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Abstract - Consistent experiment data are crucial to adjust parameters of physics models and to determine best
estimates of observables. However, often experiment data are not consistent due to unrecognized systematic
errors. Standard methods of statistics such as χ2-fitting cannot deal with this case. Their predictions become
doubtful and associated uncertainties too small. A human has then to figure out the problem, apply corrections
to the data, and repeat the fitting procedure. This takes time and potentially costs money. Therefore, a Bayesian
method is introduced to fit and analyze inconsistent experiment data. It automatically detects and resolves
inconsistencies. Furthermore, it allows to extract consistent subsets from the data. Finally, it provides an
overall prediction with associated uncertainties and correlations less prone to the common problem of too
small uncertainties. The method is foreseen to function with a large corpus of data and hence may be used in
nuclear databases to deal with inconsistencies in an automated fashion.

I. INTRODUCTION

Evaluated nuclear data help to push forward the devel-
opment of novel nuclear facilities. They are needed as input
for transport and activation calculations. Any mistake or in-
consistency in the data may distort calculation results and, as
a consequence, may lead to suboptimal design choices with
regard to efficiency and safety.

The acquisition and determination of consistent nuclear
data are non-trivial tasks. Not all types of nuclear data required
for calculations are available from experiments. Especially
reaction data at higher energies are scarce. The remedy is to
use predictions of nuclear models or some series expansion
and to adjust the parameters to available experimental data.
The adjustment of parameters is usually done by a χ2-fit or the
Generalized Least Squares (GLS) method, e.g. [1].

The problem with these approaches is the inherent as-
sumption that experiment data are consistent, meaning the
data contain what they claim. Consistent experiment data are
an ideal. Experiments are complex and acquired raw data has
to be corrected for many effects such as background noise and
detector efficiency. Already if one such correction has not
been done properly, or the associated uncertainties are not es-
timated well, the experiment data are inconsistent. The visual
signature of inconsistent data sets are points whose error bars
mutually exclude each other.

Until now, besides using Chauvenet’s criterion to remove
outliers, e.g. [2, 3], a human had to resolve the inconsistencies
by reading the publications and trying to figure out which (if
any) data set is better and remove the other one. Unfortunately,
the publications are not always accessible or they do not
allow a clear statement about which data set is right or wrong.
In such a situation, we face the dilemma that rejecting one
data set would be arbitrary, but feeding contradicting data
sets to conventional fitting methods gives bad results. For
instance, the inclusion of two contradicting data sets leads to
a larger reduction of uncertainty than if including only one.
Common sense suggests that contradictions should increase
uncertainties.

The fitting method proposed in this paper resolves these
issues. Contradicting experimental data sets can be included at
once. The method automatically assigns additional uncertain-
ties to the data sets to achieve consistency. These additional
uncertainties enable the segmentation of the experiments into
consistent subsets. A human expert can then decide upon
which subset is most appropriate and feed it to a conventional
fitting method. The possibility to determine several interpreta-
tions of the data in form of consistent subsets is an advantage
over Chauvenet’s criterion, which yields only one interpreta-
tion. Furthermore, overall estimates, uncertainties and correla-
tions (in short covariance matrices) including all subsets can
be obtained by means of Monte Carlo sampling. As desired,
contradictory experiment data sets increase uncertainties. The
method is mathematically well founded within the framework
of Bayesian statistics.

Technicalities aside, the proposed method is related to the
procedures presented in [4, 5, 6]. These papers deal with the
problem of estimating an experiment covariance matrix which
may then be used to fit a model. In contrast to that, the method
introduced in this paper treats the estimation (or correction)
of experiment covariance matrices as an integral part of the
model fitting procedure.

The improved uncertainty quantification of evaluated nu-
clear data may be seen as the key feature of the proposed
method. The propagation of more realistic uncertainties of
nuclear data should lead to a better assessment of simulation
results and as a final consequence to safer and more efficient
nuclear facilities.

II. METHOD

1. Prototypic Model

To make the discussion of the proposed method more
practical, assume that we want to fit some total cross section
σ(E), which is a function of the incident energy E. We take
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as prototypic model the function

σfit(E) =

∑M
i=1 yiN

(
E | xi, λ

2
)

∑M
j=1N

(
E | x j, λ2

) . (1)

Expressions of this form appear in Nadaraya-Watson kernel
regression, which is a non-parametric method for fitting. The
function N(E | xi, λ

2) gives the probability density at loca-
tion E of a normal distribution centered at energy xi with stan-
dard deviation λ. The number of grid points xi, their locations,
and the standard deviation λ are fixed. The yi are the adjustable
’model’ parameters defining the shape of the function. For
notational convenience, we define the model parameter vector
y = (y1, · · · , yM)T . Given enough grid points, the function
in eq. (1) can mimic a multitude of possible shapes, which
are determined by the choice of y. This prototypic model is
representative for all models with a linear relationship between
model parameters and predictions. Therefore, the subsequent
discussion equally applies to e.g. Fourier expansions, Leg-
endre polynomials, and splines. Non-linear models can be
replaced by linear approximation or by a surrogate model
based on a multivariate normal distribution to make them ac-
cessible for the method, e.g. [7]. Of course, real physical
models which possess more structure can also be used instead
of series expansions.

2. Standard GLS Method and Preliminaries

The proposed method is formulated within the framework
of Bayesian statistics, e.g. [8]. We start with outlining the
popular GLS method, e.g. [1, 10], for nuclear data evaluation
and afterward introduce modifications leading eventually to
the new method. The Bayesian update formula reads

ρ(y |σexp, B) =
ρ(σexp | y, B) × ρ(y | y0, A0)

ρ(σexp)
. (2)

The probability density function (pdf) ρ(y | y0, A0) reflects the
prior knowledge about the model parameters. The standard
assumption is that the prior pdf for y is given by a multivariate
normal distribution with some center vector y0 and covariance
matrix A0, i.e. ρ(y | y0, A0) = N(y | y0, A0). The likelihood
ρ(σexp | y) gives the probability for observing the experimental
data set σexp under the condition that y is the true parameter
vector. It is also given by a multivariate normal distribution
N(σexp | S y, B). The covariance matrix B is assumed to be
known a priori and reflects the statistical and systematic errors
of the experiments.

The sensitivity matrix S maps the model parameters to the
observables of the experiments. It equals the Jacobian matrix,
which contains the derivatives of the model predictions with
respect to the model parameters. For instance, the Jacobian
matrix of the prototypic model introduced in eq. (1) is

S kl =
∂

∂yl
σfit(Ek) =

N(Ek | xl, λ)∑M
j=1N(Ek | x j, λ)

, (3)

where Ek denotes the energy associated with the kth measure-
ment point in σexp. This matrix is constant with respect to

the model parameters y, which holds true for linear models in
general.

The marginal likelihood ρ(σexp) yields the probability
density for σexp under all modelling assumptions and is deter-
mined by

ρ(σexp) =

∫
ρ(σexp | y, B) × ρ(y | y0, A0) dy . (4)

It rescales the product of likelihood and prior to become a
correctly normalized posterior pdf. Due to the form of a
multivariate normal pdf, conveniently expressed in terms of
its logarithm,

lnN(x | x0,Σ) = −
N
2

ln(2π) −
1
2

ln det Σ

−
1
2

(x − x0)T Σ−1(x − x0) (5)

with the center vector x0 containing N elements and the N ×N
covariance matrix Σ, the marginal likelihood can be calculated
analytically. The result is (e.g. [9, p. 93])

ρ(σexp) = N(σexp | S y0,M) with M = S A0S T + B . (6)

Consequently, also the posterior pdf in eq. (2) has a closed-
form solution. It is given by the multivariate normal distribu-
tion,

ρ(y |σexp, B) =N(y | y1, A1) with (7)

y1 =y0 + A0S T (S A0S T + B)−1(σexp − S y0) , (8)

A1 =A0 − A0S T (S A0S T + B)−1S A0 (9)

with the new center vector y1 and new covariance matrix A1 for
the model parameters. The application of these two formulas is
commonly understood as the GLS method. Depending on the
dimensions of the matrices, the following equivalent formulas
may be preferred:

y1 = A1

(
A−1

0 y0 + S T B−1σexp

)
, (10)

A1 =
(
A−1

0 + S T B−1S
)−1

. (11)

A derivation of eqs. (8) to (11) can be found in e.g. [10]. The
method of χ2-fitting can be regarded as a special case where
A0 = ηQ with a matrix Q of full rank and η→ ∞.

