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Abstract – This paper investigates the strength of statistical metrics for predicting the onset and magnitude 
of bias in Monte Carlo tally estimates due to fission source undersampling in eigenvalue simulations. 
Previous studies found that metrics which had showed potential for predicting undersampling biases in flux 
and eigenvalue estimates in multigroup simulations had difficulty predicting biases for reaction rate 
estimates in continuous-energy simulations, but the significant degree of stochastic uncertainty present in 
the tally bias estimates made it difficult draw definitive conclusions. This study utilized approximately 20 
times as many active neutron histories to reduce the stochastic uncertainty in tally bias estimates and draw 
conclusions with a higher degree of certainty. These more highly converged results produced similar trends 
to what was previously observed – the undersampling metrics were marginally effective at predicting the 
magnitude of undersampling biases, and stochastic uncertainty once again made it difficult to fully 
evaluate the strength of the metrics. 

I. INTRODUCTION 
 
This study continued investigations on the viability of 

several statistical metrics for predicting biases due to 
undersampling in continuous-energy (CE) Monte Carlo 
transport simulation tally estimates [1,2]. Undersampling is 
a phenomenon in which a Monte Carlo simulation does not 
sample enough particle histories per generation to 
adequately sample fission sites and interact with tally 
regions in a problem, resulting in biases in tally estimates 
that are much larger than the statistical variance. These 
biases can potentially lead to erroneous conclusions 
regarding system performance and safety. Previous studies 
found that biases due to undersampling could be as large as 
several hundred percent mille (pcm) for eigenvalue 
estimates [3,4] and up to tens or hundreds of percent for flux 
tally estimates [4]. 

 
Fig. 1. Flux tallies in the top axial section of a radially 
reflected PWR assembly [4] show significant bias when 
fewer than 1,000 histories per generation are simulated. 
 

For example, Perfetti and Rearden considered neutron 
flux tallied over an axial segment of a radially reflected 
PWR assembly [4]. Significant undersampling of this region 

was not expected because the assembly is reflected and the 
axial power profile is relatively flat. However, the 
parametric study plotted in Fig. 1 shows undersampling bias 
far exceeding the statistical error estimates, especially when 
fewer than 1,000 histories per generation were simulated. 
This type of bias is not apparent unless analysts perform 
similar parametric studies, which are computationally 
expensive. 

Several experts have suggested exploring variance 
reduction schemes to mitigate undersampling bias – for 
example, the FW-CADIS methodology could be used to 
distribute histories more uniformly throughout a simulation 
[5]. Because a rigorous level of convergence is necessary to 
adequately quantify the magnitude of undersampling biases, 
it is ideal to assess the performance of potential variance 
reduction schemes using a metric to infer the magnitude of 
undersampling biases. 

Developers have proposed several statistical metrics to 
identify undersampling biases without resorting to 
parametric studies. These metrics can be applied and 
evaluated while simulations are still running [1,2]. As an 
example, the Tally Entropy metric shown in Fig. 2 showed 
promise in predicting the magnitude of undersampling 
biases for eigenvalue and flux tally estimates in multigroup 
Monte Carlo simulations [4]. In this study, the effectiveness 
of each undersampling metric was evaluated by plotting the 
value of the metric scores against the Fraction of 
Undersampling, which is the relative difference between the 
biased and reference tally scores [1]. 

 

 

        𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑈𝑛𝑑𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = 
 

                            
𝐵𝑖𝑎𝑠𝑒𝑑 𝑇𝑎𝑙𝑙𝑦 − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑇𝑎𝑙𝑙𝑦

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑇𝑎𝑙𝑙𝑦
 

 

(1) 
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This is an equivalent expression for relative error, which is 
ideally zero. 

These undersampling metrics were first applied to 
eigenvalue and flux estimates in multigroup simulations of 
single infinitely reflected fuel assemblies [1], and they have 
been extended to eigenvalue, flux, and reaction-rate tallies 
for the same systems using CE physics [2].  

Fig. 2. Magnitude of multigroup undersampling biases 
(relative difference) vs. the Tally Entropy metric score [1]. 

II. CHALLENGES TO THE CE TSUNAMI-3D 
UNDERSAMPLING METRICS  
 
Ideally, these undersampling metrics would be universally 
applicable, accurately predicting the magnitude of 
undersampling biases in flux, eigenvalue, reaction rate, and 
potentially sensitivity tally estimates in systems with 
substantially different neutron spectra. Unfortunately, the 
undersampling tallies poorly predict undersampling biases 
for reaction rates in simulations using CE physics [2]. As 
shown in Fig. 3 and discussed in Ref. 2, the undersampling 
metric scores were somewhat correlated to the magnitude of 
the undersampling biases. Unfortunately, the correlation is 
less strong than correlations observed for multigroup 
simulations in Ref. 1. It is difficult to draw conclusions on 
the effectiveness of these undersampling metrics based on 
this data because many of these tally estimates were 
insufficiently converged due to long simulation runtimes 
and limited computational resources. 

 
Fig. 3. Magnitude of CE undersampling biases vs. the 
Heidelberger-Welch RHW metric score [2]. 

