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Abstract – Monte Carlo neutron transport codes generally use the method of successive generations to 

converge the fission source distribution to—and then maintain it at—the fundamental mode. Recently, a 

phenomena called ‘clustering’ has been noted that produces fission distributions that are very far from the 

fundamental mode. In this paper, a mathematical model of clustering in Monte Carlo is developed. The 

model draws on previous work for continuous-time birth-death processes, as well as methods from the field 

of population genetics.  

 

I. INTRODUCTION 
 

Monte Carlo neutron transport codes generally use 

some variation on the method of successive generations [1] 

for criticality calculations. In this method, the starting 

locations for the neutrons in one generation are chosen from 

the locations of fission events occurring in the previous 

generation. Since the distribution of fission events is not 

known a priori, calculations start with some initial ‘source 

guess’—for example a uniform fission source distribution. 

This method is the Monte Carlo equivalent of the well-

known power method from matrix algebra. Since the power 

method converges to the fundamental eigenvector, one 

might hope that as the Monte Carlo calculation proceeds 

from one generation to the next the distribution of fission 

locations will converge to the fundamental-mode fission 

distribution of the neutron transport equation. 

Recently, however, a phenomena called ‘clustering’ has 

been noted that produces fission location distributions that 

are very far from the fundamental-mode distribution. This 

phenomenon has been studied for actual neutron 

populations [2] as well as for the simulated neutron 

populations that are the basis of Monte Carlo neutron 

transport calculations [3,4]. These studies have utilized a 

time-dependent diffusion approximation to model the 

evolution of the neutron population. While this may be 

appropriate under certain conditions for actual neutron 

populations, it is an approximation for Monte Carlo 

calculations. The reason is that iterated-fission-source 

Monte Carlo proceeds by a series of discrete fission 

generations rather than by a continuous evolution in time. 

The motivation is to provide a higher-fidelity theory 

which may then form the basis of further research into such 

areas as higher-order moments of the entropy function for 

the purpose of detecting fission source convergence [4], 

methods for detecting the presence of clustering, and 

methods for minimizing or even eliminating clustering. 

This paper will also address a phenomenon not 

discussed in the previous works on clustering. As will be 

explained in detail in a later section, one may view the 

evolution of the neutron population in terms of a 

genealogical tree in which a neutron may trace its lineage 

back through previous generations via the fission process to 

one of the neutrons in the initial source guess. We show that 

as the Monte Carlo calculation proceeds, the neutrons in 

successive generations trace their lineages to ever fewer 

neutrons from the initial source. Given a sufficient number 

of generations, at some point all of the neutrons in the 

calculation will be descended from the same initial source 

neutron. This phenomenon is analogous to a process in 

population genetics—referred to as fixation—in which all 

alleles of a gene except one disappear from a population of 

organisms. We will take advantage of mathematical 

techniques developed in that field. 

In Section II we describe the Monte Carlo model that 

will be assumed for the subsequent analyses. In Section III 

we introduce some useful terminology from population 

genetics. In Section IV we provide an example of clustering 

that will make later discussion more concrete. In Section V 

we discuss fixation, and compare the predictions of a 

theoretical model to the results of Monte Carlo calculations. 

In Section VI we recast the previous work done using a 

continuous-time assumption to the generational form 

corresponding to a Monte Carlo calculation. We use the 

theory developed to compute the mean-squared separation 

of neutron absorption sites, and compare the theoretical 

result to that of Monte Carlo calculations. Finally, in 

Section VII we provide some concluding remarks. 

 

II. THE MONTE CARLO MODEL 

 

In this section we describe the model problem that will 

be used in the analysis which follows as well as the Monte 

Carlo algorithm used to solve it. Both the problem and the 

algorithm are very simple, which allows a theoretical 

analysis that would be impossible in a more complex 

setting. 

The model problem consists of a homogeneous 

multiplying medium within a three-dimensional cube with 

sides of length L. Reflecting boundary conditions are 

applied to all six surfaces. We further assume one-speed 

neutrons and isotropic scattering. 