Defining a sensitivity matrix S ev to map to a suitable
output grid, the result of S evy1 together with the associated
covariance matrix S T

evA1S ev enters evaluated nuclear data files.
Finally, it has to be noted that σexp usually bundles data

sets from different experiments σexp,i. Each measurement vec-
tor σexp,i is associated with a covariance matrix Bi. Uncertain-
ties of distinct experiments will be assumed to be uncorrelated,
which gives rise to a block diagonal structure of B, with the Bi
as blocks. The block diagonal structure of B provides compu-
tational benefits and enables the application of the proposed
method to large data sets.
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3. New Method

A. Uncertainty about the Experiment Covariance Matrix

The standard GLS method assumes that the experiment
covariance matrix B is perfectly known a priori. However,
in reality it is often very difficult to account exactly for all
systematic uncertainties. This circumstance suggests to regard
B itself as uncertain. In practice, we introduce this additional
uncertainty by parameterizing the covariance matrix. More
precisely, each block Bi is parametrized individually. Among
the many possibilities, an additional normalization uncertainty
may be one of the most plausible options,

Ci(κi) = Bi + κ2
i σexp,iσ

T
exp,i . (12)

In an usual evaluation, a human evaluator would try to assign
a reasonable value for the parameter κi based on his knowl-
edge about the experiment. In the proposed method, most
probable values will be determined automatically. Because
the uncertainty about κi will be expressed in terms of a prob-
ability distribution, there is lots of flexibility to account for
prior knowledge. For instance, variations of κi could be re-
stricted to take place only in a certain interval. Noteworthy,
the parametrization in eq. (12) has to be seen as a suggestion
and other choices are equally reasonable. For example, if
one data set covers a broad range of incident energies, it may
suit to introduce an uncertainty component that exhibits only
mid-range energy correlation instead of a perfect correlation
between the errors at all energies. Such a parameterization
will be demonstrated and discussed at the end of section III..

B. Extended Bayesian Update Formula

The introduction of new variables into the inference proce-
dure necessitates an extension of the Bayesian update formula.
For convenience, we combine the variables κi associated with
different experiments to the vector κ. The Bayesian update
formula now reads

ρ(y, κ |σexp) =
ρ(σexp | y, κ) × ρ(y | y0, A0) × ρ(κ)

ρ(σexp)
. (13)

As in the case of the standard GLS, the likelihood is
given by a multivariate normal distribution, ρ(σexp | y, κ) =
N(σexp | S y,C(κ)). Noteworthy, the covariance matrix B is
replaced by C(κ) whose blocks are determined by eq. (12).
The specification of the prior for the model parameters
ρ(y | y0, A0) = N(y | y0, A0) mirrors the standard GLS method.
We postpone discussing the choice of the prior pdf ρ(κ) for a
moment.

Contrary to the standard GLS approach, the marginal
likelihood

ρ(σexp) =

∫ (∫
ρ(y,σexp | κ) × ρ(κ) dy

)
dκ

with ρ(y,σexp | κ) = ρ(σexp | y, κ) × ρ(y | y0, A0) (14)

has no straight-forward analytical solution. Only the inner
integral can be analytically evaluated. Noting that it has the

same form as eq. (4), the solution analogous to eq. (6) is

ρ(κ |σexp) ∝ ρ(σexp, κ) = N(σexp | S y0, M) × ρ(κ)

with M = S A0S T + C(κ) . (15)

Because this expression is proportional to the posterior pdf
ρ(κ |σexp), it is the key to assess the consistency of the ex-
periment data sets. The vector κ′ that maximizes eq. (15)
contains the most probable values for the parameters in the
experiment covariance matrix. It tells us which data sets are
consistent and which are not, and how wrong the inconsistent
ones are estimated to be. In the case of several local max-
ima, each maximum is associated with a certain interpretation
of the experiments. Details concerning the computation and
optimization of ρ(κ |σexp) will be discussed in section F.

C. Choice of the Shape of the Prior Distribution

For a full specification of ρ(κ |σexp), we have to define the
prior pdf ρ(κ). Knowledge about correlations between differ-
ent κi is usually limited. Furthermore, the automated detection
of most probable adjustments of the experiment covariance
matrix is one of the main reasons for the introduction of the
new method. Consequently, we want to avoid an informative
prior for the covariance matrix parameters.

The information content of a pdf can be characterized in
terms of entropy (e.g. [11])—the higher the entropy of a pdf,
the lower the information content. Given only the marginal
pdfs ρ(κi), i = 1..N with associated entropies H

[
ρ(κi)

]
, the

joint pdf ρ(κ) with highest entropy and compatible with all the
marginal pdfs is just the product of the marginal pdfs,

ρ(κ) = ρ(κ1)ρ(κ2) . . . ρ(κN) . (16)

This result follows from the subadditivity of the entropy [11,
p. 28],

H
[
ρ(κ1), ρ(κ2), · · · , ρ(κN)

]
≤

H
[
ρ(κ1)

]
+H

[
ρ(κ2)

]
+ ... +H

[
ρ(κN)

]
, (17)

with equality only if the variables κi are statistically inde-
pendent, i.e. the joint pdf factorizes into the product of the
marginal pdfs.

Concerning the functional form of ρ(κi), I investigated
the Laplace pdf, the normal pdf, and the improper uniform
pdf in a schematic evaluation of the neutron-proton total cross
section. The term improper refers to the fact that the uniform
pdf extends over the complete real line and hence cannot be
normalized. Details about the findings will be presented in
section III.. However, some results must be already anticipated
here in order to provide a complete picture of the method.

In my investigation, I found arguments in favor of the
Laplace pdf,

L(κi | δi) =
1
√

2 δi
exp

− √2 |κi|

δi

 . (18)

This pdf is symmetric with mean zero and standard devia-
tion δi. Experiments believed to be more correct could be
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associated with smaller δi than those being more distrusted.
However, in an automated evaluation without much human
involvement, there is no reason to favor one experiment over
another a priori. Therefore, I investigated only the case where
all δi are equal.

In the studied scenario, the experiment data in combina-
tion with the uniform distribution did not sufficiently constrain
the posterior pdf. Even though the most probable assignments
κ′ were usually reasonable, the relative standard deviations
of the κi exceeded thousand percent—unreasonably large. In
contrast to that, both the normal pdf and the Laplace pdf with
a reasonable standard deviation δ restricted sufficiently the
spread of ρ(κ |σexp). Noteworthy, the Laplace pdf tended to
set more κi to zero at the cost of slightly increased values of
non-zero parameters. I regard this behavior to favor sparse
solutions as beneficial. If this behavior is not desired, the
normal distribution should be prefered.

In fact, the logarithm of the product of identical Laplace
pdfs appears (up to a constant) as penalty term in LASSO
regression [12] where it serves the exact purpose of variable
elimination. To understand this behaviour, consider the set{
κ | τ = ρ(κ)

}
for a fixed positive real number τ and with ρ(κ)

being specified as a product of identical Laplace pdfs. The vec-
tors in this set define a hypercube whose corners are aligned
with the parameter axes. The gradient perpendicular to the
surface of this hypercube does almost everywhere not point ex-
actly to the origin of the coordinate system, as it would be the
case for the product of identical normal distributions. Instead,
following locally the direction of steepest ascent leads to a
vector with one component being zero, say κ1 = 0. Continuing
on the path of steepest ascent leads stepwise to the elimination
of more and more parameters. The center of the distribution
is reached only at the very end of the path. The process is
visualized in fig. 1. This theoretical argument explains why
the preference for sparse solutions is a general feature when
using a product of Laplace pdfs as prior pdf.

