
M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Acceleration of Monte Carlo Methods on Heterogeneous CPU-GPU Platforms Using Kernel Density Estimators

1Timothy P. Burke, 1Brian C. Kiedrowski, 1William R. Martin, and 2Forrest B. Brown

1Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI,
2Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545

tpburke@umich.edu

Abstract - GPUs are used to accelerate Kernel Density Estimators (KDEs), an alternative tally scheme to
histograms (mesh tallies), for Monte Carlo radiation transport simulations. The KDE routines are exported to
the GPU while the CPU continues to do particle transport, with particle event information passed in batch to
the GPU. The algorithm is optimized for the GPU, resulting in a reduction in GPU compute kernel runtimes by
a factor of 2.9. Speedups of 2-5 are obtained for a quarter-assembly of 16×16 pincells and 1.35-1.65 for a
2-D pincell. Results show that most of the additional cost of the KDE routines can be completely hidden by
exporting the tally process to the GPU. The methodology developed in this paper can be applied to accelerate
other compute-intensive portions of Monte Carlo algorithms using heterogeneous computing.

I. INTRODUCTION

Monte Carlo radiation transport calculations are often run
on computer clusters due to their large computational cost.
Monte Carlo codes are often considered embarrassingly paral-
lel and are readily parallelized on compute nodes containing
multi-core CPUs via MPI and threading. The independent
nature of particle histories allows for the simulation to be
parallelized by dividing the total number of particle histories
being simulated among each thread in each MPI process.

While this method of parallelization works well for clus-
ters of multi-core CPUs, traditional Monte Carlo codes are
not well suited for parallelization on GPUs. GPUs are often
included in compute nodes as a means of accelerating perfor-
mance for benchmarks and vectorizable algorithms but are
usually unused when compute nodes are used to run Monte
Carlo neutron transport simulations. Due to warp divergence
from the routine use of data-dependent conditional statements
and the random access of memory, it is difficult to acceler-
ate Monte Carlo neutron transport codes with GPUs. Thus,
Monte Carlo algorithms have to be re-written specifically for
implementation on GPUs; a barrier of entry that is often too
significant for developers to pursue using GPUs.

While a large body of research has been generated for
creating Monte Carlo algorithms that can run on GPUs, e.g.
[1, 2], there is still no production-level Monte Carlo neutron
transport code capable of using GPUs. Rather than use GPUs
for the main Monte Carlo particle transport algorithm, GPUs
can be used to accelerate compute-intensive vectorizable por-
tions of the code while the main transport process is conducted
on the CPU. This paper describes the acceleration of Kernel
Density Estimators (KDEs) via heterogeneous computing with
GPUs, but the same methodology can be applied to other com-
putationally expensive vectorizable algorithms in Monte Carlo
codes. This work uses a modified version of OpenMC 0.6.0
[3] and exports the KDE tally routines onto a GPU to obtain
problem-dependent speedups ranging between 1.35 and 5.0
for the problems studied in this paper. For the problems stud-
ied in this paper, accelerating the KDE routines on the GPU
eliminates most of the additional cost of the estimator, making
KDEs essentially free to use.

II. BACKGROUND& THEORY

1. KDE

KDEs have recently been explored for use in Monte Carlo
radiation transport simulations as an alternative to histogram
tallies for capturing spatially-resolved quantities such as neu-
tron flux and reaction rates [4, 5]. Histogram tallies suffer
from large uncertainties when detailed spatial resolution of
the quantity of interest is required; increasing the resolution
of the underlying mesh increases the uncertainty in each his-
togram bin. KDEs obtain estimates of underlying densities
on user-defined points, with the uncertainty at those points
being independent of the desired spatial spatial resolution.
Thus, KDEs show potential for obtaining smooth estimates
of spatially-resolved quantities with reduced variance when
compared to a histogram.

However, this ability that enables KDEs to obtain lower
uncertainties per particle history is more computationally ex-
pensive than using traditional histogram bins on a structured
mesh. When using KDEs, it is not unlikely for the active
tally runtime to increase by an order of magnitude compared
to using a comparable histogram tally. Significantly more
floating-point operations are required for KDEs for each colli-
sion or particle track than a histogram tally since a single event
can contribute to the scores of multiple tally points and the
function evaluations required to compute those scores are more
computationally intense than a simple histogram tally. Even
so, it is possible to reduce this additional cost by exporting the
KDE tally routines onto GPUs.