The Monte Carlo algorithm is purely analog with no 

survival biasing or other variance reduction method. The 

number of neutrons per generation is constant and denoted 

by N. The starting locations for the neutrons in the initial 
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generation are assumed to be sampled uniformly within the 

problem space. Since for our simple model every neutron 

will be absorbed (there being no leakage), the neutrons 

starting each generation will produce exactly N absorption 

locations. The starting locations for a neutron in any 

subsequent generation will be randomly chosen from all of 

the absorption locations created in the previous generation. 

Since the medium is homogeneous, each absorption location 

will be chosen with equal probability. Using this algorithm, 

some absorption locations may be chosen as the starting 

location for multiple neutrons while others may not be 

chosen at all. 

 

III. TERMINOLOGY 
 

In what follows, we will use certain terms from the 

fields of genealogy and population genetics. First, we will 

consider all neutrons in a given generation that are born at 

the same absorption location to be ‘siblings’, and the 

neutron that produced the absorption to be their ‘parent’. 

One may then envision a genealogical tree with which a 

neutron’s lineage may be traced from the current generation 

back to one of the starting neutrons in the first generation—

its ‘original ancestor’. A ‘family’ is defined as those 

neutrons that have the same original ancestor. We will also 

use the term ‘most-recent common ancestor’ (MRCA) of a 

group of neutrons in a given generation. If the neutrons in 

the group are siblings, their MRCA is their parent. For a 

group of neutrons that are not all siblings but are in the same 

family, their MRCA is that ancestor that is shared by all 

neutrons in the group occurring in the generation least far 

removed from the current generation. Neutrons in different 

families, of course, have no common ancestor. 

 

IV. AN EXAMPLE OF CLUSTERING 

 

In this section we provide a concrete example of 

clustering to motivate the analysis that follows. The model 

problem was run using the one-speed cross sections given in 

Table I for 400 cmL =  and 1,000N = . The number of 

generations was 10,000. Figure 1 shows the locations of the 

source sites of the neutrons for the first generation in pink 

and the absorption sites for generations 1,000 and 10,000 in 

blue and black, respectively. As expected, the distribution of 

source sites in the first generation appears to be uniform. 

After 1,000 generations, however, the effect of clustering 

has become obvious with all 1,000 absorption sites being 

confined to a relatively small spatial region. After another 

9,000 generations, the absorption sites are still tightly 

clustered not far from where they were after 1,000 

generations. Despite the code being given the correct 

solution via the initial source guess, the solution has evolved 

to something that is quite different from a uniform 

distribution. 

 

Table I. Macroscopic Cross Sections (cm−1) 

ΣT ΣS ΣA ΣF νΣF 

1.00 0.60 0.40 0.20 0.48 

 

For the calculation illustrated in Fig. 1, it was found 

that beginning with generation 942 all of the neutrons 

belonged to the same family as defined in the previous 

section. The starting location of the original ancestor for the 

surviving family is indicated by the red point in Fig. 1. One 

can see that the center of mass (COM) of the cluster has not 

moved far from this point even after 10,000 generations. 

In the remainder of this paper we will provide 

theoretical explanations of various aspects of this 

calculation. These include the conditions that lead to 

clustering, the size of the clusters, the cause of the 

extinction of families, and the number of generations it 

takes for all of the families except one to become extinct. 

 

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

 
Fig. 1. Initial neutron source distribution (pink) and 

absorption distributions after 1,000 (blue) and 10,000 

(black) generations. The red point marks the initial 

location of the original ancestor of all neutrons starting 

with generation 942. 

