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Abstract – The creation of a database of uncertainties for criticality experiment benchmarks is under 

construction and intended to be incorporated into a future version of the database for ICSBEP, DICE. As a 

first step, Section 2 and 3.1 data have been extracted from ICSBEP benchmark evaluations and 

homogenized in a manner that allows searching and trending uncertainties across evaluations. One of the 

primary objectives of building such a database is to facilitate creation of covariance matrices between 

experimental uncertainties, as often, only the diagonal term has been evaluated leading to cases being 

treated as independent during uncertainty analysis. This assumption does not reflect a best estimate. The 

database-features lower the effort required to create covariance’s, so analysts can focus on estimating 

whether uncertainties are shared between cases, rather than the mechanical aspects of uncertainty 

extraction and matrix generation. Now users can quickly create transparent estimates of covariance. Using 

the sheet an attempt has been made to read the evaluations and then provide an estimate of the covariance 

by estimating which uncertainty components are shared between cases. While it is difficult to evaluate the 

‘correctness’ of the generated covariance’s, the paper has run the over 500 of LCT cases with experimental 

covariance, through a generalized least squares tool, TSURFER, both with experimental covariance’s and 

without and the results are analyzed. Further work is required in the area of testing the impact on real 

world applications. 

 

 

I. INTRODUCTION 

 

This paper presents work done to create a database of 

uncertainties for International Criticality Safety Benchmark 

Evaluation Project (ICSBEP) Handbook [1].  The Handbook 

contains nearly 5000 experimentally based benchmark 

models and each has an associated uncertainty in effk  that 

serves as a quantitative indicator of the accuracy. 

Uncertainties include both those associated with the 

measurements, as well as uncertainties from modelling 

owing to imperfect knowledge of the exact compositions 

and geometries used in the experiment. 

With such a large set of benchmarks uncertainties it is 

possible to analyse the dataset in order to identify trends in 

uncertainty analysis, for example scrutinizing the average 

uncertainty for fuel impurities. Examining outliers could 

lead to identifying errors, or assist evaluators in making 

reasonable estimations in the absence of information. 

Furthermore, creating such a database of uncertainty 

information presents a unique opportunity to structure the  

data in a way that facilitates the generation of covariance 

matrices between experimental benchmark models. And 

while the uncertainty information for ICSBEP benchmarks 

are well characterized, covariance is sparse. A similar 

situation of uncertainties without covariance was faced by 

the nuclear data community in the 1970’s and is still 

actively being worked on today. Recently a web tool [2] was 

created that can generate nuclear data covariance matrices 

by assigning which EXFOR uncertainty components are 

shared between data points. With a similar concept in mind, 

the uncertainty extraction and corresponding database have 

been engineered to have similar functionality, allowing 

users to identify which uncertainties are shared between 

experiments, to estimate the covariance.   

Uncertainty information will ultimately be made 

accessible to users via the Database for ICSBEP (DICE) [3], 

supplementing the limited correlation data already generated 

and available [4]. With the covariance data, the degree of 

shared uncertainty between the cases can be estimated, 

assisting the user to better identify a suitable set of 

benchmarks for validation. Ultimately, the purpose of 

making the tool is to improve validation for a variety of 

applications. Like estimates of nuclear data covariance, any 

estimate of the covariance should be based upon the best 

available information and not artificially made to agree with 

a particular application, as the data is intended to support a 

variety of applications.  

Finally, while it is readily accepted that the existing 

assumption of no correlations between cases within an 

evaluation is certainly not true, it is difficult to justify the 

quality of a particular choice. After creating covariance’s 

using the database and tools, we have attempted to show the 

impact by comparing, generalized least squares adjustment 

results with and without experimental covariance’s using 

TSURFER[5]. 
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II. DATABASE CONSTRUCTION 

 

1. Data extraction 

 

In the ICSBEP handbook, criticality benchmark 

experiments are categorized according to fissile material, 

physical form, neutron energy causing fission and a three-

digit numerical identifier. In this work, benchmark 

experimental uncertainties from those experiments 

identified as LEU-COMP-THERM and HEU-MET-FAST 

was extracted and subsequently sample covariance matrices 

quantifying shared uncertainty between the benchmark 

cases have been generated. 