The fractional approximate Mean Free Path (aMFP) [6, 7]
and cylindrical MFP KDE [7, 8] are accelerated in this paper.
The collision KDE for estimating reaction rate densities is
defined as

f̂ (x) =
1
N

N∑
i=1

ci∑
c=1

wi,cΣr(x, E)
Σt(Xi,c, E)

K(x,Xi,c,h), (1)

where N is the number of histories, ci is the number of colli-
sions in history i, Σr is the macroscopic cross section for the
reaction of interest (set to 1 when estimating the scalar flux),
Σt is the total macroscopic cross section, E is the energy of



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

the particle entering the collision, wi,c is the weight of particle
i prior to collision c, K is the multivariate kernel function, x is
the location of the tally point, Xi,c is the location of collision
c in history i, and h is the bandwidth vector containing the
bandwidths in each dimension. The energy dependence of the
macroscopic cross sections will be suppressed in the notation
the remainder of the paper for clarity. The fractional aMFP
kernel function is defined as

K(x,Xi,c,h) =

d∏
l=1

Σt(x)1/d

Σ
1/d
t hl

k

Σt(x)1/d (
xl − Xl,i,c

)
Σ

1/d
t hl

 , (2)

where d is the number of dimensions, hl is the bandwidth
in dimension l, Σt is the flux-weighted average macroscopic
cross section defined in Eq. (9), k is the univariate kernel
function, and xl − Xl,i,c is the distance between the tally point
and collision site in dimension l.

The cylindrical KDE was developed to better capture dis-
tributions in cylindrical geometries by using kernel functions
that use the distance between the collision site and tally point
in cylindrical coordinates rather than Cartesian coordinates.
For reactor physics problems, the cylindrical MFP KDE uses
the number of MFPs between the particle event and tally point
in the radial dimension. The 2-D cylindrical MFP kernel
function is defined as

K(x,Xi,c,h) = Ck


∫ r

ri,c
Σt(r′)dr′

Σthr

 k
(
θ − θi,c

hθ

)
, (3)

where C is the normalization coefficient

C =
1

Σthrhθ

Σt(ri,c)2(
ri,cΣt(ri,c) −

∫ ri,c

r Σt(r′)dr′
) . (4)

The details the KDE implementation for Monte Carlo eigen-
value calculations is described in Section 2.

In order to conduct the fractional aMFP KDE and the
cylindrical MFP KDE the kernels in Eqs. (2) and (3) are
evaluated for every tally point that falls within range of the
kernel centered on the collision site. For problems where a
high resolution is desired this can cause a significant increase
in runtime compared to a comparable histogram tally. Since
the KDE in Eq. (1) requires computing the score from each
collision site to multiple tally points, it is amenable to vector-
ization and thus calculation on a GPU. The implementation
and optimization of the KDE algorithm in Eq. (1) on GPUs is
described in Section III.

2. KDE Implementation

The Epanechnikov kernel [9]

k(u) =
3

4
√

5

(
1 −

u2

5

)
, |u| ≤

√
5, (5)

is used in this paper for all kernel functions k other than the
azimuthal kernel due to its finite support region and optimal

variance and bias properties. The Cartesian bandwidths are
calculated via the optimal bandwidth formula [4, 7, 10]

hl =

(
4

(2 + d)N

)1/(4+d)

σl, (6)

where N is the expected number of collisions across all of the
active batches and

σl =

 N∑
i=1

wi,l

Σt(Xi)
X2

i,l −

 N∑
i=1

Xi,l
wi,l

Σt(Xi)

2
1/2

×

 N∑
i=1

wi,l

Σt(Xi)

−1/2

(7)

The radial bandwidth is calculated using Eq. (6) but using σr
instead of σl calculated via

σr =

 N∑
i=1

wi,l

Σt(Xi)
r2

i −

 N∑
i=1

ri
wi,l

Σt(Xi)

2
1/2

×

 N∑
i=1

wi,l

Σt(Xi)

−1/2

(8)

The sample collisions required for calculating σ, N, and Σt
are done in the last inactive batch of the eigenvalue calcula-
tion. The expected number of collisions in the active batches
N is estimated by multiplying the number of collisions that
occurred in the last inactive batch by the total number of active
batches. Region-based bandwidths are used, with each KDE
region having its own bandwidth and average cross section
calculated via

Σt =

∫ ∞
0

∫
Γ

Σt(x)φ(x)dVdE∫ ∞
0

∫
Γ
φ(x)dVdE

, (9)

where Γ is the volume defining a given KDE region.