 

V. EXTINCTION OF FAMILIES AND FIXATION 

 

In the analysis of spatial clustering that follows in 

Section VI we will be concerned with pairs of neutrons 

within a generation, of which there are ( )1 2N N − . For the 

initial generation, all of the pairs are uncorrelated since the 

starting location for each neutron is selected independently 

from that of the others. As the generations progress, spatial 
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correlation is introduced due to the possibility that some 

absorption locations may give rise to more than one neutron 

in the next generation. Since the probability that a given 

neutron will start from a given absorption location is 1 N , 

the probability that any given absorption location is chosen 

as a starting location exactly k times in a generation is given 

by the binomial distribution 

 

( )
! 1 1

1
! !

k N k

k

N
P

k N k N N

−
   

= −   
−    

.        (1) 

 

The expected number of correlated neutron pairs produced 

per absorption location is 
2 2ν , where the second factorial 

moment is given by 

 

          ( )2
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The total expected number of correlated pairs created in a 

generation with a MRCA in the previous generation is 

therefore ( )2 2 1 2N Nν = − . The fraction of all pairs 

represented by these is 

 

( )
22 1

1 2

N
f

N N N

ν
= =

−
.       (3) 

 

Since the total number of neutron pairs in a generation is 

fixed, the expected number of uncorrelated pairs and 

expected number of correlated pairs with a MRCA prior to 

the previous generation must each decrease by a 

corresponding factor of 1 f−  at each generation. At 

generation g, therefore, the expected fraction of uncorrelated 

pairs will be 
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and the expected fraction of correlated pairs with a MRCA 

in generation  g′ , where 1 1g g′≤ ≤ − , will be 
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From Eq. (4) one sees that the expected number of 

uncorrelated pairs is a monotonically decreasing function of 

the generation number. Since the members of an 

uncorrelated pair must come from different families, the 

implication is that the expected number of families 

remaining is also monotonically decreasing with increasing 

generation number. 

Using Eq. (1), one can compute the expected fraction of 

families that go extinct after the first generation as 

 

                              0

1
1

N

P
N

 
= − 
 

 ,                     (6) 

 

which for large N approaches 1
0.367879e

− = . 

To extend the analysis of how the number of families 

varies as the Monte Carlo calculation proceeds beyond the 

first generation, we will resort to two methods from the field 

of population genetics: the Wright-Fisher (W-F) model [5,6] 

and coalescent theory [7,8]. The W-F model is an idealized 

model of the genetic evolution of a population of organisms. 

Coalescent theory provides a quantitative method for 

analyzing the number of generations between the current 

one and the generation containing the MRCA of the 

members of some subset of the population. 

This W-F model uses the following assumptions: 

 

• the population size is constant, 

 

• generations do not overlap in time, 

 

• the parent of an individual is chosen uniformly 

with replacement from all of the individuals in the 

preceding generation, and 

 

• there is no selection, mutation, or recombination. 

 

Because of these assumptions, the W-F model is a much 

idealized representation of most real biological populations. 

The W-F model for haploid organisms (those with a single 

set of chromosomes), however, is exact for the Monte Carlo 

algorithm considered here. This is because the number of 

neutrons per generation is constant; the fission generations 

are sequential; the probability of selecting any one of the 

absorption locations in the previous generation as the source 

location of each neutron in the subsequent generation is 

uniform; and there are no equivalent concepts to selection, 

mutation, and recombination. 

Using the W-F model, two important properties of the 

evolution of a population have been proved. First, in the 

limit as the number of generations goes to infinity the 

population becomes fixed. In genetics this means that all 

alleles but one disappear from a population. In our case, this 

means that all but one family becomes extinct for a 

sufficiently large number of generations. Second, the 

probability at some point in time that a particular allele will 

be the one that becomes fixed is given by its fraction of the 

total allele population at that time. For our application this 

means that at generation g the probability that a family will 

be the one that survives is equal to that family’s fraction of 

the total population at that generation. Since at the 

beginning of the first generation each family represents the 
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same fraction 1 N  of the population, each family initially 

has an equal probability of being the one that survives. 

