cell is simulated at hot, zero-
power (HZP) conditions and the results are presented in Sec-
tion 1. Results of simulations of a model of the well-known
fast spectrum, high-enriched uranium metal sphere Godiva are
given in Section 2. Benchmark models of the intermediate/fast
spectrum, intermediate-enriched uranium metal split-table as-
semblies Big Ten and U9 are analyzed in Sections 3. and 4.,
respectively. Finally, a ZEBRA, core 8H k∞ measurement
benchmark model is used to obtain the results shown in Sec-
tion 5.

For each model, 250 independent transport simulations,1 each
using a unique realization of URR resonance structure through-
out, are conducted. The expected value k eigenvalue tallies
obtained from each batch of simulations, as well as the sta-
tistical spread of those tallies, are examined and compared
to the values that are obtained in a single simulation using
cross sections computed on-the-fly from a new realization of
resonance parameters at each event.

Additionally, each of the five distributions of 250 eigenvalue
realizations is tested for normality with both the Shapiro-
Wilk [12] and Anderson-Darling [13] tests. The results of
these statistical tests are shown in Tables II and III, respec-
tively. The p-value computed in a Shapiro-Wilk test has the
interpretation of being the significance value, α, at which the
null hypothesis of the normality of the sample data can be re-
jected. The A2 statistic computed in an Anderson-Darling test
has the interpretation of being the critical value above which
the null hypothesis of the normality of the sample data can be
rejected at the α corresponding to the critical value. For all
distributions, at an α value of 5%, the null hypothesis that the
eigenvalue realizations are drawn from a normal distribution
cannot be rejected using either test for normality.

While the apparent normality of the distributions is not re-
quired from a theoretical perspective, it is a feature which
is helpful when interpreting 1σ uncertainties, standard devi-
ations, normal distribution curve fits, etc. To that end, the
distribution of eigenvalue realizations for each model is plot-
ted and overlaid with two different normal distributions. One
of the distributions is simply a curve fit to the observed data
using the sample expected eigenvalue, 〈k〉, and the sample
standard deviation of k realizations, SDk. The second curve
is the normal distribution that is expected based on statisti-
cal uncertainty alone. It is also constructed using 〈k〉, but
uses the sample expected value of the standard error of the
mean (i.e., the mean of the 250 1σ values), 〈1σk〉, as its stan-
dard deviation. Comparing these two curves enables one to
observe the extent to which URR resonance structure uncer-
tainty results in a dispersion of k realizations. The two princi-
pal conclusions which follow from the presented results are
that a single simulation with on-the-fly cross section calcula-
tions reproduces the expected value obtained from multiple
independent simulations very closely and the range of eigen-
values arising from independent URR realizations can be
significant.

1. LWR Pin Cell

First, a pressurized-water reactor pin cell from the Benchmark
for Evaluation and Validation of Reactor Simulations [14]
is modeled at HZP conditions with the UO2 fuel, clad, and
moderator all at 600 K. Each of 250 independent simulations

1This number is selected because it results in relatively tight 1σ statisti-
cal uncertainties that are also comparable to the 1σ values obtained in the
simulations with event-based cross section realizations.
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TABLE II. Shapiro-Wilk normality test results

Model p-value

LWR pin cell 0.637
Godiva 0.065
Big Ten 0.347

U9 0.792
ZEBRA 0.331

TABLE III. Anderson-Darling normality test results

Model A2 (5% Critical Value: 0.775)

LWR pin cell 0.392
Godiva 0.694
Big Ten 0.440

U9 0.297
ZEBRA 0.435

utilizes a different realization of URR resonance structure
for 234U, 235U, and 238U; 100 discarded source convergence
batches; 500 recorded tally batches; and 1 × 104 neutron histo-
ries per batch. The distribution of k∞ eigenvalues computed
in these independent simulations is shown in Figure 2, and a
summary of the results is given in Table IV.

Figure 2 demonstrates that the observed distribution of k∞
realizations is nearly identical to the distribution that is ex-
pected as a result of statistical uncertainty alone. This visual
agreement is confirmed by the close agreement between the
observed sample standard deviation, 0.00044, and the expected
sample standard deviation, 0.00041. Table IV also shows very
close agreement between the actual expected eigenvalue, 〈k∞〉,
which is computed by taking the mean of the 250 k∞ realiza-
tions, and the k∞ value computed in a single simulation in
which new URR resonance structure realizations are generated
on-the-fly at each event. Taken together, the preceding obser-
vations lead to the somewhat expected conclusion that running
multiple simulations of an LWR pin cell with different URR re-
alizations does not provide much information that could not be
gleaned in a single simulation with many realizations.