III. GPU IMPLEMENTATION AND OPTIMIZATION

1. GPU Architecture

In order to accelerate algorithms on the GPU the underly-
ing architecture must be considered. GPUs are based on Single
Instruction, Multiple Thread (SIMT) architecture and are com-
posed of hundreds to thousands of threads per GPU. During
execution, the threads in a GPU are divided into groups of 32
threads, called warps, with all threads in a warp either perform-
ing the same instruction or sitting idle while the other threads
in the warp execute the instruction. Warp divergence occurs
when a warp encounters a data-dependent conditional branch,
causing the execution of the different paths to be serialized
resulting in a reduction in the performance of the algorithm.

The major memory components on a GPU accessible to
developers are global memory and shared memory. Global
memory is used to transfer memory between the GPU and
CPU and can be accessed from all warps on the GPU, however
it has a latency of approximately 400-800 clock cycles for the



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

GPU used in this paper. The SIMT architecture of the GPU
requires threads within a warp to access contiguous sections
of global memory. Thus, if all 32 threads in a warp require
data from different places in global memory then 32 different
loads from global memory will be required. However, if all
threads in a warp require data located contiguously in global
memory then this load from global memory can be coalesced
into a single read from global memory if each piece of data is
32-bits or smaller. While the GPU is capable of hiding latency
when accessing global memory by switching between warps
with its streaming multiprocessors (more details can be found
in [11]), minimizing the number of loads from global memory
typically leads to improved performance.

Shared memory is fast on-chip memory that is local to
each block of threads and has a latency approximately 100
times lower than that of global memory. Furthermore, shared
memory does not have contiguous-data access restrictions like
global memory. Thus, shared memory can be leveraged to
store data that is often used and shared among warps. Fur-
thermore, the less restrictive access requirements allow for
efficient parallel reductions within a block of threads.

This work uses CUDA streams for asynchronous commu-
nication between the CPU and GPU as well as for concurrent
execution of different GPU functions (called kernels) and con-
current execution of GPU kernels and memory copies between
the CPU and GPU. Commands placed in a CUDA stream exe-
cute sequentially and commence execution without any further
input from the CPU.

The SIMT-architecture makes the traditional paralleliza-
tion methods of Monte Carlo codes intractable on a GPU due
to the data-dependent conditional statements causing warp
divergence as well as the random access of memory when
looking up continuous-energy cross sections preventing effi-
cient access of memory. However, the KDE algorithms are
vectorizable and can be exported to the GPU for acceleration.

2. Algorithm Implementation

The GPU KDE algorithm is implemented in a modified
version of OpenMC using CUDA C [11] and uses C Bindings
to link the CUDA C code to the main Fortran program in
OpenMC. The algorithm is designed to have simultaneous
execution of the tally process on the GPU and the transport
process on the CPU. Flowcharts describing the layout of the
CPU and GPU portions of the GPU algorithm are shown in
Figures 1 and 2 respectively. Rather than tally scores directly,
the CPU collects information in one of two sets of sample
arrays during the transport process. The CPU fills one set of
sample arrays with all necessary collision and cross section
information for a pre-set number of collisions (50,000 in this
paper) and then copies the data asynchronously to the GPU.
The CPU then puts the KDE GPU kernels into the same CUDA
stream as the memory copy and then immediately returns and
begins transporting particles and populating a second set of
sample arrays. Once the CPU has finished filling the second
array, it asynchronously sends the data to the GPU and waits
until the first set of sample arrays has been received by the
GPU before re-filling the first set of arrays. This process
repeats until the end of the batch, when the partial set of

collisions is sent to the GPU for calculation of scores. Once
the GPU finishes processing the last set of sample arrays the
GPU sends the tally data to the CPU and the CPU uses the
normal MPI processes for combining tally data across multiple
processors on multiple compute nodes.