A detailed discussion of coalescent theory is beyond the 

scope of this work, so the method will only be briefly 

outlined below. The reader is directed to Ref. [8] for a very 

readable presentation of the theory. Consider a subset n of 

the N neutrons in a generation. Denote the probability that 

none of the neutrons in the subset share a common parent by 

nq . If these neutrons have no common parents, then they 

must have n distinct ancestors in the previous generation. 

The probability that these n distinct ancestors themselves 

have distinct ancestors is also 
nq . The probability that the 

members of the subset share no common ancestors in the 

previous 1t −   generations, but that two or more share a 

common ancestor t generations in the past is thus 

 

                 ( ) ( )1 1t

n n nQ t q q
−= − .          (7) 

 

Using the terminology of coalescent theory, a ‘sample’ 

will refer to some subset of the neutrons at the ‘current’ 

generation. The theory is developed by following the 

lineages of the members of the sample backwards in time 

through the branches of the genealogical tree. The merging 

of two branches in some past generation is called a 

‘coalescence’. It is assumed that at any generation the 

number of branches on the sample’s tree is much less than 

the population size N, so that the probability of more than 

one coalescence per generation is negligible. Thus, as one 

looks back in time from the current generation, the number 

of branches on the sample’s tree is reduced by one at 

coalescences and is constant between coalescences. 

Eventually, the there are just two branches left. These 

coalesce at the MRCA of the sample. 

For the W-F model, we have the exact expression 
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For n N≪ , we have the approximate expressions 
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The expected number of generations to the next (again, 

going backwards in time) coalescence when there are i 

branches on the tree may be obtained from Eq. (10) as 
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For a sample of size n, the average number of generations 

between the current generation and the generation 

containing the MRCA is thus 
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Fixation occurs when one of the original ancestors 

becomes a common ancestor of the entire population. We 

use Eq. (12) to obtain an approximate expression for the 

expected number of generations to fixation by setting the 

sample size to the population size, i.e. 

 

             ( )fix MRCA

1
2 1T T N N

N

 
= = − 

 
.      (13) 

 

There are three aspects of this last step that involve 

approximations that warrant explanation. First, consider the 

generation at which all neutrons first share a common 

ancestor. One may then trace the lineages of the neutrons 

back through the generations until the MRCA is found. In 

general, this MRCA will be found in some generation after 

the initial generation. Equation (13) gives the expected 

number of generations between the MRCA and fixation, but 

does not account for the generations between the first and 

the one containing the MRCA. 

Second, we have violated the assumption that the 

sample size is much smaller than the population size. 

However, using Eq. (11) we see that the expected number of 

generations required to coalesce from two ancestors to one 

is 
2T N= . Thus, for half of the expected number of 

generations required for fixation there are only two branches 

on the tree. For one-sixth of the number of generations there 

are only three branches, for one-twelfth the number of 

generations only four branches, etc. Thus, the 

approximation is valid for the terms in Eq. (13) that 

contribute the most to 
fixT . 

The final point is that fixation occurs at the first 

generation for which the entire population shares a common 

ancestor, but in the derivations leading to Eq. (13) the 

number of generations to the first coalescence (going 

backwards) is assumed to be drawn from a distribution. 

However, the probability that all N neutrons in a generation 

have distinct ancestors in the previous generation is 1

N
P , 

where 
1P  is computed using Eq. (1). For large values of N, 

1

N
P is an extremely small number so that the number of 

generations to the first coalescence is almost certainly one. 

Despite these approximations, as we will see Eq. (13) seems 

to yield a reasonably accurate result. 
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Figure 2 illustrates the extinction of families and 

fixation. The red line shows the average number of families 

as a function of generation for an ensemble of 200 

calculations identical to the problem discussed in Sec. IV. 

The green line is the number of families versus generation 

for a representative member of the ensemble (run 1 of 200, 

the same run that produced the results shown in Fig. 1).  

From Eq. (6), the expected fraction of families to become 

extinct during the first generation is 0.367695. The observed 

fraction from the ensemble of Monte Carlo calculations is 

0.366895. 
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Fig. 2. Number of families as a function of generation. The 

red line is an average over 200 independent calculations. The 

green line is from a single representative calculation. 