 
This study uses more highly converged tally and bias 

estimates to reexamine the predictive capability of the 
undersampling metrics in CE TSUNAMI-3D, a CE Monte 
Carlo sensitivity code in the SCALE 6.2 Code System [6]. 
Eigenvalue, flux, and energy-integrated reaction rate tally 
estimates are calculated for axial regions of a radially 
reflected PWR fuel assembly [4]. Undersampling metrics 
are then calculated and plotted against the Fraction of 
Undersampling calculated from a reference simulation to 
determine their potential for predicting the magnitude of 
undersampling biases. Similar to Refs. 1 and 2, the 
undersampling metrics calculated for this study include: 
1. the average number of nonzero tally scores per 

generation for each tally, 
2. the Heidelberger-Welch Relative Half-Width (RHW) 

for each tally [7], 
3. the Tally Entropy for each tally [1], and 
4. the true statistical uncertainty in each tally. 

References 1 and 2 also included calculation of the Geweke 
Z-Score; this metric has since been removed from CE 
TSUNAMI-3D because of its poor correlation with 
undersampling bias and its relatively large memory 
footprint.  

The simulations presented here calculated 
undersampling biases and metrics using 30 independent 
simulations with 100 million active histories, which resulted 
in the simulation of 20× more active histories than in 
Perfetti and Rearden’s 2016 study [2]. These 30 independent 
simulations were repeated using different numbers of 
neutrons simulated per generation (NPG) and active 
generations, but the same total number of active histories 
were used. This demonstrated how the impact of 
undersampling diminishes for simulations with high NPG 
values. Reference values were calculated for the 
eigenvalues, fluxes, and reaction rates using 10 independent 
simulations with 1 billion active histories and 5 million 
NPG.  

 
III. EFFECTIVENESS OF UNDERSAMPLING 
METRICS 
 
1. Scores per Generation Metric 

 
The scores per generation metric tracks the average 

number of nonzero tally scores per generation in a tally 
region. In principle, tallies that receive more scores per 
generation should be less prone to the effects of 
undersampling. 

Figure 4 plots the scores per generation against the 
undersampling biases for the eigenvalue, flux, and reaction 
rate tallies from the 18 different axial levels within the R2 
fuel assembly. This figure compiles the results of all seven 
NPG realizations using a different color for each realization. 
The reaction rates in this figure include the total, fission, 
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fission neutron production, capture, (n,γ), elastic scatter, 
inelastic scatter, (n,2n), (n,α), (n,p), and (n,d) interactions. 
This figure and all subsequent figures only plot biases with 
a relative uncertainty of less than 50%. 

 
 
Fig. 4. Relative undersampling biases vs. the scores per 
generation. 
 

As shown in Fig. 4, tallies that receive more nonzero 
scores within a generation generally produce smaller 
undersampling biases. However, as with the results from the 
previous study, the trend is only weakly predictive. For 
example, tallies that receive 1 nonzero score on average per 
generation may produce biases ranging from 0.1% to greater 
than 100%. Bands of data points appear at several locations 
on the graph, indicating that a given Fraction of 
Undersampling can occur for a broad range of scores per 
generation (and vice versa, especially around 100 scores per 
generation). These bands of data points tend to be clustered 
for tallies that use the same NPG, which suggests that this 
metric is not especially effective at determining which 
tallies are being undersampled within a single simulation. 
Overall, this metric was effective for generally predicting 
the presence of undersampling biases, but it was not 
correlated tightly enough with the magnitude of the 
undersampling biases to accurately predict the impact of 
undersampling.  
 
2. Heidelberger-Welch RHW Metric 
 

The Heidelberger-Welch RHW metric examines 
whether the length of a Markov chain is sufficient to 
provide accurate estimates for the mean value and 
uncertainty of a parameter. The metric does this by testing 
whether tally scores within the Markov chain vary 
significantly outside the 𝛼 = 95% confidence interval of the 
chain. The statistic for the Heidelberger-Welch RHW test is  

 𝑅𝐻𝑊 =
𝑧(!!! !) 𝑠! 𝑛

𝜃!
, (2) 

where 𝑧(!!! !)  represents 100(1-  𝛼/2 )th percentile of a 
standard normal distribution, 𝑛 is the length of the Markov 

chain, 𝜃! is the estimated mean of the members in the chain, 
and 𝑠! is the estimated variance of the members in the chain 
[7]. 

Figure 5 plots the Heidelberger-Welch RHW scores 
against the undersampling biases for the eigenvalue, flux, 
and reaction rate tallies in the R2 Case. The data plotted in 
this figure (and the data later plotted for the Tally Entropy 
metric) have been filtered to include only tallies that 
received at least one score per generation (and biases with 
less than 50% relative uncertainty, as mentioned 
previously). The RHW metric scores can be used very 
generally to predict the magnitude of undersampling biases, 
but, like the scores-per-generation metric, the RHW metric 
produced wide bands of data points for each NPG 
realization, indicating that this metric has limited power to 
assess undersampling bias. 

 
 
Fig. 5. Effectiveness of the Heidelberger-Welch RHW 
metric at predicting undersampling biases. 
 