Initialize arrays,
set stream S

to first stream

Transport
until collision

Lookup additional
cross sections

Store collision data
in set of arrays

corresponding to S

N
collisions
stored?

Asynchronously send
collision data to

GPU via stream S

no

yesChange S to other
stream, wait until
other set of arrays
received by GPU

(if applicable)

Fig. 1. Flowchart depicting CPU process for collecting tally
data to send to the GPU.

Receive data from CPU via stream
S and mark data as received

Assign Nearby Neighbor List (NNL) bin
number to each collision via stream S

Sort data by bin number via stream S

Launch GPU kernel via stream S with
one block of threads for each tally point

Fig. 2. Flowchart depicting GPU process for receiving and
processing tally data from CPU.

Once the GPU has received the first array, it sorts the data
for better memory coalescence and the KDE GPU kernel is
launched. The kernel uses 64 threads per block, with one block
per tally point. Each block uses the 64 threads to loop over
the collisions in the sample array and compute each collision’s
score at that block’s tally point. Each thread keeps its own sum
of scores in shared memory in order to prevent serialization



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

of threads via atomic operations when incrementing the tally
point’s score. After looping over all collisions within a set,
the scores from individual threads are reduced using shared
memory and the total score to a tally point from all collisions
within the sample array is added to the sum in global memory.
This approach minimizes the number of atomic operations
necessary since each block of threads is incrementing the score
of different tally points. However, this approach also scales
linearly with the number of tally points in the simulation and
could prevent the efficient simulation of large systems with
high resolution.

The algorithm was designed for a high performance com-
puter cluster where each compute node has its own GPU(s).
The cores on each compute node communicate only with their
local GPU, and the tally results are combined with the usual
MPI processes. Since each processor is only communicating
with its local GPU, this algorithm scales with MPI to multiple
cores across multiple compute nodes without a reduction in
the GPU’s performance.

To increase the speed of this algorithm, a Nearby Neigh-
bor List (NNL) was created on the GPU similar to that on the
CPU. Rather than loop over all collisions, the finite support
of the KDE kernel necessitates only looping over collisions
that contribute non-zero scores to the tally point. The NNL
uses a mesh to divide the simulation domain into bins equal to
the maximum kernel support length in each dimension (h

√
5

for the Epanechnikov kernel in Eq. (5)). Each collision is
assigned a key based on on its position in the neighborhood
mesh. The index of each particle (the particle’s initial location
in the collision array) is sorted based on its key value using
the CUDA UnBound (CUB) library’s radix sort algorithm.
The collision data are then rearranged based on their key and
index values so that the data pertaining to collisions occurring
within the same neighborhood bin are located contiguously
in memory. The use of a NNL is crucial for KDE algorithm
performance, with speedups of over 800 obtained for the GPU
algorithm on a 2-D pincell problem with a grid of 120×120
tally points.

While the NNL works well for the distance-based KDEs,
the MFP KDE algorithm introduces complications. The MFP
KDE either expands or contracts the bandwidth in space, and
thus the maximum kernel support length in each dimension
becomes an energy-dependent quantity that changes with each
collision. This results in multiple bins being searched in each
dimension, reducing the efficiency of the calculation. Fur-
thermore, since the maximum kernel support length is cross
section dependent, each material cross section would have
to be computed in order to determine the maximum kernel
support length for a given collision. This complication can
be eliminated by limiting the value of the macroscopic total
cross section in the argument of the kernel function and the
normalization coefficient in Eqs. (2) and (3), denoted as Σt,k(x)
in the following equation, such that

Σt,k(x) =

{
Σt(x) Σt(x) > Σt

Σt otherwise
(10)

Using Eq. (10) ensures that if the cross section is below the
average cross section for a region, the MFP kernel reverts to

the distance-based kernel. This effectively creates a maximum
spatial bandwidth for the MFP KDE and ensures that collisions
can only score to tally points in adjacent NNL bins. This
approximation does not adversely affect the accuracy of the
simulation since using a smaller bandwidth reduces the bias in
the estimate at a cost of increased variance. Furthermore, the
use of Eq. (10) removes the need to compute all material cross
sections after each collision, further increasing the efficiency
of the algorithm.