 
Figure 3 shows a binned representation of the 

probability density for 
fixT obtained from an ensemble of 

400 calculations using the same model as before. The bin 

width is 250 generations. The average value is 2,008.88, 

which compares well with the value of 1,998 obtained using 

Eq. (13). As can be seen from the plot, there is a wide 

spread in the distribution of 
fixT . For large N, the variance is 

given by 

 

                 
fix

2
2 2

4 3
3

T N
π

σ
 

= − 
 

,        (14) 

 

which yields a standard deviation of 1076.79, which also 

compares well with the value of 1091.10 obtained using the 

simulation data. 

  
 

Fig. 3. Probability density of the number of generations to 

fixation. 

 

VI. SPATIAL CLUSTERING IN MONTE CARLO 

CALCULATIONS 

 

1. The Two-particle Distribution Function 

 

In our examination of spatial clustering we will use the 

two-particle distribution function ( )2 , ,h gx y , which is the 

joint probability density for one neutron being absorbed at x 

and a different neutron being absorbed at y in generation g. 

For the homogeneous problem considered here, the 

absorption probability density per neutron is uniform and 

equal to 3
L

− . In the first generation all of the neutrons are 

uncorrelated, hence 
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In subsequent generations the contribution to the two-

particle distribution function due to uncorrelated neutrons 

decreases proportionally to the fraction of uncorrelated 

pairs, i.e. 
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The contribution to the two-particle distribution function at 

generation g due to neutron pairs with a MRCA in a 

previous generation g′  is given by 

 

  ( ) ( )
( ) ( )

c 3

, , , ,
1

d G g g G g g
N N g g

L
ψ

′ ′− −
′−
∫ r x r y r

.  (17) 

 

Here, ( ) ( )c1N N g gψ ′−  is the number of correlated pairs 

in generation g with a MRCA in generation g′ . The 

Green’s function ( ), ,G g g ′−x r  is the probability per unit 

volume that a neutron will be absorbed at x in generation g 
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given that its ancestor in generation g′  was absorbed at r. 

The integral divided by the volume in Eq. (17) is thus the 

joint probability that a pair of neutrons with a uniformly-

distributed MRCA in generation g′  will be absorbed in unit 

volumes about x and y in generation g. Combining Eqs. (16) 

and (17), the two-particle distribution function is given by 
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      (18) 

 

Following   Meyer, et al. [9] and Zoia, et al., [10], we use 

the Markov property of the Green’s function, i.e. 
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2. The Diffusion Approximation 

 

To make further progress we need an explicit 

expression for the Green’s function, which we will now 

obtain using a diffusion approximation. In analogy to the 

method employed by Meyer, et al. [9] for the continuous-

time case, the generalized trajectory for a neutron in 

generation g is defined as its own trajectory plus the 

trajectories of all of its ancestor neutrons starting from the 

source location of its original ancestor. Such a generalized 

trajectory may be envisioned as a sequence of isotropic 

scattering events for a pseudo-particle diffusing through a 

purely scattering medium. For the continuous time case, the 

corresponding Green’s function is given by 
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where D is a diffusion coefficient. The mean-squared 

distance traveled by a diffusing particle in time t is 

( )2 6r t Dt= , thus Eq. (21) may be rewritten as 
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Defining 2

1r  as the mean-squared distance between a 

neutron’s birth and absorption in a single generation, the 

Green’s function for the pseudo-particles may be written as 
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To illustrate the plausibility of this diffusion 

approximation, we consider the case of a point source of 

pseudo-particles at the origin in an infinite medium. 