TABLE IV. HZP LWR pin cell results summary

Sample 〈k∞〉 (1σ) 1.35610 (0.00003)
Sample SDk∞ 0.00044
Sample 〈1σk∞〉 (1σ) 0.00041 (<0.00001)
On-the-fly k∞ (1σ) 1.35618 (0.00004)

2. Godiva

Next, 250 independent simulations of the International Crit-
icality Safety Benchmark Evaluation Project (ICSBEP) [15]
solid, unreflected sphere model of the Godiva critical assem-
bly (HEU-MET-FAST-001) are performed. Each independent
simulation utilizes a different realization of URR resonance
structure for 234U, 235U, and 238U; 100 discarded source con-
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Fig. 2. HZP LWR pin cell k∞ PDF for independent realizations

vergence batches; 500 recorded tally batches; and 1 × 105

neutron histories per batch.

The distribution of keff eigenvalues is displayed in Figure 3
and a summary of the results is provided in Table V. Much
as in the case of the LWR pin cell, Figure 3 illustrates that
the actual distribution of keff realizations is quite similar to the
distribution that is expected if only statistical uncertainty is
considered. The observed sample standard deviation, 0.00012,
is relatively close to the expected sample standard deviation,
0.00010. Close agreement is also seen when comparing 〈keff〉

and the single on-the-fly keff value. Again, averaging multiple
independent simulations having different URR realizations
produces results similar to an on-the-fly simulation, as is ex-
pected considering the peak of Godiva’s exceedingly hard
spectrum occurs far above the upper energy bounds of the
uranium nuclides’ unresolved regions.
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Fig. 3. Godiva keff PDF for independent realizations
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TABLE V. Godiva results summary

Sample 〈keff〉 (1σ) 0.99982 (0.00001)
Sample SDkeff

0.00012
Sample 〈1σkeff

〉 (1σ) 0.00010 (<0.00001)
On-the-fly keff (1σ) 0.99969 (0.00010)
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Fig. 4. Big Ten keff PDF for independent realizations

3. Big Ten

250 independent simulations of the IEU-MET-FAST-007, case
4 benchmark model of the Big Ten critical assembly from
ICSBEP are also performed. Each simulation utilizes a dif-
ferent realization of URR resonance structure for 234U, 235U,
236U, and 238U; 100 discarded source convergence batches;
500 recorded tally batches; and 1 × 105 neutron histories per
batch.

The distribution of keff eigenvalues from these simulations is
plotted in Figure 4, and a summary of the results is found in
Table VI. In contrast to what is observed in the distributions of
the LWR pin cell and Godiva eigenvalues, Figure 4 shows that
the realized distribution of Big Ten keff values is discernibly
broader than the distribution that is generated based on statis-
tical uncertainty alone. The real, observed sample standard
deviation is more then five times the expected sample standard
deviation. With a normal fit to the keff sample, this leads to an
increase in the 95% confidence interval about 〈keff〉 of more
than 150 pcm. It may then be concluded that this discrepancy
in standard deviations is attributable to unknown URR reso-
nance structure. However, despite these discrepant uncertain-
ties, close agreement between 〈keff〉 and the single on-the-fly
keff value is observed. So, an on-the-fly simulation and the
average of multiple independent simulations having different
URR realizations yield comparable eigenvalues, but the uncer-
tainty due to unknown URR resonance structure only reveals
itself through multiple independent realizations.

TABLE VI. Big Ten results summary

Sample 〈keff〉 (1σ) 1.00533 (0.00003)
Sample SDkeff

0.00055
Sample 〈1σkeff

〉 (1σ) 0.00010 (<0.00001)
On-the-fly keff (1σ) 1.00530 (0.00006)
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Fig. 5. U9 keff PDF for independent realizations

4. U9 Benchmark Assembly

The experimental configuration of Assembly 9, Loading 11
at the Zero Power Reactor No. 6 facility (ZPR-6/9) is known
as the U9 Benchmark Assembly. The horizontal split-table
assembly consisted of a heterogeneous, cylindrical core con-
structed of alternating enriched and depleted uranium metal
plates to give a core-averaged enrichment of 9%. The core
was surrounded by a thick depleted uranium reflector resulting
in a fast spectrum similar to that of Big Ten. 250 independent
simulations of the U9 ICSBEP benchmark model (IEU-MET-
FAST-010) are performed. Each simulation utilizes an inde-
pendent URR resonance structure for 234U, 235U, 236U, and
238U; 100 discarded source convergence batches; 500 recorded
tally batches; and 1 × 104 neutron histories per batch.