Additionally, a local cross section lookup routine is imple-
mented to further enhance the speed of GPU cylindrical MFP
KDE algorithm. Since the KDE allows for collisions to con-
tribute to reaction rates across material interfaces, additional
cross sections must be looked up after each collision. While
this additional lookup can be done on-the-fly for the CPU
algorithm when using a maximum kernel support length, the
GPU algorithm requires that all cross sections are computed
prior to sending data to the GPU. However, the majority of
collisions do not occur near material interfaces, and thus look-
ing up additional cross sections is often unnecessary. Since
the cylindrical MFP KDE is used on problems with cylindrical
geometry, it is straight-forward to implement an algorithm that
determines if additional cross sections need to be computed
for a given collision. This algorithm results in a speedup of
1.3 for the cylindrical MFP KDE on the 2-D pincell problem
shown later in this paper.

3. GPU Optimization

Several improvements were made throughout the design
of the algorithm to reduce compute times. The optimization
strategies tested in this paper are changing the collision data
structures from an Array of Structures (AoS) to a Structure
of Arrays (SoA), leveraging shared memory, and switching
from double-precision to single-precision calculations. The
optimizations were tested on an NVIDIA Tesla M2090 GPU
using the fractional aMFP KDE on a 2-D pincell problem with
120×120 tally points and 50,000 collisions per set of sample
arrays. GPU compute kernel speedups relative to the base
implementation with an NNL are shown in Table I. Kernel
compute times were determined using the NVIDIA Visual
Profiler [12], with the compute kernel time of 35.6 ms for
the base implementation using an array of structures. While
the times obtained from the profiler are not as accurate as
using CUDA events to obtain timing information, the profiler
was found to be sufficiently accurate for determining relative
performance improvements.

The choice of data structure has a significant impact on

TABLE I. Compute kernel speedups for 50,000 collisions and
120 × 120 tally points on a 2-D pincell problem.

Design Iteration Relative Kernel Speedup

Array of structures 1
Structure of arrays 1.6

Shared memory w/ SoA 2.0
Single-precision w/ SoA & 2.9shared memory



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

the compute kernel performance. When using an AoS the
data of the structure is placed sequentially in memory. This
leads to a loss in efficiency based on the size of the structure.
For example, the usual data used to score a set of collisions
includes the colliding particles’ position, angle, energy, cell,
material, and weight. If the collisions’ location in the x di-
mension is being requested by the threads in a warp then an
additional 6 floating point numbers and two integers (56 bytes
in double-precision) exist in memory between the x positions
accessed by neighboring threads. This leads to a total of 16
loads from global memory being required (for 128 byte loads)
in order for a warp of 32 threads to access the x positions of
32 collisions stored contiguously in memory. Using an SoA
enables coalesced memory accesses since the collisions’ data
is stored in separate arrays. For example, the set of collisions
passed to the GPU now contains one collision data structure
containing separate arrays for each piece of data in the original
structure. Thus, for the threads to access the x positions of
32 different collisions now only 2 loads from global memory
are required for double-precision data. This reduction in loads
from global memory as a result of using an SoA results in a
compute kernel speedup of 1.6.

Leveraging the shared memory on the GPU provides ad-
ditional speedup. Storing often-used data from global memory
in shared memory at the start of each compute kernel provides
an additional speedup of 25%.

Switching from double-precision to single-precision also
increases performance by 45%. Changing to single-precision
has two effects. First, it reduces the amount of memory re-
quired by each thread, enabling a coalesced load of floating-
point numbers to be read in with one access to global memory
rather than two. Furthermore, the GPU has a faster clock
speed for single precision floating-point operations, with the
NVIDIA Tesla M2090 having a single-precision clock speed
that is twice that of double-precision operations. Overall, opti-
mizing the base algorithm with an NNL produces a compute
kernel speedup of 2.9.