Fig. 1. Surfaces of equal probability for a product of three iden-
tical Laplace pdfs. Displayed is the octant where all parame-
ters have positive values. The blue arrows show an exemplary
path of steepest ascent.

D. Choice of the Parameter δ

The prior pdf ρ(κ) of the covariance matrix parameters κ
depends itself on parameters. In the last section we encoun-
tered the standard deviation δ as the parameter defining the
shape of the identical Laplace pdfs. We can make this de-
pendence explicit by writing ρ(κ | δ) instead of ρ(κ). Having
introduced a new parameter, which value should we assign to
it?

Again, we anticipate some results from section III. If
the κi denote normalization uncertainties, then δ should be
set to a plausible value for the normalization uncertainty. So
if we think it is quite probable that some experiments have
normalization errors between 5% and 10% which were not
considered in the original experiment covariance matrix B,
then δ should be also in that range. It appears that evaluation
results are only mildly dependent on the exact choice of δ.
This approach, however, is rather subjective. Next we discuss
data-driven approaches to alleviate the problem of subjectivity.

A sufficient criterion to determine whether the value of δ
is large enough is to calculate the generalized χ2-value

χ2(κ′) = (σexp − S y0)T [
M(κ′)

]−1 (σexp − S y0) (19)

where κ′ maximizes ρ(κ |σexp), see eq. (15). The quantity
χ2(κ′)/N, with N being the number of measurement points,
should be close to one. Otherwise one or more of the following
statements is true: 1) the value of δ is too low, 2) the model to
fit the data is misspecified, 3) a normalization uncertainty is
not enough to correct the misspecified experiment covariance
matrix. At the end of section III. we discuss besides a nor-
malization uncertainty also a more flexible energy-dependent
uncertainty.

An approach that directly aims at the determination of δ
is the maximization of the marginal likelihood ρ(σexp) defined
in eq. (14). Because the prior ρ(κ | δ) is conditioned on δ, we
more appropriately write ρ(σexp | δ) instead of ρ(σexp). The
resulting value represents the probability density to obtain
the measurement vector σexp given a certain value of δ. Of
course, this probability density is also conditioned on the as-
sumption of the model, the parameterization of the adjusted
experiment covariance matrix C, and the prior specifications
of all occurring parameters Selecting a value for δ that max-
imizes ρ(σexp | δ) is a sensible choice, effectively removing
subjectivity.

Unfortunately, it seems as there is no analytical expression
for ρ(σexp | δ). We can approximately solve the integral by
using Monte Carlo integration in combination with importance
sampling, e.g. [13, p. 131]. The idea is to identically rewrite
eq. (14) as

ρ(σexp | δ) =

∫
ρ(σexp | κ) × ρ(κ | δ)

φ(κ)
× φ(κ) dκ . (20)

Given that φ(κ) is a pdf from which we can draw a sam-
ple κ1, κ2, · · · , κK , an estimate of this integral is

ρ(σexp | δ) ≈
1
K

K∑
i=1

ρ(σexp | κi)
φ(κi)

× ρ(κi | δ) . (21)

The choice of φ(κ) will be discussed in a moment.



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Finding the value of δ that maximizes ρ(σexp | δ) means to
evaluate the integral for many possible values of δ. In order to
scan the parameter space in a systematic way, we can evaluate
the integral on a grid of reasonable values δ1, δ2, · · · , δM . In
fact, we can use the same sequence κ1, κ2, · · · , κK drawn from
φ(κ) to estimate all the integrals φ(σexp | δi), i = 1..M in paral-
lel. The ratios ρ(σexp | κi)/φ(κi) in eq. (21) are the same for all
integrals. Only the last factor ρ(κi | δ) has to be recomputed for
each value δi. Because it does not depend on the experiment
data sets and is of a simple form, e.g. a Laplace pdf, it can be
evaluated quickly.

How should the sampling distribution φ(κ) be chosen? A
sampling distribution that declines at a faster rate in the tails
than the other part of the integrand destroys convergence in
importance sampling. In order to protect against this case, we
define a mixture of possible posterior pdfs associated with the
values δ j on the grid,

φ(κ) = I × N(σexp | S y0, M(κ)) ×
∑

j

ρ(κ | δ j) . (22)

We emphasize the dependence of M on κ, see eq. (15). The
normalization constant I is not required to generate samples if
using the Metropolis-Hastings (MH) algorithm [14] (see also
the appendix).

The fact that the pdf φ(κ) enters eq. (21) and hence es-
timates of ρ(σexp | δm) depend on I is not important. Since
the normalization I affects each estimate in the same way, its
value does not influence the relative likelihoods.

Due to the form of eq. (22) and due to ρ(σexp | κi) =
N(σexp | S y0, M(κ)), the estimate in eq. (21) simplifies to

ρ(σexp | δm) ≈
1
IK

K∑
i=1

ωm(κi) (23)

with the abbreviation

ωm(κi) =
ρ(κi | δm)∑

j ρ(κi | δ j)
. (24)

The value δm′ associated with the biggest value
ρ(σexp | δm′ ) should be selected for the analysis.

E. Overall Prediction and Covariance Matrix

Besides finding consistent subsets of experiments, which
is a question of maximizing ρ(σexp | δ) given in eq. (15), we
may be interested in an overall prediction and the associated
covariance matrix by averaging over all possible interpreta-
tions. Technically, to find the overall prediction, we have to
solve

ŷ = E[y] =

∫ ∫
y ρ(y, κ |σexp) dy dκ

=

∫ (∫
y ρ(y | κ,σexp) dy

)
ρ(κ |σexp) dκ .

(25)

The inner integral yields the expectation of y under
ρ(y | κ,σexp). This conditioned posterior pdf has the same func-
tional form as the posterior pdf of the standard GLS method

in eq. (7). For the latter distribution we know the result of the
integral, which is eq. (8). Therefore, the result of the inner
integral in eq. (27) is given by

y1(κ) = y0 + A0S T
(
S A0S T + C(κ)

)−1
(σexp − S y0) . (26)

If the computation of the inverse matrix is infeasible, the form
of eq. (10) can be used. Using this analytic expression, the
integral in eq. (25) takes the form

ŷ = E[y] =

∫
y1(κ) ρ(κ |σexp) dκ . (27)

Likely no analytic solution exists for this remaining integral
and we have to take recourse to Monte Carlo integration.

The simplification of the integral for the overall covari-
ance matrix follows analogous steps. The overall covariance
matrix can be written as

Σ̂ = E[yyT ] − E[y]E[yT ]

=

∫ (
yyT − ŷŷT

)
ρ(y, κ |σexp) dy dκ

=

∫ (∫
yyT ρ(y | κ,σexp) dy

)
ρ(κ |σexp) dκ − ŷŷT .

(28)

Using the identity

A1 =

∫
yyT ρ(y | κ,σexp) dy − y1(κ)y1(κ)T (29)

whose solution is analogous to the standard GLS method, see
eq. (9),

A1(κ) = A0 − A0S T
(
S A0S T + C(κ)

)−1
S A0 , (30)

we can express eq. (28) as

Σ̂ =

∫ (
A1(κ) + y1(κ)y1(κ)T

)
ρ(κ |σexp) dκ − ŷŷT . (31)

As for the overall prediction, also this integral likely has no
analytic solution.