The distribution of keff eigenvalues and a summary of the re-
sults are shown in Figure 5 and Table VII, respectively. As
in the case of Big Ten, the distribution of keff highlights the
uncertainty in individual eigenvalue realizations due to vari-
ability in URR resonance realizations. That is, the distribution
of keff values that are actually calculated in simulations relying
on different realizations of a single URR resonance structure is
significantly broader than the distribution which arises solely
from statistical uncertainty. The observed sample standard
deviation is nearly three times the expected sample standard
deviation leading to an increase in the 95% confidence interval
about 〈keff〉 of more than 200 pcm.
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TABLE VII. U9 results summary

Sample 〈keff〉 (1σ) 0.99693 (0.00005)
Sample SDkeff

0.00079
Sample 〈1σkeff

〉 (1σ) 0.00029 (<0.00001)
On-the-fly keff (1σ) 0.99692 (0.00010)
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Fig. 6. ZEBRA k∞ PDF for independent realizations

5. ZEBRA

Finally, 250 independent simulations of the Zero Energy
Breeder Reactor Assembly (ZEBRA) MIX-MET-FAST-008,
core 8H benchmark model from ICSBEP are performed. Each
independent simulation utilizes a different realization of URR
resonance structure for 235U, and 238U; 100 discarded source
convergence batches; 500 recorded tally batches; and 5 × 103

neutron histories per batch.

The distribution of k∞ eigenvalues and a summary of the re-
sults are shown in Figure 6 and Table VIII, respectively. To
an even greater extent than the cases of Big Ten and U9, the
spread of k∞ illustrates that significant differences in eigen-
value can be observed in simulations with different URR re-
alizations. The sample distribution of k∞ values calculated in
simulations making use of independent realizations of a single
URR resonance structure is much broader than the expected
distribution due to statistical fluctuations alone. The observed
sample standard deviation is more than two times the expected
sample standard deviation leading to an increase in the 95%
confidence interval about 〈k∞〉 of ∼300 pcm. What is more,
because this additional uncertainty is based on the fundamen-
tal lack of knowledge of precise URR resonance structure, it
cannot be reduced by simply simulating more neutron histo-
ries, nor can it be extracted from a simulation making use of
probability tables.

TABLE VIII. ZEBRA results summary

Sample 〈k∞〉 (1σ) 1.02043 (0.00007)
Sample SDk∞ 0.00109
Sample 〈1σk∞〉 (1σ) 0.00039 (<0.00001)
On-the-fly k∞ (1σ) 1.02048 (0.00006)

V. CONCLUSIONS

A capability to construct single, independent URR realizations
for use throughout independent continuous-energy Monte
Carlo neutron transport simulations is presented. From reso-
nance parameters sampled at the initialization of a simulation,
cross sections are calculated on-the-fly. Using this capability,
which eliminates the unphysical re-generation of resonance
parameters within a simulation, expected value tallies which
capture the effect of a persistent URR resonance structure
are calculated from multiple independent simulations of mod-
els of an LWR pin cell, Godiva, Big Ten, U9, and ZEBRA.
Though not a theoretical requirement, these expected values
tend to be in good agreement with results calculated with
a probability table-like treatment. However, the spread of
eigenvalue realizations coming from simulations using in-
dependent URR realizations is much larger than that which
is expected based on statistical uncertainty alone. This in-
creased uncertainty is due to the uncertainty in the structure
of URR resonances and cannot be decreased by simulating
more histories. Ultimately, this motivates an extension of the
most relevant nuclides’ (e.g., 238U) resolved resonance region
evaluations to higher energies. Additional work should be
aimed at applying this capability in simulations of more real-
istic fast reactor models. Along with this, the effect of URR
uncertainties on other parameters of interest, such as Doppler
reactivity coefficients, should be investigated.
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