IV. RESULTS

1. Fractional Approximate MFP KDE

The GPU algorithm with the fractional aMFP KDE was
tested on a quarter-assembly of pincells, depicted in Fig. 3.
Each pincell is comprised of a cylinder of 3% enriched UO2
surrounded by water with a pin diameter of 0.7 cm and a
lattice pitch of 1 cm. Absorbers of B4C replace several of the
fuel squares and are shown in black. Continuous-energy cross
sections from the ENDF/B-VII.0 [13] cross section library are
used for all materials. Region-based bandwidths are used with
one KDE region assigned to each pincell. The boundary kernel
method is used at external reflecting boundaries [14]. The use
of the boundary kernel does not introduce warp divergence
since each thread in a warp is calculating scores to the same
tally point, thus all threads in a warp will use the boundary
kernel routines if the tally point requires them. The simulation
was run with 200,000 particles per batch, 2,000 total batches
with 100 inactive batches. The simulations were run using two
Tesla M2090 GPUs with 16 MPI processes on two eight-core

Intel Xeon E5-2670 processors while the histogram results use
16 MPI processes on the CPU. Reference histogram results
were collected on a structured grid of 120×120 bins with KDE
tally points placed at the center of each bin. The flux obtained
using the fractional aMFP KDE is shown in Fig. 4 with the
C/E (KDE/histogram) comparison of the flux distributions
shown in Figure 5. Speedups and runtime statistics for the
assembly of pincells were acquired with 120×120 tally points
and 240×240 tally points.

Fig. 3. Depiction of the assembly of pincells.

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

Fig. 4. Flux distribution from the fractional aMFP KDE for
the assembly of pincells.

0.992

0.994

0.996

0.998

1.000

1.002

1.004

1.006

Fig. 5. C/E comparison between flux distributions obtained
from the fractional aMFP KDE and reference histogram for
the assembly of pincells.



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Figures 4 and 5 show that the fractional aMFP KDE is ca-
pable of accurately capturing the flux and fission distributions
in reactor physics problems. The difference between the flux
distribution obtained from the fractional aMFP KDE and the
reference histogram is less than 1% for all tally points. While
there is a pattern of disagreement around the control rods, it is
primarily due to comparing point-wise histogram results with
volume-average KDE results in regions of steep flux gradients
which would reduce by increasing the tally resolution. The
Figure of Merit (FOM) for the fractional aMFP KDE is 3.3
times higher than that of the collision histogram tally with the
FOM calculated using

FOM =
1

1
N

∑N
i

(
σi
φi

)2
T
, (11)

where N is the number of histogram bins or tally points, σi/φi
is the relative uncertainty at tally point or bin i, and T is the
time spent in the active batches.

The maximum speedup achievable by using GPUs occurs
when the entire KDE tally can be computed on the GPUs
without the CPUs having to wait on the GPUs. The speedup
obtained using the GPU algorithm with 120×120 tally points
is relatively constant for a varying number of MPI processes,
with a final speedup of 1.8 when using 16 MPI processes
for both single-precision and double-precision calculations.
The single-precision results agree with the double-precision
results to six significant digits. In this scenario the KDE tally
is essentially free with the exception of looking up additional
cross sections after every collision. Speedups of 5 and 3.7 are
obtained for 240×240 tally points when using 8 and 16 MPI
processes, respectively. This speedup when using 240×240
tally points is greater than that obtained using 120×120 tally
points due to the greater tally point density and thus a greater
problem difficulty for the CPU KDE algorithm. The decline
in speedup when switching from 8 to 16 MPI processes indi-
cates that the GPUs are saturated with work when using 16
MPI processes. This shows that there is a limit to the speedup
obtainable on the GPU before adding more work (more pro-
cessors) per GPU becomes detrimental.

2. Cylindrical MFP KDE

The acceleration of the cylindrical MFP KDE algorithm
is tested using a CASL 2-D pincell benchmark problem [15]
comprised of a cylinder of 3.1% enriched UO2 with radius
0.4096 cm surrounded by Zircaloy-4 cladding and 1300 ppm
borated water with a lattice pitch of 1.26 cm and reflecting
boundary conditions. The cladding is blended in with the gap
and extends from 0.4096 cm to 0.475 cm, with the density of
the Zircaloy adjusted to 5.77 g/cm3 to preserve the amount of
Zircaloy in the problem when the gap is explicitly modeled.
This model was previously used to verify the cylindrical MFP
KDE in [8] with results compared to a histogram tally. The per-
formance comparison here uses the same mesh to generate the
KDE tally points, with KDE tally points placed at the center of
the bins in a cylindrical mesh constructed using 8 uniform bins
in the azimuthal dimension and a radial mesh of 20 bins from
0 to 0.3896 cm, 200 bins from 0.3896 to 0.4096 cm, 5 bins