Consequently, the integrals for the overall prediction in
eq. (27) and the overall covariance matrix in eq. (31) have to
be solved by means of Monte Carlo integration. One possi-
bility is to obtain a sample κ1, · · · , κK from ρ(κ |σexp) using
the Metropolis-Hastings algorithm (see the appendix) and to
approximate the integrals in terms of mean values. The ap-
proximations for the overall prediction and covariance matrix
are then

ŷ ≈
1
K

K∑
i=1

y1(κi) , and (32)

Σ̂ ≈
1
K

K∑
i=1

(
A1(κ) + y1(κ)y1(κ)T

)
− ŷŷT . (33)

However, if we have determined the most likely standard
deviation δ for the multivariate Laplace prior according to
the sampling procedure outlined in section D., there is an
alternative route. We can reuse the samples κ1, · · · , κK drawn
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from the mixture pdf φ(κ) specified in eq. (22). Using the
notation ωm(κi) introduced in eq. (24), the approximations are
given by

ŷ ≈
1
JK

K∑
i=1

ωm(κi) y(κi) , and (34)

Σ̂ ≈
1
JK

K∑
i=1

ωm(κi)
(
A1(κ) + y1(κ)y1(κ)T

)
− ŷŷT . (35)

The index m refers to the value δm that has been selected as the
most likely candidate. The unknown normalization constant
J can be estimated by

J =
1
K

K∑
i=1

ωm(κi) . (36)

Please note that this normalization constant is not identical to
I of eq. (24) because it is also determined by the unknown
normalization of the posterior pdf ρ(κ |σexp).

The described scheme of approximation is known as self-
normalized importance sampling in the statistics literature,
e.g. [13, p. 131]. The approach to solve some integrations of
a multi-dimensional integral analytically and to use Monte
Carlo sampling to evaluate the remaining integrals is termed
as Conditional Monte Carlo in [13, p. 125].

F. Efficient Computation

The identification of plausible covariance matrix param-
eters κ (e.g. normalization uncertainties) is a question of
maximizing ρ(κ |σexp) ∝ ρ(σexp | κ) × ρ(κ) given in eq. (15).
Also determining an overall prediction and the associated co-
variance matrix involves the evaluation of this pdf. The prior
pdf ρ(κ) can be calculated quickly if opting for a product of
Laplace or normal pdfs. Contrary to that, the computation of
the likelihood ρ(σexp | κ) = N(σexp | S y0, M) may be compu-
tationally expensive. Inspecting the form of this multivariate
normal pdf,

lnN
(
σexp | S y0,M(κ)

)
= −

N
2

ln(2π) −
1
2

ln det M(κ)

−
1
2

(σexp − S y0)T (M(κ))−1 (σexp − S y0) (37)

with M(κ) = S A0S T + C(κ), we see that the expensive opera-
tions are the calculation of the determinant and the inversion of
the matrix M. The dimension of this matrix is determined by
the total number of experiment data points. The time to invert
a 104 × 104 matrix may be tens of seconds on a contemporary
personal computer. In addition, numerical maximization and
the generation of a Monte Carlo chain require at least thou-
sands of function evaluations. Clearly, to efficiently compute
ρ(σexp | κ) is important. This section explains therefore the
efficient computation of lnN(σexp | S y0, M) and its gradient
d(ln ρ(κ |σexp))/ dκ. Having an analytic expression for the
gradient offers great benefits in numerical maximization.

Inverse matrices will often appear in the discussion, so
we use the notation X̃ instead of X−1 to save space. Further,

we just write C and M from now on, but the dependence
on κ should be kept in mind. Using the Woodbury identity
(eq. (B.15) in the appendix), we express the inverse of M as

M̃ = C̃ − C̃S
(
Ã0 + S T C̃S

)−1
S T C̃ . (38)

The measurement vector σexp is partitioned into sub-
vectors σexp,i associated with different experiments. For each
σexp,i there is a sensitivity matrix S i to map from model param-
eters to the respective predictions. Therefore, the sensitivity
matrix is partitioned into S = (S T

1 , · · · , S
T
N)T . Exploiting this

partitioned form and the the block diagonal structure of C̃
allows us to write

S T C̃S =
∑

k

S T
k C̃kS k . (39)

Because the number of data points in one data set is usually
limited, say less than hundred, the computation of the inverse
matrices C̃k can be performed fast on contemporary personal
computers. The sum of matrices in the brackets in eq. (38)
leads to a matrix of the same dimension as Ã0, hence it is
determined by the number of model parameters. I expect
models or series expansions not to have more than hundreds
of adjustable parameters.

The inverse matrix M̃ appears only in the matrix product
uT M̃u with u = σexp − S y0. Also u is partitioned into sub-
vectors ui = σexp,i − S iy0. Noting that

C̃u =

((
C̃1u1

)T
, · · · ,

(
C̃NuN

)T
)T

(40)

is a vector and considering the form of eq. (38), we see that
uT M̃u can be completely evaluated in terms of computation-
ally cheap matrix-vector products.

To tackle the determinant, we use the matrix determinant
lemma (eq. (B.14) in the appendix) to obtain

ln |M| = ln |Ã0 + S T C̃S | + ln |C| + ln |A0| =

= ln

∣∣∣∣∣∣∣Ã0 +
∑

k

S T
k C̃kS k

∣∣∣∣∣∣∣ +
∑

k

ln |C̃k | + ln |Ã0| ,
(41)

with |X| being the short-hand notation for det X. To get from
the first to the second line, we used eq. (39) and the fact that
the determinant of a block diagonal matrix is the product of
the block determinants. As elaborated above, determinants
have to be taken only from comparatively low dimensional
matrices.

Finally, we briefly discuss how to calculate the gradient
of ln ρ(κ |σexp). Blocks of M̃ are given by

M̃i j = δi jC̃i − C̃iS i

Ã0 +
∑

k

S T
k C̃kS k

−1

S T
j C̃ j , (42)

where δi j = 1 for i = j and δi j = 0 for i , j. The derivative of
ln |M| in eq. (37) can be written as (eq. (B.10) in the appendix)

∂ ln |M|
∂κi

= Tr
[
M̃
∂C
∂κi

]
= Tr

[
M̃ii

∂Ci

∂κi

]
. (43)



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

The partial derivatives of the matrix product with respect to
the parameters κi are (eq. (B.5) in the appendix)

∂uT M̃u
∂κi

= −uT M̃
∂C
∂κi

M̃u = −uT M̃.i
∂Ci

∂κi
M̃i.u . (44)

A point in the index of a matrix denotes the inclusion of all
rows or columns. Again, exploiting the partitioned form in
eq. (40), the evaluation of this quantity only involves com-
putationally inexpensive matrix-vector products. The inner
derivative completes the determination of the gradient. For the
normalization uncertainty defined in eq. (12), we get

∂Ci

∂κi
= 2κi

(
σexp,iσ

T
exp,i

)
. (45)

Now, equipped with an analytic expression for the
gradient ( d/ dκ)(lnN

(
σexp | S y0,M(κ)

)
), the full gradient

d(ln ρ(κ |σexp))/ dκ is straight-forward to compute. Consider-
ing the complete log-posterior pdf

ln ρ(κ |σexp) C
= ln ρ(σexp | κ) + ln ρ(κ) , (46)

we just have to add d(ln ρ(κ))/ dκ. In the case of identical
Laplace pdfs, see eq. (18), the components of the latter gradi-
ent are

∂ ln ρ(κ)
∂κi

= −

√
2
δ

sign(κi) (47)

with sign(κi) being either −1 or +1 according to the sign of κi.
In summary, this section elaborated on the efficient com-

putation of ln ρ(κ |σexp) and its gradient. The inversion and the
determinant of the potentially large matrix M have been trans-
formed to the same operations on the comparatively small ma-
trix

(
Ã0 + S T C̃S

)
. The size of the latter matrix is determined

by the number of model parameters. Due to the block-diagonal
structure of C, the inversion can be performed fast and yields
another block-diagonal matrix. The resulting matrix C̃ only
enters an inexpensive matrix-vector product whose evaluation
profits again from the block-diagonal structure of C̃. For the
same reasons, the analytic expression of the gradient can be
also computed quickly.