The first step in populating the database is to extract all 

of the Section 2 uncertainties [6] from the benchmark 

evaluations. Some evaluations provide detailed uncertainty 

estimates only for a subset of the cases, so part of the work 

is to ensure that the proper representative case is matched 

with all cases for which it is intended to serve as the 

uncertainty assessment. Furthermore, many evaluations do 

not have a simple summary table, so care must be taken to 

extract the correct uncertainty values, requiring familiarity 

with ICSBEP evaluations and formats. Next, model 

simplification uncertainties from Section 3.1 and total 

benchmark model uncertainties from Section 3.5 are 

extracted. With this information, the excel sheet computes 

the sum of individual uncertainties in quadrature and 

compares to the total uncertainty from Section 3.5, and large 

disagreements indicate if one of the components has been 

missed during the extraction process.  

During extraction the uncertainties are converted to 

pcm, as standard units of uncertainty are not required in the 

existing ICSBEP format guide. Also, the uncertainties are 

assigned categorization by type, examples include 

‘geometry’, ‘composition’, ‘experiment’, and ‘modeling’. 

The classification allows users to quickly assess the 

dominant types of uncertainties in evaluations; also it allows 

for anomalies to be identified. Furthermore, a separate 

categorization is done corresponding to the physical region 

that contributes to the uncertainty, examples include, ‘fuel’, 

‘cladding’, ‘moderator’, ‘core’, etc. Searches can then be 

performed using the categorizations, such as returning all 

‘fuel’ + ‘composition’ uncertainties for each LCT case. 

 Next, the percentage variance that each uncertainty 

term contributes is computed and the most influential terms 

are identified. A criterion is applied to identify terms that 

correspond to at least 90% of the total variance; specifically 

90% of the sum of the individual variances (rather than 

comparing to Section 3.5). Users then have the opportunity 

to assign whether these top contributors are shared between 

cases, allowing for the total shared uncertainty between the 

two cases to be computed. Currently the sheet allows only 

for covariances between cases within evaluations, although 

it is recognized that in the future, functionality for inter 

evaluation case level correlations will be needed. 

 

 

 
Fig. 1. Example of Uncertainty Data Extraction Sheet. 
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2. Covariance matrix sheet 

 

Once the top uncertainty terms are identified a new 

worksheet is automatically populated with the top terms.  

The intent is to isolate dominate terms so that judgement 

can be focused on the key uncertainties, making correlation 

assignment more efficient. An example of the sheet is 

shown in Fig. 2., where the five uncertainties contributing 

90% of the variance are listed in order from the largest 

contributor to the smallest. An evaluator or user of the 

spreadsheet can then assign the fraction of fuel diameter 

uncertainty that is shared between the cases within an 

evaluation, in the example shown the burden is to provide 

five assignments of the degree of shared uncertainty. Some 

judgements are easier than others. For example, if the same 

fuel is used, and the system remains either over or under 

moderated then the fraction shared from fuel diameter is 

likely to be high. Once this assignment is performed for 

each of the top terms, equation 1 is used to compute the 

shared uncertainty between the cases, by summing all of the 

shared uncertainty components, i, between case A (𝜎𝐴,𝑖) 

and case B (𝜎𝐵,𝑖)  and dividing by the total uncertainty for 

each case, 𝜎𝐴,𝑇 𝑎𝑛𝑑 𝜎𝐵,𝑇 . The user is supplies judgement of 

whether the uncertainty is shared or not 𝝆𝑨𝒊,𝑩𝒊. 

 

𝜌𝐴,𝐵 =
∑ 𝜎𝐴,𝑖𝜌𝐴𝑖,𝐵𝑖𝜎𝐵,𝑖𝑖

𝜎𝐴,𝑇𝜎𝐵,𝑇
                         (Eq. 1) 

 

The correlation matrix, is given in the spreadsheet, 

because it is easier for to interpret than the covariance 

matrix, however the covariance matrix, V, often needs to be 

formed for uncertainty analysis; this is easily done as it is 

the numerator of equation 1. 

The spreadsheet also computes the average of 

calculated over experimental values [C/E] with a simple 

average, as well as with a weighted average using the full 

inverse of the experimental covariance matrix, see equation 

below.  

𝐺𝐿𝑆𝑀𝑒𝑎𝑛 = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1[
𝐶

𝐸
]            (Eq. 2) 

Where X is a 1d matrix of ones of the same length as 

the number of calculated over experimental [C/E] values. 