from 0.4096 to 0.475 cm, and 20 bins from 0.475 to 0.63 cm.
The fission and absorption distribution comparisons between
the cylindrical MFP KDE and the reference histogram origi-
nally shown in [8] are recreated here for illustrative purposes
in Figures 6-8 with the distributions shown on top and the C/E
values shown below. Simulations for timing were conducted
using 1,000,000 particles per batch, 10 inactive batches and 20
total batches using 16 MPI processes on two eight-core Intel
Xeon E5-2670 processors and two Tesla M2090 GPUs. The
speedup results are not significantly affected by using more
batches; the only effect is to reduce the bandwidth according
to Eq. (6).

0.0 0.1 0.2 0.3 0.4 0.5 0.6
r

0.0

0.2

0.4

0.6

0.8

1.0

f(
r)

 KDE
Hist.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
x

0.990

0.995

1.000

1.005

1.010
C

/E

Fig. 6. Fission distribution comparison between the cylindrical
MFP KDE and histogram for the pincell problem along the
22.5◦ azimuth.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f(
r)

 KDE
Hist.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
x

0.990

0.995

1.000

1.005

1.010

C
/E

Fig. 7. Absorption distribution comparison between the cylin-
drical MFP KDE and histogram for the pincell problem along
the 22.5◦ azimuth.



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

0.390 0.395 0.400 0.405
r

1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

f(
r)

 KDE
Hist.

0.390 0.395 0.400 0.405
x

0.990

0.995

1.000

1.005

1.010

C
/E

Fig. 8. Absorption distribution comparison in the rim region
(200 µm into the edge of the fuel) between the cylindrical
MFP KDE and histogram for the pincell problem along the
22.5◦ azimuth.

Figures 6-8 show that the cylindrical MFP KDE agrees
with the reference histogram within 0.5% at all tally points,
with the cylindrical MFP KDE capable of accurately captur-
ing the rim effect at the fuel-clad interface. Furthermore, the
CPU and GPU cylindrical MFP KDE algorithms agree within
eight significant digits at all tally points, with the GPU al-
gorithm producing a speedup of 1.35. The simulation with
the GPU tally produces an inactive tally calculation rate of
76,500 particles per second and an active calculation rate of
68,000 particles per second for a total simulation time of 300
seconds. Doubling the number of tally points in the radial
dimension results in a speedup of 1.65, with the simulation
with the GPU tally again producing an active tally calculation
rate of 68,000 particles per second and a total simulation time
of 300 seconds. This again shows that the additional cost
of the cylindrical MFP KDE is almost entirely hidden when
conducted on the GPU for the problem sizes studied in this
paper. The difference between the inactive and active tally cal-
culation rates is primarily due to the calculation of additional
cross sections for the KDE algorithm.

V. CONCLUSIONS& FUTURE WORK

A method for using heterogeneous computing to acceler-
ate computationally intensive tally algorithms in Monte Carlo
radiation transport problems was introduced and tested on a
quarter-assembly problem and a pincell problem in contin-
uous energy. The methodology shown in this paper can be
used to accelerate computationally expensive algorithms via
GPUs in Monte Carlo codes without having to re-write large
portions of the code base. Speedups for problems shown in
this summary range between 1.35 and 5, depending on the
number of MPI processes and the number and density of tally
points. Using the GPU to accelerate the KDE routines makes
the algorithm essentially free for the cylindrical MFP KDE on

the 2-D pincell problem and the fractional aMFP KDE on the
quarter-assembly problem with 120×120 tally points, with the
exception of having to compute additional cross sections. It
should also be noted that increasing the difficulty of the trans-
port problem, for example by simulating more complicated
geometries, would allow even more computationally expensive
routines to be hidden through execution on the GPU.