1,000,000 pseudo-particles were simulated for 100 

generations using the cross section data from Table 1. The 

simulation started all pseudo-particles from the origin, and 

tracked them using the standard analog Monte Carlo 

transport algorithm with the exception that at the beginning 

of each generation exactly one neutron was born at each 

absorption location. Figure 3 shows the mean-squared 

distance from the origin versus generation. Using Eq. (23), 

the mean-squared distance from the origin is given by 

( )2 2

1r g r g= . The linearity of the simulation data 

indicates that the diffusion approximation is valid for this 

case. The slope of the line yields 2 2

1 4.998 cmr = . 
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Fig. 3. Pseudo-particle mean-squared distance from origin.  

 

Following Zoia, et al. [10], de Mulatier, et al. [2], and 

Nowak, et al. [4], an eigenfunction expansion [11] is 

applied to Eq. (23) yielding 
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where 
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and q
x  and q

y  for 1, 2,3q =  are the three Cartesian 

components of the x and y vectors. The summation is over 

all combinations i, j, and k except 0i j k= = =  since that 

term is given explicitly as 3L−  . Substitution of Eq. (24) into 

Eq. (20) produces 
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           (27) 

 

3. The Mean-Squared Distance Between Pairs 
 

The expected mean-squared distance between pairs of 

absorption locations is defined using the two-particle 

distribution function as 

 

( )
( )

( )

2

22

p

2

, ,

, ,

d d h g
r g

d d h g

−
≡
∫ ∫
∫ ∫

x y x y x y

x y x y
.     (28) 

 

In the absence of correlation the distribution of absorption 

locations would be uniform, in which case 
2 2

p, unc
2r L= . 

Significant deviation from this value would be an indicator 

of clustering. 

Using Eq. (27) for the pair correlation function, we 

obtain 
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As g becomes large, the mean-squared distance between 

pairs approaches an asymptotic value given by 
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For 
2 2

1
1r L ≪ , the above expression may be simplified 

by replacing the exponential by its series expansion and 

retaining only the first-order term. Even though this 

approximation is not valid for terms corresponding to large 

values of k, these terms contribute negligibly to the 

summation. The resulting expression is 

 

( )
2 2

12 2

p 1 2 2

1

4 3
2 1 tanh

3 4

N r L
r N r

L N r

  
  ∞ = −
  
   

,    (31) 

 

which is identical in form to equivalent expressions 

obtained for the case of continuous time variation [2,4]. 

It is instructive to examine the behavior of Eq. (31) for 

various limiting cases. For an infinite medium ( )L → ∞ , the 

term in brackets goes to unity and we have 

( )2 2

p 1
2r N r∞ ≃ . To understand this result, note that for 

large g the average number of generations separating two 

correlated neutrons from their MRCA is equal to the 

number of neutrons in a generation, i.e. 
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Over the course of N generations, two neutrons born at the 

same location in an infinite medium will thus have an 

expected squared separation of 2

12N r . For small but finite 

values of 
2 2

1
N r L  the bracketed term in Eq. (30) is 

positive and less than unity, so that ( )2

p
r ∞  is smaller than 

for an infinite medium. 

For the case of N → ∞ ,  we obtain 

( )2 2

p p, unc
r r∞ → , i.e. the result for an uncorrelated 

system of particles. For sufficiently large but finite N, 

Eq. (31) may be approximated as 

 

( )
2

2 2

p p, unc 2

1

3
1

10

L
r r

N r

 
 ∞ −
 
 

≃ ,         (33) 

 

from which we see that correlation reduces ( )2

p
r ∞  from 

the value for an uncorrelated system. This behavior has 

previously been noted for the continuous-time case [4]. 

Figure 4 shows the behavior of the mean-squared 

distance between pairs for our model problem as the 

calculation proceeds through the generations. The black line 

is the theoretical prediction determined from Eq. (29) using 
2 2

1 4.998 cmr =  and truncating the summation at 20k = . 