Finally, the availability of the gradient enables the ap-
plication of gradient-based optimization algorithms, such as
the BFGS [15] or L-BFGS algorithm [16]. Especially the
latter algorithm is very memory efficient and hence suited for
a scenario with many experiment data sets. As another useful
feature, it allows the specification of parameter boundaries.

III. DEMONSTRATION AND DISCUSSION

The method will be demonstrated at the example of eleven
data sets taken from [17] with measurements of the proton-
neutron total cross section. I selected the data points with
incident momenta (in the laboratory frame) between 0.5 GeV/c
and 5 GeV/c because many discrepant data sets are available
in this range. I assume that only statistical uncertainties are
present, which leads to a diagonal matrix B. Correlated errors,
such as an uncertainty about the detector efficiency, could
also be included, but the respective information is not always
available in nuclear databases. The experiment data are shown

Fig. 2. Experiment data used in the schematic evaluation.
The black line is the resulting prediction from a GLS fit of
the original data without any correction of the uncertainty
assumptions.

in fig. 2. Considering the extent of the error bars indicating
the 68% confidence interval, the data are clearly inconsistent.

The series expansion introduced in eq. (1) with fifty ex-
pansion terms provides the model to fit the data. The exact
specification employed in this section is given by

σfit(E) =

∑50
i=1 yiN

(
E | xi, λ

2
)

∑50
i=1N

(
E | xi, λ2) (48)

with λ = 0.2 and x j = 0.2 + i × (5 − 0.5)/50. This model
imposes a certain degree of smoothness on the cross section
curve but besides that can adapt flexibly to the data.

The prior ρ(y | y0, A0) for the parameter vector y is a mul-
tivariate normal distribution N(y | y0, A0) with all elements in
y0 equal forty. The associated prior covariance matrix A0 is
diagonal with all elements equal thousand. This prior covers
well the experiment data.

Using the standard GLS method to fit the model yields
the curve illustrated in fig. 2. The 68% error band is hardly
visible at most energies. Further, the fit runs in between the
data sets around 1.5 GeV/c and the associated uncertainty
band excludes them. This observation is associated with the
presence of inconsistent data. The result of the GLS method
serves as a reference to which the results of the proposed
method can be compared.

In the first part of the demonstration, blocks of the ad-
justed covariance matrix C(κ) are parameterized as

Ci(κi) = Bi + κ2
i σexp,iσ

T
exp,i . (49)

This parameterization introduces an additional normalization
uncertainty κi for each experiment data set. Therefore, the
vector κ contains eleven variables. Afterward, the method
will be also applied with a more flexible energy-dependent
parameterization.
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Because normalization uncertainties κi are themselves
uncertain, we need to specify a prior pdf ρ(κ | δ). I tested the
method with the following three prior specifications:

ρU(κ) = const , (50)

ρN(κ | δ) =

11∏
i=1

1
√

2π δ
exp

−1
2
κ2

i

δ2

 , (51)

ρL(κ | δ) =

11∏
i=1

1
√

2 δ
exp

− √2 |κi|

δ

 . (52)

The first pdf is an improper uniform pdf. Using this prior pdf,
the posterior pdf ρ(κ |σexp) is exclusively determined by the
marginal likelihood ρ(σexp | κ). The second pdf is a product
of identical normal distribution and the third pdf a product of
identical Laplace pdfs. The parameter δ signifies in both cases
the standard deviation of the distribution.

1. Selection of δ

In order to carry out the method with either ρN(κ | δ) or
ρL(κ | δ), a suitable δ has to be selected. Linked to these prior
pdfs are the following mixture pdfs:

φN(κ) = IN × N(σexp | S y0, M(κ)) ×
30∑
j=1

ρN(κ | δ j) , (53)

φL(κ) = IL × N(σexp | S y0, M(κ)) ×
30∑
j=1

ρL(κ | δ j) . (54)

The functional form of these pdfs was introduced in eq. (22).
The components are characterized by δ j = 0.01 × j and the
normalization constants IN,IL are set to one. Considering
fig. 2, the appropriate value of δ is somewhere between 1%
and 30% and hence the form of the mixture pdfs justified.

Next, a sample of each mixture has to be obtained by
means of the Metropolis-Hastings algorithm. I employed
ψ(κ′ | κ) = N(κ′ | κ, τ21) as proposal pdf. After tentative runs
of the MH algorithm with different values of τ, the assignment
τ = 0.045 turned out to be a good choice yielding acceptance
rates around 30% for both mixture pdfs. Unless otherwise
stated, this proposal distribution is employed throughout the
demonstration. In principle, the choice of τ could be auto-
mated, too, e.g. [18]. Investigation in this respect is left as
future work.

Finally, I created for each mixture pdf a Monte Carlo
chain with one million vectors. The evolution of log φL(κ)
as a function of the iteration count is illustrated in fig. 3. No
obvious drift can be noticed, which gives evidence that the MH
chain represents a sample from φL(κ). The density evolution
plot for log φN(κ) looked similar without any sign of drifting.

Calculating the marginal likelihood ρ(σexp | δ j) according
to eq. (23) for all δ j in the mixture pdf φL(κ), we learn that
the maximum appears at δL = 0.13. Hence, this value should
be used in the procedure. The respective value in the case of
φN(κ) was δN = 0.11.

One may be concerned that the peak is rather flat and the
relative likelihoods associated with δ values in vicinity are sim-
ilar, as visualized by the green line in fig. 4. This observation

Fig. 3. Evolution of log φL(κ), see eq. (54), in the process of
MH sampling.

Fig. 4. Fluctuations in the estimate of the parameter δ that
maximizes ρL(σexp | δ). Red vertical lines and overlaid per-
centage numbers indicate the proportion of cases that led to
the estimate at the respective value of δ.

begs the question of how strong the position of the maximum
fluctuates if estimated from a smaller chain. To address this
question, I cut the MC chain into chunks consisting of 104

vectors and estimated the relative likelihoods and the position
of the maximum on the basis of each chunk. The ensemble of
black curves in fig. 4 conveys an impression of the variations
in the relative likelihoods. The red vertical lines denote which
δ values were identified as maxima according to the chunks.
The overlaid percentages display the proportion of chunks
with the respective location as maximum. In spite of the rather
large fluctuations of the relative likelihoods, the maximum
of δ was estimated to be either 0.13 or 0.14 in 74% of the
cases. In all cases, the maximum was situated between 0.11
and 0.17. At first glance, this rather large spread suggests to
always construct long chains—a time-consuming process. For
example, the generation of one million vectors took about six
hours on a contemporary personal computer. However, one
reason for the large spread is the insensitivity of the likelihood
ρ(σexp | κ) to the choice of δ. This feature implies that the
mean vector ŷ calculated from the posterior pdf according to
eq. (27) is also rather insensitive to the exact value of δ. Thus,
the fluctuations of a few percent are acceptable and a MC
chain with 104 vectors seems (at least in the studied example)
sufficient. Further evidence for the validity of this statement
will be provided in the next sections.
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2. Segmenting Experiment Data into Subsets

Consistent subsets of data can be found by maximizing
the marginal posterior pdf ρ(κ |σexp). The three prior pdfs
introduced in eqs. (50) to (52) lead to the following posterior
pdfs:

ρU(κ |σexp) = IU × N(σexp | S y0, M(κ)) × ρU(κ) , (55)
ρN(κ |σexp) = IN × N(σexp | S y0, M(κ)) × ρN(κ | δN) , (56)
ρL(κ |σexp) = IL × N(σexp | S y0, M(κ)) × ρL(κ | δL) . (57)

The normalization constants IU,IN,IL are not required for
the maximization. We can conveniently set them to one. The
values δN = 0.11 and δL = 0.13 are taken from the previous
section.