Users receive quick feedback of the impact of assigned 

correlations. But the real strength of the sheet is 

transparency. If a user has reason to change the amount of 

shared uncertainty of an uncertainty component only a 

single number need be changed. The worksheet is updated 

automatically and it is simple to copy and paste the newly 

generated experimental correlation matrix into application 

codes.  Information flow can be easily tracked in the excel 

sheets. 

 
Fig. 2. Example of the Correlation Matrix Work Sheet. 
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Tracing the logic, and giving users freedom to change is 

required because these correlation values are by necessity 

judgement based. The fraction of uncertainty shared 

between benchmark cases is related to the experimental 

procedure; similar experimental procedures, materials, and 

geometry will lead to a similar fraction of shared uncertainty. 

It is difficult to be too certain about uncertainty, and the 

amount of shared uncertainty is some value between zero 

and one. Reading the available information in an evaluation 

often provides clues that influence the judgement of the 

probability distribution of 𝜌𝐴𝑖,𝐵𝑖. A value of zero is rarely a 

best estimate, nor can it be considered conservative as it 

causes integral experiments to be weighted too highly in an 

adjustment process. 

If information in the evaluation does influence the 

judgement of the fraction of shared uncertainty in the 

component, then it is proposed that the best that can be done 

is to record the logic for assigning a certain value, and to try 

to assign values consistently when given the same 

information. If the logic is transparently recorded, then it 

allows for others to add additional insight, or find errors, 

and then revise the value without reinventing the wheel each 

time. The above process is encoded in decision trees. 

Rules in the decision tree allow the logical choices to be 

stored and facilitate automated computations of the 

covariance by simply summing shared variance between the 

benchmark cases and forms the corresponding correlations 

matrices. We have attempted to create strawman decision 

trees and assign an estimate of the shared variance for 

leaves of the tree. It should be emphasized information in 

the evaluation takes precedent over the trees. 

 

III. ESTIMATING COVARIANCE 

 

   In Section XI of Reference 7, Frohner states that to 

construct covariance matrices one needs: 

a) An error breakdown into the various error 

components 

b) RMS errors for all components 

c) Enough detail about the data reduction so that 

sensitivity coefficients can be calculated 

   He also notes that the statistical errors (denoted a in 

Reference 7) are uncorrelated and thus don’t contribute to 

the off diagonal terms of the covariance matrix, and that the 

common/shared errors (denoted b, c in Reference 7) are 

usually mutually uncorrelated between terms so the 

correlation between different terms is near zero. Section 2 

the ICSBEP evaluations requires a breakdown of error into 

components and the uncertainty from these components 

which implicitly includes the magnitude of the sensitivity 

coefficient (but not always the sign). When error sources are 

fully decomposed the remaining step is to classify the 

uncertainty as shared or unshared between cases. When not 

fully decomposed one needs to either perform the 

decomposition or estimate the fraction of the summed 

uncertainty that is shared or unshared. 

 

1. Types of Uncertainties 

 

    To estimate whether the uncertainty is shared or not, it is 

useful to classify the uncertainties. Below are common 

examples that occur during ICSBEP experimental 

benchmarks, with some examples. 

a. The parameter has exactly the same value/realization 

between cases: This leads to full correlation. Example: fuel 

elements that remain unchanged between cases. 

b. The parameter is taken from the same distribution [i.i.d. 

independent with identical distributions]: This leads to a 

correlation between systematic errors, but no correlation 

between random errors. Example: fuel elements that are 

unloaded into a bin containing an infinite number of similar 

elements, with the core subsequently rebuilt by selecting 

from these elements. If the number of elements in the bin is 

close to the total number of elements shared random error is 

reduced. 

c. Input variable is taken from a different distribution:  
Shared systematic uncertainties are correlated, some 

systematic uncertainties may be uncorrelated, random 

uncertainties are uncorrelated. Example: new fuel elements 

are selected, that may or may not have been enriched in the 

same facility. 

        In each case some degree of understanding of the 

experimental procedure is required in order to estimate the 

degree of correlation between the input variable 

uncertainties. Occasionally, decomposition of the input 

variable into the sources of uncertainty will be performed, 

and rules will be applied to the decomposed components in 

order to estimate the correlation between the input variables. 