Future work includes further improving the collision KDE
algorithm. Since the current algorithm scales linearly with
the number of tally points, this may prevent conducting high
resolution tallies in large systems. Redesigning the algorithm
to scale with tally point density would enable such simulations.
Additionally, the impact of using newer GPUs on performance
could be investigated. The GPUs in this paper do not allow
concurrent execution of kernels launched from different MPI
processes; newer GPUs with CUDA compute capability 3.5
do not have this restriction and could potentially improve
performance. Furthermore, the track-length KDE has yet to
be developed for the GPU. While it is more difficult to have
coalesced memory accesses when using track-length KDEs,
each particle track requires more calculations to compute the
score to a tally point compared to a collision thus potentially
enabling the GPU to hide the cost of additional global memory
fetches. Additionally, future work includes extending the het-
erogeneous computing methodology developed in this paper
to other compute-intensive portions of Monte Carlo codes.

VI. ACKNOWLEDGEMENTS

This material is based upon work supported in part by the
National Science Foundation Graduate Research Fellowship
under Grant No. DGE 1256260 and by the US DOE/NNSA
Advanced Scientific Computing program and was made pos-
sible through the use of Los Alamos National Laboratory’s
high-performance computing resources.

REFERENCES

1. T. LIU, N. WOLFE, C. D. CAROTHERS, W. JI, and
X. G. XU, “Status of Archer - A Monte Carlo Code for
the High-performance Heterogeneous Platforms Involving
GPU and MIC,” Nashville, TN (April 19-23 (2015)).

2. R. M. BERGMANN, J. L. VUJIC, E. GREENSPAN, P. F.
PETERSON, R. N. SLAYBAUGH, and P. O. PERSSON,
“The Development of WARP - A Framework for Contin-
uous Energy Monte Carlo Neutron Transport in General
3D Geometries on GPUs,” Ph.D. Thesis, University of
California - Berkeley (2014).

3. P. K. ROMANO and B. FORGET, “The OpenMC Monte
Carlo Particle Transport Code,” Ann. Nucl. Energy, 51,
274–281 (2013).

4. K. BANERJEE, “Kernel Density Estimator Methods for
Monte Carlo Radiation Transport,” Ph.D. Thesis, Univer-
sity of Michigan (2010).

5. K. L. DUNN, “Monte Carlo Mesh Tallies based on a
Kernel Density Estimator Approach,” Ph.D. Thesis, Uni-
versity of Wisconsin–Madison (2014).

6. T. P. BURKE, B. C. KIEDROWSKI, and W. R. MARTIN,
“Approximate Mean Free Path Based Kernel Density Esti-



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

mators for Reaction Rates in Reactor Physics Problems,”
in “PHYSOR,” Sun Valley, ID (May 1-5 2016).

7. T. P. BURKE, “Kernel Density Estimation Techniques for
Monte Carlo Reactor Analysis,” Ph.D. Thesis, University
of Michigan (2016).

8. T. P. BURKE, B. C. KIEDROWSKI, and W. R. MARTIN,
“Cylindrical Kernel Density Estimators for Monte Carlo
Neutron Transport Reactor Physics Problems,” in “Trans.
Am. Nucl. Soc.”, 115 ((2016)).

9. V. A. EPANECHNIKOV, “Nonparametric Estimation of
a Multidimensional Probability Density,” Theor. Probab.
Appl., 14, 153–158 (1969).

10. B. W. SILVERMAN, Density Estimation for Statistics and
Data Analysis, Chapman and Hall, London, UK (1986).

11. “CUDA C Programming Guide,” (2015),
http://docs.nvidia.com/cuda/cuda-c-programming-guide.

12. “Nvidia Visual Profiler,” (2015),
http://www.developer.nvidia.com/nvidia-visual-profiler.

13. M. CHADWICK ET AL., “ENDF/B-VII.0: Next Genera-
tion Evaluated Nuclear Data Library for Nuclear Science
and Technology,” Nuclear Data Sheets, 107, 12, 2931 –
3060 (2006), evaluated Nuclear Data File ENDF/B-VII.0.

14. M. C. JONES, “Simple Boundary Correction for Kernel
Density Estimation,” Statistics and Computing, 3, 135–
146 (1993).

15. “VERA Core Physics Benchmark Progression Prob-
lem Specfications,” (2014), www.casl.gov/docs/CASL-
U-2012-0131-004.pdf.