Because the posterior probability densities usually cover
a huge range, which easily leads to a numerical over- or un-
derflow, the numerical maximization was carried out for the
logarithms of these pdfs. The L-BFGS-B algorithm [16] as
implemented by the optim function in the statistical program-
ming language R [19] proved to be reliable. This algorithm
takes advantage of an analytic expression of the gradient, see
the derivation starting from eq. (42). Furthermore, it permits
the specification of box constraints. Box constraints can be
used to effectively deal with proper uniform priors. Yet, more
important for our case, we can constrain parameters to be
positive and exclude zero as solution. Taking into account
the form of eq. (49) and how it enters the multivariate nor-
mal pdf in eq. (37), we recognize the posterior pdfs to be
symmetric around κ = 0. This insight justifies the restriction
to positive values. The exclusion of zero is important in the
case of ρL(κ |σexp) as the gradient exhibits a discontinuity if
some κi = 0. The L-BFGS-B algorithm relies on the gradient
to be continuous, and thus discontinuities potentially cause
problems.

Due to these reasons, I constrained all κi to lie between
1 × 10−4 and 5 × 10−1. The upper bound protects against un-
reasonable solutions with normalization uncertainties greater
than 50%. Concerning the overall setup of the L-BFGS-B
algorithm, I limited the maximal number of iterations in the
numerical maximization procedure to thousand and specified
that the Hessian matrix should be estimated based on the prece-
dent twenty iteration steps. For each maximization attempt,
the vector κ was initialized with values drawn uniformly from
the range between 1 × 10−4 and 5 × 10−1. Each maximiza-
tion attempt was repeated ten times to ensure that the global
maximum has been indeed found.

The results of the numerical maximization are summa-
rized in table I. The solutions based on ρU and ρN are compara-
ble in structure. The same κi are set to zero, only the remaining
κi are pulled closer to zero in the case of ρN. Albeit the slightly
more constrained solution, the χ2/N value associated with
ρN is only a bit larger and still below one. This observation
suggests that ρN should be preferred over ρU.

Comparing ρN and ρL, we can make the interesting ob-
servation that more parameters κi are set to zero in the case
of ρL despite the standard deviation δL being larger than δN.
Figure 1 visualized the reason for this behavior. The non-zero
parameters of the two solutions are very similar. Further, both

Fig. 5. The black line labelled with ρL shows the posterior
maximum associated with the prior in eq. (52) with δ = 0.13.
The blue dashed line and the red solid line in vicinity are the
maxima of ρU and ρN with δ = 0.11. The upper two black
lines are the maxima of ρL with δ = 0.13 under the constraint
that κ3 = 0 and κ6 = 0, respectively.

solutions are consistent because their χ2/N values are close to
one. Ockham’s principle states that among the many explana-
tions compatible with a certain observation, the explanation
with the least assumptions should be chosen. According to
this principle, the pdf ρL should be preferred over ρN because
it favors sparse solutions.

Figure 4 showed the fluctuations in the determination
of δL. To study the sensitivity of the maximum κ to the choice
of δL, I performed the maximization also for ρL with δL = 0.17.
The result displayed in table I is hardly different from the
result based on ρL with δL = 0.13. Consequently, as already
conjectured in the previous section, the fluctuations of δ do
not significantly alter the results.

The discussion so far provided arguments in favor of ρL(κ)
as prior pdf. Please note, however, that all prior specifications
led to acceptable values of χ2/N. If the χ2 value really comes
from a χ2-distribution, then its standard deviation is σ =

√
2N.

Because there are 84 experiment data points in total, we get
σ/N = 0.15. The associated 95% interval [0.7, 1.3] includes
all observed χ2/N values. This fact indicates that the method
is effectively able to correct the uncertainty assumptions of the
experiments. Contrary to that, the GLS fit of the uncorrected
data is associated with the too large value χ2/N = 16.13.

The segmentation of data sets can be performed by remov-
ing data sets whose normalization constants exceed a certain
threshold. We can assume that one (or several) data sets are
correct and fix their κi at zero during the optimization. Table I
shows this constrained optimization for ρL with δ = 0.13 and
either κ3 = 0 or κ6 = 0 fixed. The predictions of the GLS
method, see eq. (26), using the obtained vectors κ are depicted
in fig. 5. In contrast to the GLS fit of the uncorrected data
shown in fig. 2, these fits agree well with the data sets that
were a priori assumed to be correct.

Finally, one mode of failure must be mentioned. If a
normalization uncertainty for each data set is not sufficient
to achieve consistency among data sets, we may also get un-
favorable results with the new approach. For example, just
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δ ` κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8 κ9 κ10 κ11 χ2/N

GLS — — .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 16.13
ρU — — .00 .04 .10 .00 .00 .14 .13 .06 .10 .00 .13 0.73
ρN .11 — .00 .03 .07 .00 .00 .10 .09 .04 .05 .00 .09 0.79
ρL .13 1.0 × 100 .00 .00 .07 .00 .00 .09 .09 .03 .00 .00 .08 0.82
ρL .13 1.8 × 10−3 .00 .09 .00 .07 .07 .03 .03 .01 .00 .07 .00 0.98
ρL .13 1.2 × 10−5 .00 .12 .03 .10 .10 .00 .00 .06 .00 .10 .00 1.07
ρL .17 — .00 .00 .07 .00 .00 .10 .09 .04 .00 .00 .09 0.81

TABLE I. Posterior maxima κ based on the prior distributions specified in eqs. (50) to (52). For the pdfs ρN and ρL, results based
on different values of δ are presented. Square brackets denote that the respective κi was fixed at zero. The index i refers to the
experiment data set, see fig. 2. The value χ2/N is the result of eq. (19) divided by the number of data points. Relative likelihoods
` are stated for the case ρL with δ = 0.13.

as in the standard GLS fit of the uncorrected data, the predic-
tion could run in between the data sets and exhibit too small
uncertainties.

Nevertheless, even in this scenario, we may still use the
method in combination with normalization uncertainties as ex-
ploration technique. Even though a normalization uncertainty
would not be enough to make the data sets consistent, very
likely the method would still identify inconsistent data sets by
introducing large normalization uncertainties.

Another option is to use a more flexible parametrization
of the covariance matrix C(κ), which is able to model more
elaborate uncertainty assumptions. This approach will be
discussed and demonstrated in section 4..

3. Overall Prediction and Covariance matrix

The additional layer of uncertainty about the normaliza-
tion uncertainties κi also increases the uncertainty in the fi-
nal estimates of the model parameters. The posterior pdf
ρ(κ |σexp) provides the probability density for any choice of κ.
Each of these choices produces a different result in the GLS
method. Therefore, the overall prediction is calculated as a
weighted mean of all these results, see eq. (27). Analogously,
also the overall covariance matrix is—loosely speaking—the
weighted mean of the covariance matrices conditioned on the
different choices of κ, see eq. (31).

It turned out that the uniform prior ρU did not lead to
reasonable solutions. The MC chain to draw samples from
ρU(κ |σexp) given in eq. (56) did not reach its stationary dis-
tribution even after one million iterations. The employed
proposal pdf ψ(κ′ | κ) = N(κ′ | κ, τ21) with τ = 0.3 lead to
acceptance rate of 30% and more. The evolution of the chain
is illustrated in fig. 6. I performed several runs of the MH
algorithm, but the observed behavior persisted. The parame-
ters κi acquired values in the order of hundred and sometimes
even thousand. Normalization uncertainties of 10000% are
clearly absurd in our scenario. Taking into account that the
maximum of ρU(κ |σexp) shown in table I was reasonable, I
conclude that the data alone do not sufficiently constrain the
normalization uncertainties. Technically, the determinant in
eq. (37) responsible for the decline of the probability density
does not grow fast enough with increasing κi. Inspecting plots
of the probability density as a function of the parameters κi

confirmed this hypothesis.
The chains to draw samples from ρN(κ |σexp) with δN =

0.11 and ρL(κ |σexp) with δL = 0.13 behaved well. Because
their predictions and associated uncertainties were visually
indistinguishable, I only discuss the case of ρL. The overall
prediction is illustrated in fig. 7. Interestingly, it coincides
with the prediction associated with the posterior maximum,
compare with fig. 5. Only the 1σ uncertainty band of the over-
all prediction is larger than that one of the posterior maximum
prediction, which is the expected behavior due to averaging
over the covariance matrices.