       In summary, systematic uncertainties are often shared 

between cases. Random error can also be shared between 

cases, depending if distributions have been resampled or not. 

The experimenter is in the best position to elucidate the 

amount of resampling performed, but in the absence of such 

information, estimates resampling can be performed. In 

Section 2 of the ICSBEP Handbook, error values are most 

often given for the random component of the error. Any 

study made by the evaluator on the degree of shared 

uncertainty should not be overruled unless there is a good 

reason to do so. 

      Consistent with the graded approach suggest by the 

uncertainty guide, the estimate of the correlation coefficient 

will be made by considering uncertainties that contribute to 

90% of the variance, which is typically the top 3 or 4 

contributors. The information in the evaluation can provide 

relevant information when estimating if an uncertainty is 

shared or not. 
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2. Example Decision Trees 

 

    The process of applying consistent judgement of 

correlation, when given consistent information is encoded 

into decision trees. Some example decision trees are given 

for uncertainties due to pitch, see Fig. 3., and uncertainties 

due to the separation, see Fig. 4., between two components. 

 

 
Fig. 3. Example of the Correlation Matrix Work Sheet. 

 

    Branches of the decision tree where information leads to 

the judgement that the same grid plate/assemblies are used. 

In the excel worksheet, pitch is i=2 and uncertainty from 

component separation is i=3, so the classification 

terminology will refer to rule 2 and rule 3, which are the 

trees for pitch and separation respectively. 

    Below is the decision tree for pitch, along with the 

judgement of the amount of shared uncertainty.      

   

     Rule 2.1: Core not rebuilt, so no elements have been 

resampled. Pitch uncertainty would be highly shared. 

[Assign 𝜌𝐴𝑖,𝐵𝑖 =0.99] 

    

    Rule 2.2: Core rebuilt, same fuel cladding, same number 

of elements, or elements removed. Rods would have been 

removed and reinstalled leading to a small difference in the 

uncertainty from this component; however since it is a 

random uncertainty divided by the root of the number of 

elements it is unlikely to be a large component.  

[Assign 𝜌𝐴𝑖,𝐵𝑖 =0.99] 

       

    Rule 2.3: Existing core with fuel elements added from the 

same distribution as the original elements. 

[Assign 𝜌𝐴𝑖,𝐵𝑖 =0.99] 

     

    Rule 2.4: New elements added to existing core, different 

element/cladding properties. Grid uncertainties are 

correlated between cases. There is less correlation due to the 

difference in cladding diameters. If 50% of the elements are 

similar between cases, then the correlation will be assumed 

to be at least 𝜌𝐴𝑖,𝐵𝑖 =0.50 (or % of similar elements). If the 

experiments take place in air, or are not at all sensitive to the 

displacement of fluid, then the correlation will be more 

dependent on the grid place uncertainties and so can be 

taken to be 𝜌𝐴𝑖,𝐵𝑖 =0.99. 

[Assign 𝜌𝐴𝑖,𝐵𝑖  =% of similar elements if exp is in water, 

and c=0.99 if exp is in air] 

     

     New/Different Grid Plate or Assemblies used. 

     

     Rule 2.5: Fuel replaced with a different fuel type  

[Assign 𝜌𝐴𝑖,𝐵𝑖 =0.0] 

       

     Rule 2.6: Same fuel elements used with a different 

pitch/grid plate. This assumes that the uncertainty mostly 

dependent on the fuel and that the same manufacturing 

process is used for the different grids. This assumption will 

be refined if further information regarding the component of 

pitch uncertainty due to fuel vs. grid manufacture becomes 

available. It is based on the scenario where a pitch 

uncertainty has been given in the evaluation, but there is no 

decomposition of the uncertainty into components. 

[Assign 𝜌𝐴𝑖,𝐵𝑖 =0.80] 

         

       Rule 2.7: Different Fuel elements used, but sampled 

from the same distribution, with a different pitch/grid plate 

[Assign 𝜌𝐴𝑖,𝐵𝑖 =0.80] 

   

   So the above illustrates that the process involves reading 

an evaluation and deciding if one of the existing branches of 

the decision tree adequately describes how the experiment 

was done. If not, then a new branch needs to be added to the 

tree. Also the user can have a different assessment of the 

amount of shared variance from the leaves and future 

activities can involve comparisons of the range of 

judgements made by various experts. 