Initially the mean-squared distance between pairs is the 

value corresponding to a uniform distribution, i.e. 
2 22 80,000 cmL = . As the calculation proceeds, however, 

the effect of clustering is evident as the expected value 

decreases to the asymptotic value of ( )2 2

p
7957 cmr ∞ =  

determined using Eq. (30). This is 20% less than the 

expected value of the mean-squared distance between pairs 

for an infinite medium (
2 2

1
2 9,994 cmN r = ). Also shown 

is a plot of ( )2

pr g  obtained by averaging over an 

ensemble of 200 independent Monte Carlo calculations (red 

line), and a plot of a single representative member of the 

ensemble (run 1 of 200, green line). Despite the use of the 

diffusion approximation in the theoretical model, agreement 

with the average of the Monte Carlo results is quite good. 

Note the precipitous drop in the plot for run 1 at about the 

point where fixation occurs (generation 942). From this 

point on all the neutrons are in a single tight cluster. 

Figure 5 shows the cluster from Fig. 1 at generation 

10,000 along with the location of the original ancestor of all 

of the neutrons in the cluster (red point) and the COM of the 

population (magenta point). The COM is given by 

 

                 COM

1

1 N

i

iN =

= ∑r r ,         (34) 

 

where 
ir  is the location of the ith neutron absorption 

location. Since the mean-squared distance between points 

uniformly distributed within a sphere of radius R is 
26 5R . 

we may use ( )2

prρ ≡ ∞  as a characteristic length 

associated with the radial extent of the cluster. Figure 5 

shows a superimposed sphere of radius ρ  centered on the 

COM. By taking the ratio of the volume of the sphere to that 

of the 400 cm cube in which it is located, we see that after 

the cluster has formed all of the neutrons are found in less 

than 5% of the volume of the problem. 
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Fig. 4. Mean-squared distance between pairs for N = 1000.  

 

 

 
Fig. 5. Absorption distribution after 10,000 generations 

(black), a sphere of radius ρ  centered at the COM 

(magenta), and the location of the original ancestor (red). 
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VII. CONCLUSION 
 

In this paper we have developed a mathematical model 

of clustering in Monte Carlo iterated-fission-source 

calculations. This model explicitly accounts for the 

sequential-generation nature of the Monte Carlo source 

iteration procedure, whereas earlier works in this area used a 

continuous-time model. A novel aspect of the current work 

is the analysis of the decline in the number of ‘lineages’ 

remaining as the calculation proceeds through the 

generations. 

It must be stressed that the Monte Carlo algorithm used 

and the problem studied are not typical of real-world 

applications. This was intentional. The simplicity of the 

algorithm and problem allowed for theoretical analyses that 

would not have been possible otherwise. Furthermore, the 

particular model parameters used were chosen to emphasize 

the effect of clustering. While clustering may indeed be an 

issue for real-world problems, only for very pathological 

situations would it be likely to manifest itself so 

dramatically as in this paper. 

From the theoretical results presented in Sec. VI, it is 

clear that the error in the mean-squared-distance between 

pairs due to clustering decreases with increasing number of 

neutrons per generation. To demonstrate this, the model 

problem was rerun using 250 generations of 40,000 

neutrons each. The total number of neutrons run is thus the 

same as for the calculation discussed in Sec. IV. The mean-

squared distance between pairs versus generation is plotted 

in Fig. 6. Instead of decreasing as was the case with the 

calculation illustrated in Fig. 4, the value fluctuated about 

the correct value of 80,000. Although it has not been proven 

here, one might expect that Monte Carlo results in general 

will suffer less from the effects of clustering for larger 

generations. Thus, if one is considering whether to run 

calculations with many smaller generations or fewer larger 

generations, one should choose the latter. 

 

0.0E+00

1.0E+04

2.0E+04

3.0E+04

4.0E+04

5.0E+04

6.0E+04

7.0E+04

8.0E+04

9.0E+04

0 50 100 150 200 250

m
e

a
n

-s
q

u
a

re
d

 d
is

ta
n

ce
 (

sq
u

a
re

 c
m

)

generation

 
Fig. 6. Mean-squared distance between pairs for N = 40,000.  
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