Two marginal posterior distributions ρ(κi |σexp), i ∈ {1, 3}
are shown in fig. 8. These distributions are considerably right-
skewed. The distribution for κ3 rises sharply on the left and
declines moderately on the right. The sharp rise is due to the
term proportional to the negated χ2-value in the second row
of eq. (37). This term saturates for large enough vectors κ.
From this point onwards, the multivariate Laplace prior ρL(κ)
is mainly responsible for the decline. Without the Laplace
prior, the decline would be driven only by the determinant in
the first row of eq. (37). As was illustrated in fig. 6, the rate of
decline in the latter case is too low. Please note that all these
observations are specific for the assumption of a normalization
uncertainty.

It may disturb to see the overall prediction running be-
low the majority of the data points, but one should keep in
mind that the method makes an assessment at the level of

Fig. 6. Evolution of φU(κ |σexp), see eq. (56), in the process
of MH sampling.
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Fig. 7. Lower curve shows the overall prediction and associ-
ated 1σ-confidence band. The light-blue edge indicates the
extent of uncertainty linked to the posterior maximum predic-
tion. The upper curve shows the overall prediction under the
constraint κ6 = 0.005.

complete data sets. A data set with more points does not get
more weight than one with less points, hence we may call the
method ‘democratic’. This feature is also reasonable from an
evaluation point of view. A data set is a unit which usually
comprises measurements from the same experiment. If one
data point is affected by an unrecognized systematic error, very
likely the other data points are too. This democratic feature is
also backed up by the numbers. The solution corresponding
to the overall prediction in the forth row of table I is indeed
associated with the least number of non-zero normalization
uncertainties.

Nevertheless, if we believe one of the data sets containing
more points to be adequate, because it is more recent, comes
with a detailed error analysis or measurements were performed
with superior technology, we can account for this prior knowl-
edge. As an example, I fixed the normalization uncertainty of
Bugg to κ6 = 0.005 and only allowed variations of the remain-
ing parameters in the MH algorithm. The resulting prediction
is also depicted in fig. 7.

4. Beyond a Normalization Uncertainty

Introducing a normalization uncertainty for each data set
may not always be enough to correct inconsistencies. A χ2/N
value calculated according to eq. (19) significantly larger than
one indicates such cases. We may use then a more general
parametrization of the adjusted covariance matrix C. We recall
the assumption of vanishing correlations between data sets, so
the matrix C is block-diagonal with the blocks Ci. An example
of a more general parametrization of the blocks is given by

Ci jk(κi, λi) = Bi + κ2
i exp

− 1
2λ2

i

(Ei j − Eik)2
σi jσik . (58)

This form is motivated by the squared exponential function
commonly used in Gaussian process regression, e.g. [20]. The
quantities Ei j and Eik denote the momentum of the jth and
kth data point of the experiment data set associated with Ci.

Fig. 8. Estimates of the marginal posterior distributions
ρL(κ1 |σexp) and ρL(κ3 |σexp) obtained from a MH chain.

The notation for the measured cross sections σi j and σik is
analogous.

The variable κi denotes the relative standard deviation
of the additional uncertainty component at all energies. The
length-scale λi determines how quickly the a priori unknown
error in the measured data points is allowed to change as a
function of momentum. In the limit λi → ∞, this parametriza-
tion is equivalent to the assumption of a normalization uncer-
tainty, compare with eq. (49). Since the presented experiment
data span a momentum range from 0.5 to 5 GeV/c, values
beyond λi = 20 already resemble in good approximation a
normalization uncertainty. The other extreme case λi → 0 im-
plements the assumption of white noise. Intermediate values
are well suited to capture unrecognized momentum-dependent
uncertainties, such as those related to detector efficiency.

Locating the posterior maximum profits from the avail-
ability of an analytic expression for the gradient. The com-
putation of the gradient was discussed starting from eq. (42).
It involved the partial derivatives of the adjusted covariance
matrix C. For the parametrization in eq. (58), they are given
by

∂Ci(κi, λi)
∂κi

= 2κi exp
− 1

2λ2
i

(Ei j − Eik)2
σi jσik (59)

∂Ci(κi, λi)
∂λi

=
κ2

i

λ3
i

(Ei j − Eik)2 exp
− 1

2λ2
i

(Ei j − Eik)2
σi jσik

(60)

The parameters κi here have the same meaning as the
equally named parameters linked to the magnitude of the nor-
malization uncertainty in the previous sections. Therefore,
we can also impose the multivariate Laplace prior ρL(κ | δ)
in eq. (52) on them. Even though the automatic selection of
δ could be done as for the normalization uncertainty, I just
adopted the value δL = 0.13 for the sake of simplicity.

Some testing indicated that the marginal likelihood is
rather sensitive to a length-scale λi if the points of the re-
spective data set Di are dispersed over a broad momentum
range. However, the marginal likelihood becomes insensitive
if the length-scale is much larger than the momentum spread
of the points. Owing to these two observations, I opted for a
multivariate Laplace prior ρL(λ | δ) with a large standard devi-
ation δ = 100. This choice ensures that the experiment data
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Fig. 9. Lower curve shows the maximum posterior prediction
and 1σ-confidence band associated with the GP uncertainty
in eq. (58) The upper curve shows the maximum posterior
prediction under the constraint λ6 = 0.5.

can dictate the length-scale if it matters. And whenever the
length-scale becomes too large, the prior ρL(λ | δ) regularizes
the solution.

The maximization was again performed with the L-BFGS-
B algorithm [16] with the same setup as described in section 2..
The parameters in κ were constrained to be between 10−4 and
5 × 10−1. The parameters in λ were restricted to the interval
between 10−1 and 20. I allowed all parameters in κ and λ
to change. Initial values for the maximization were chosen
uniformly between the parameter boundaries. I performed ten
maximization attempts to ensure that a global maximum has
been found.

The found vector κ was at the percent level identical to
the solution in the case of normalization uncertainties, see
the forth line of table I. Also the associated prediction illus-
trated in fig. 9 resembles that one in fig. 7. For the data sets
where κi was driven towards zero, also the length-scale was
driven towards the lower limit due to the influence of the prior.
Besides one exception, all other data sets with non-zero κi
obtained large length-scales greater than ten. Consequently,
their uncertainty parametrization resembles a normalization
uncertainty. This result is in agreement with Ockham’s princi-
ple because a normalization uncertainty is already sufficient to
reach consistency, see the χ2/N values in table I, and a much
simpler hypothesis than an energy-dependent uncertainty.

The exceptional case is the data set with κ11 = 0.08 and
λ11 = 0.89. It contains the two pink points with large error
bars on the right side of fig. 9. Visual inspection suggests that
a normalization uncertainty may not be enough to make them
consistent with the overall prediction, and likely some energy-
dependent error source has to be considered. The method
automatically inferred this hypothesis by the introduction of a
short length-scale.