   The next example of decision trees involves the 

uncertainty from separation between two objects, see Fig. 4. 

The leaves of the tree are influenced by the experimental 

design. For example if the movable object is constrained to 

be in the same position because it is inserted into a fixed 

hole or groove, or whether the object freely placed between 

experiments. Even if two objects have moved, if they are 

reinserted into fixed positions, it is hypothesized that the 

uncertainties will be more correlated than if the positioning 

is arbitrary. Other leaves of tree are possible, but leaves 

have only been added when an experiment has been done 

that corresponds to a leaf. So the exercise is not to postulate 

all possible experimental procedures, but rather to sort the 

different ways an experiment has been done. 
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Fig. 4. Example of the Correlation Matrix Work Sheet. 

 

    Rule 3.1: Distance between two objects that haven’t 

moved. If the source of the geometry uncertainty is not 

changing between cases apply a correlation of 0.99. The 

separation uncertainty is divided by scenarios where the 

object is being reinserted into a fixed position, or not. The 

uncertainty is further broken down if 1 or 2 objects are 

being moved. The logic is that in general if an object is 

being continually reinserted into fixed positions, the 

uncertainty from the position will be more correlated 

between cases then if the objects are not being put into fixed 

positions as the later scenario will have more random 

uncertainty. [Assign 𝜌𝐴𝑖,𝐵𝑖 =0.99] 

    

 Moving objects not fixed: 

     

   Rule 3.2: Distance between a stationary object and 

movable object.  In this case the position of one object has 

changed. The uncertainty associated with the measuring 

equipment is likely the same, so the systematic component 

of the measurement uncertainty will result in correlation 

between the cases, while the random component will be 

uncorrelated. [Assign 𝜌𝐴𝑖,𝐵𝑖 =0.5] 

     

   Rule 3.3: Distance between two moveable objects. In this 

case the position of both objects have changed. The 

uncertainty associated with the measuring equipment is 

likely the same, so the systematic component of the 

measurement uncertainty will result in correlation between 

the cases, while the random component will be uncorrelated. 

Moving objects, being reinserted into fixed/constrained 

positions. [Assign 𝜌𝐴𝑖,𝐵𝑖 =0.2] 

     

    Rule 3.4: Distance between a stationary object and 

movable object. [Assign 𝜌𝐴𝑖,𝐵𝑖 =0.9] 

   

    Rule 3.5: Distance between two moveable objects. 

[Assign 𝜌𝐴𝑖,𝐵𝑖 =0.7] 

   

   The trees allow expedite the process of judgement, as if 

the procedure fits in a certain logical bin the user can rapidly 

look up an estimate of what correlation coefficient could be 

assigned. Furthermore, if they have a different judgment 

that correspond to the leaf of the tree, it is easy to overwrite 

the values in the excel sheet. 

 

IV. TESTING COVARIANCE 

 

     Nuclear data covariance matrices are constructed based 

on the best possible estimates of the true covariance, and so 

are not linked to a particular application. In the same way, 

covariance’s between integral experimental benchmarks 

should be application independent. In this section, general 

results are shown that provide an estimate of the impact 

adding experimental covariance to a generalized least 

squares code which is attempting to provide best estimates 

of parameters given both nuclear data and experimental data 

best estimate values and uncertainties. 

       Using the TSURFER routine in SCALE6.2 the impact 

of an experimental covariance matrix was analyzed. The 

tests were simplistic studies running the code with and 

without experimental correlations. The input data for all the 

runs consisted of sensitivity profiles computed using the 238 

group ENDF/B-VII.0 library distributed with SCALE and 

the 44 energy group nuclear data covariance library. The 

C/E values were done with continuous energy KENO using 

the ENDF/B-VII.0 library as these calculated results had a 

lower uncertainty from modelling approximations. Results 

presented in the following sections comprise the standard 

available output from a TSURFER calculation.  

 

1. Chi Squared Test 

 

    As far as the authors know, there is no foolproof test of 

the adequacy of an experimental covariance matrix. It is 

possible that better known and unknown tests exist.     

     Chi squared per degrees of freedom is a commonly used 

test that provides information on the consistency of the C-E 

discrepancies with the given uncertainty matrices. High chi 

squared values can mean that the nuclear data, or 

experimental uncertainties have been underestimated, or the 

correlation terms have been underestimated. Also 

undetected errors and biases will tend to increase chi 

squared. So when applying the metric it should be kept in 

mind that the existing combined nuclear data and 

experimental uncertainty matrix is being assessed. 