As a final example, I applied the method another time with
the constraint that λ6 = 0.5. The upper curve in fig. 9 depicts
the result. Interestingly, the fixation of the length-scale λ6 led
to κ6 ≈ 0. The method determines that such a short-length
scale is an overly complex hypothesis and therefore completely
eliminates the additional uncertainty from the respective data

i reference # κi λi

1 SHAPIRO,PR138B,823-65 2 .000 .100
2 CARVALHO,PR96,398-54 2 .120 1.087
3 DEVLIN,PRD8,136-73 26 .038 5.762
4 CHEN,PR103,211-56 4 .113 .572
5 DZHELE,DOKY110,539-56 5 .113 .429
6 BUGG,PR146,980-66 32 .000 .500
7 ABDIVAL,NPB99,445-75 7 .006 1.783
8 KAZARINOV,JNP1,271-65 1 .060 .100
9 LAW,NP9,600-59 1 .000 .100
10 DIDDENS,PRL9,32-62 2 .100 8.902
11 PANTUEV,JNP1,134-65 2 .000 .100

TABLE II. Posterior maximum under the constraint λ6 = 0.5
using the GP uncertainty in eq. (58). The column labeled #
displays the number of points within each data set.

set. This leads in turn to the introduction of short length-scales
for some of the other data sets, see table II.

This last section should have made clear that the method
is not bound to the assumption of a normalization uncertainty.
Considering the flexibility to choose the uncertainty assump-
tions of the experiment data, we may regard the method bet-
ter as a framework for inference. For instance, it would be
possibly to include both a normalization uncertainty and the
energy-dependent uncertainty introduced in eq. (58) to gain
even more flexibility to adapt the uncertainty assumption of
the experiments.

IV. SUMMARY AND OUTLOOK

A Bayesian method to fit models and evaluate nuclear
data has been presented. The method accounts for inconsisten-
cies between experiment data sets by modifying their uncer-
tainty assumptions. The capability to correct the data has been
demonstrated with an additional normalization uncertainty for
each data set, and also with a more general energy-dependent
uncertainty. Due to the freedom to flexibly choose the addi-
tional uncertainty structure, we may more appropriately call
the method a framework.

Related to the correction of experiment data is the possi-
bility to segment them into consistent subsets. Data sets whose
additional uncertainty is beyond acceptable limits can be re-
moved, so that the remaining data sets are coherent with each
other. In that respect, the multivariate Laplace prior proved to
be superior over the multivariate normal prior and the uniform
prior because it favors sparse solutions.

The method also allows to compute an overall prediction
and the associated covariance matrix by averaging over differ-
ent interpretations. The associated uncertainties are enlarged
compared to the standard GLS method, which counteracts the
common problem of too small uncertainties.

It has been shown that potentially costly operations, such
as the inversion of an N×N matrix with N being the total num-
ber of data points, can be performed efficiently by exploiting
some matrix identities. Owing to this acceleration, the method
is foreseen to work with a large corpus of data sets, and hence
may be used in nuclear databases to detect inconsistencies in
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an automated fashion.
Future work includes the application of the method using

other series expansions and physics models to better under-
stand how the method reacts to different choices. Because
not only experiment data can be inconsistent but also mod-
els can be inaccurate, the question of model deficiencies, e.g.
[21, 22, 23], has to be addressed, too. To be precise, how
assumptions about model deficiencies and about inconsisten-
cies in experiment data can be best taken into account in one
procedure.

Another line of research is the generalization of the
method. Besides normalization uncertainties and the energy-
dependent uncertainty introduced in this paper, many other
parametrizations are conceivable. Therefore, tests with other
parametrization should be performed.

Finally, with the increasing complexity of uncertainty as-
sumptions and the increasing size of databases, possibilities for
further optimization of the method likely need investigation.
This would primarily concern locating the posterior maxima
and efficiently sampling from the posterior distribution. Re-
garding the latter issue, adaptive sampling algorithms, such as
[18], show promise.
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APPENDIX

Metropolis-Hastings algorithm with symmetric proposal

Suppose that we want to acquire a sample from the pdf
φ(κ). If it is not possible to directly draw from this pdf, the
MH algorithm [14] may be used. The MH algorithm con-
structs a chain κ1, κ2, · · · , κK by drawing a vector κ′ from
a proposal pdf ψ(κ′ | κi) on the basis of the current vector
κi. In the case of a symmetric proposal distribution, i.e.
ψ(κ′ | κi) = ψ(κi | κ

′), the proposed vector κ′ is accepted with
probability min (1, φ(κ′)/φ(κi)) as the next vector κi+1 of the
chain. Otherwise it is rejected and κi is taken as the next vec-
tor. The sample represented by the chain has the pdf φ(κ) as
stationary distribution.

Derivative of an inverse matrix

The matrix M(κ) is a function of κ and so is its inverse
M̃(κ). The relation between these two matrices in terms of
their components is given by∑

j

Mi j(κ)M̃ jk(κ) = δi j , (B.1)

with δi j being one if i = j and zero otherwise. Taking the
partial derivative with respect to an element κl of κ gives

∑
j

(
∂Mi j(κ)
∂κl

M̃ jk(κ) + Mi j(κ)
∂M̃ jk(κ)
∂κl

)
= 0 . (B.2)

This relation can be expressed in terms of matrix products,

M(κ)
∂M̃(κ)
∂κl

= −
∂M(κ)
∂κl

M̃(κ) . (B.3)

Multiplying by M̃(κ) from the left yields

∂M̃(κ)
∂κl

= −M̃(κ)
∂M(κ)
∂κl

M̃(κ) . (B.4)

Because M(κ) = S A0S T + C(κ) in this paper, we finally get

∂M̃(κ)
∂κl

= −M̃(κ)
∂C(κ)
∂κl

M̃(κ) . (B.5)

Derivative of a logarithmized determinant

Using the chain rule, the derivate of ln det M(κ) can be
written as

∂ ln det M(κ)
∂κl

=
1

det M(κ)
∂ det M(κ)

∂κl
. (B.6)

Jacobi’s formula [24, p. 305] provides us with the derivative
of the determinant,

∂ det M(κ)
∂κl

= Tr
(
adj

(
M(κ)

)∂M(κ)
∂κl

)
. (B.7)

The adjugate matrix appearing in this expression is defined by
[24, p. 192]

M adj(M) = det(M)1 ⇒ adj(M) = det(M)M−1 (B.8)

Inserting eq. (B.8) into eq. (B.7) and the resulting expression
into eq. (B.6) yields

∂ ln det M(κ)
∂κl

= Tr
(
(M(κ))−1 ∂M(κ)

∂κl

)
. (B.9)

Because M(κ) = S A0S T + C(κ) in this paper, we arrive at

∂ ln det M(κ)
∂κl

= Tr
(
(M(κ))−1 ∂C(κ)

∂κl

)
. (B.10)

Matrix determinant lemma

For the derivation of the matrix determinant lemma in the
version used in this paper, note that

det
(
A + UVT

)
= det

(
A

(
1 + A−1UVT

))
= det(A) det

(
1 + A−1UVT

)
.

(B.11)

The application of Sylvester’s determinant identity [24, p. 416],
i.e. det(1 + AB) = det(1 + BA), yields

det
(
A + UVT

)
= det(A) det

(
1 + VT A−1U

)
. (B.12)

Now replace U by the matrix product UW and extract W to
obtain

det
(
A + UWVT

)
= det(A) det

((
W−1 + VT A−1U

)
W

)
.

(B.13)
Making use of det(AB) = det(A) det(B), we get

det
(
A + UWVT

)
= det(A) det(W) det

(
W−1 + VT A−1U

)
.

(B.14)
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Woobury identity

The Woodbury identity [24, p. 424] states that(
A + UWVT

)−1
= A−1 − A−1U

(
W−1 + VT A−1U

)−1
VT A−1 .

(B.15)
This identity can be verified by multiplying both sides with
(A + UWVT ). Applying this identity to M(κ) = S A0S T + C(κ)
gives(

S A0S T + C
)−1

= C−1 −C−1S
(
A−1

0 + S T C−1S
)−1

S T C−1

(B.16)
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