    The results of the chi squared test were analyzed. In 

TSURFER Chi squared values are computed using the 

initial discrepancy vector [C-E] di and the inverse of the full 

covariance matrix, Vij, which includes nuclear data and 

experimental covariance. 

 

𝜒2 = ∑ ∑ 𝑑𝑖𝑉𝑖,𝑗
−1

𝑗𝑖 𝑑𝑗                            (Eq. 3) 

 

  Two cases were examined, the initial chi squared values 

with and without covariance. Chi squared values were 

examined within an evaluation, so the plot shows chi 
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squared values for each evaluation were correlations were 

derived see Fig. 5. Note that increasing the degree of 

correlation has the effect of reducing the number of degrees 

of freedom. In the limit of full correlation, performing many 

experiments is the same as performing a single experiment,  

conversely, uncorrelated results are independent and thus 

represent the maximum number of degrees of freedom. This 

means that adding correlation data to an analysis while 

increase the initial chi squared per degrees of freedom value.    

 

 
Fig. 5. Example of the Correlation Matrix Work Sheet. 

 

    The initial chi squared values per degree of freedom for 

uncorrelated results usually below one, while when using 

correlation the value is typically above one. Clearly the 

assignment of correlation values changes the perception of 

whether the total, both nuclear data and experimental 

uncertainties are underestimated or not. Since removing an 

experiment should be done with caution and for justified 

reasons, no chi squared filter was applied here; however it is 

clear that some experimental values would be need to be 

further scrutinized if the correlated values are considered 

reasonable. 

 

2. Standard Deviation Test 

 

      The chi squared metric is sensitivity to biases, rather 

than the spread, so the next test was simply to examine the 

spread of C-E values after a generalized least squares fit 

both with and without experimental correlations as shown in 

Fig. 6. This test is more sensitive to C-E values that deviate 

from the average C-E value in a series; the metric is a 

measure of the random error within a series. If the 

experiments are uncorrelated the spread should be at least 

the experimental benchmark uncertainty. Additional spread 

would occur from the uncorrelated part of the nuclear data 

uncertainties. 

  The figure shows that the spread in C-E is often less than 

the experimental benchmark uncertainty, the grey shading, 

which is strongly consistent with there being correlations; 

the graph does not rule out the possibility of experimental 

uncertainties being overestimated in some cases. 

 

 
Fig. 6. Comparison of calculated C-E standard deviation, 

with the experimental uncertainty. 

 

3. Nuclear Data Adjustment Test 

 

   The final test examined the proposed nuclear data cross 

section adjustments both with and without experimental 

benchmark correlations. Adjustments were performed both 

within an experimental series and for the full set of cases 

where all benchmarks where placed into a single TSURFER 

input. Fig. 7. Shows the results for U
238 

inelastic and elastic 

cross section in the fast energy region, which was chosen as 

it had amongst the largest adjustments for each evaluation 

series. It is informative to compare the proposed LCT_com 

adjustment with and without correlations. The result is 

significantly different, as the uncorrelated adjustments are 

large as they are of the order of 40%, while the correlated 

adjustments are quite small and in the same direction. It is 

also interesting to see that the purposed adjustment for the 

full case is larger than the adjustments of any of the 

individual cases. When performing adjustments it should be 

kept in mind that we are working with a highly 

underdetermined system, and so the statistical power of the 

individual cases is quite low, but it appears that for the 

correlated cases a fairly stable proposed adjustment is 

proposed.     

 

V. CONCLUSIONS  

 

A database of uncertainties from ICSBEP evaluations 

has been created and used to create covariance matrices for 

cases within an evaluation. The covariance matrices are 

constructed based upon the judgement of the amount of 

shared uncertainty between cases. The results of testing the 

impact of the generated covariance matrices on standard 

metrics such as chi-squared, comparison of residuals, and 

nuclear data adjustment supported that the experimental 

benchmark uncertainties are correlated. Results were 

strongly influenced by the inclusion of covariance matrices. 

Further testing on specific applications is warranted.   
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Fig. 7. Fast cross section adjustments to U

238
 inelastic and elastic scattering cross section during TSURFER nuclear data 

adjustment, with and without correlations. 

 