Interestingly, the absolute uncertainty in the RHW 
metric scores from the repeated simulations (plotted in Fig. 
6) shows more promise. This alternative metric produced 
data points that correlated much more strongly with the 
Fraction of Undersampling, and although the bands of data 
still exist, they are clustered together more tightly than those 
produced by any of the other undersampling metrics. 
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Fig. 6. Effectiveness of the absolute ncertainty in the 
Heidelberger-Welch RHW metric at predicting 
undersampling biases. 
 
3. Tally Entropy Metric 
 

The Tally Entropy metric [1] was developed using the 
information theory concept of Shannon Entropy. The 
Shannon Entropy, 𝐻, of a sampling process with 𝑁 possible 
outcomes is 

 𝐻 = − 𝑝! log!(𝑝!)
!

!

, (3) 

where 𝑝! is the probability of outcome 𝑛 [8]. For example, a 
fair coin toss has 𝑝!"#$% = 𝑝!"#$% = 0.5, so tossing a coin 
once samples 𝐻 = 1  shannon of information. Reactor 
physicists typically use the natural logarithm instead of 
log!. 

Brown and Ueki used Shannon Entropy as a metric to 
detect unconverged fission sources in Monte Carlo 
simulations [9]. Ueki and Brown calculated the Shannon 
Entropy of the fission source by imposing a spatial mesh 
over the model. The probability of sampling a fission site in 
mesh element 𝑛 is 𝑝! , which can be estimated from the 
fraction of fission sites sampled in each mesh element. 
Shannon Entropy that has not yet converged to a steady 
value indicates that the fission source is still evolving and 
that additional inactive generations should be simulated. 

Unfortunately, Shannon Entropy cannot be used in this 
way to assess the convergence of Monte Carlo tallies. This 
is because undersampled tallies may produce falsely 
converged Shannon Entropy estimates that are different but 
indistinguishable (a priori) from the entropy that would be 
produced by a converged set of tallies. Therefore, an 
alternative approach was developed for using the concept of 
Shannon Entropy to diagnose undersampling in Monte 
Carlo tally estimates. 

For this metric, 𝑝!  is defined as the probability that 
history 𝑛 is the one that contributes a particular increment to 
the tally. Therefore, 𝑝!  is estimated as the fractional 
contribution of history 𝑛 to tally 𝑖 within generation 𝑗. It is 
estimated by dividing the tally score from history 𝑛 by the 
sum of the tally scores produced in generation 𝑗: 

 𝑝! =
𝑇𝑎𝑙𝑙𝑦 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑛

𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑇𝑎𝑙𝑙𝑦 𝑖 𝑆𝑐𝑜𝑟𝑒𝑠 𝑖𝑛 𝐺𝑒𝑛.  𝑗
 .  

(4) 

After 𝑝! is estimated for the histories within a generation, 
the tally- and generation-specific entropy is 

 𝐻!,! = − 𝑝! ln 𝑝!

!!,!

!!"#$%& !

 , (5) 

where 𝑁!,! is the number of histories in generation 𝑗 that 
produced nonzero scores for tally 𝑖.  

A random process with 𝑁  outcomes can produce a 
minimum entropy of zero and a maximum entropy of ln(𝑁). 
The signal will produce zero entropy if only one of the 
outcomes is possible, and it will produce maximum entropy 
when ( 𝑝! = 𝑝! = ⋯ = 𝑝! ). This maximum-entropy 
condition happens to be ideal for scoring unbiased Monte 
Carlo tally estimates: each tally should receive scores from 
many histories in each generation, and each history should 
contribute a similarly sized score to the tally estimate. 
Therefore, the Tally Entropy convergence metric predicts 
undersampling biases by comparing the Shannon Entropy of 
the tally to its theoretical maximum. The Tally Entropy test 
statistic for tally 𝑖 is therefore calculated by the following 
equation: 

 𝑇𝑎𝑙𝑙𝑦 𝐸𝑛𝑡𝑟𝑜𝑝𝑦! ≡  
ln 𝑁!,! − 𝐻!,!

ln 𝑁!,!
 , (6) 

where the   operator denotes the average of a value over all 
active generations. 

Figure 7 plots the Tally Entropy scores against the 
undersampling biases for the eigenvalue, flux, and reaction 
rate tallies in the R2 case. The correlation between the Tally 
Entropy metric and the uncertainty biases looks quite 
similar to the correlation observed in Fig. 5 for the RHW 
metric, except that the Tally Entropy metric suffered to 
lesser degree to the previously observed banding of data 
points. With the exception of data points from the 
NPG=1,000,000 case, a boundary line can be drawn 
showing the maximum expected bias that will occur for a 
given tally entropy metric score. 

 
Fig. 7. Effectiveness of the Tally Entropy metric at 
predicting undersampling biases. The red line represents the 
maximum undersampling bias expected for a given Tally 
Entropy score. 

 
Although the Tally Entropy metric seems to be more 

effective than the scores per generation and RHW metrics at 
predicting the occurrence of undersampling, the metric still 
leaves much to be desired. The red bounding line in Fig. 7 
may be effective at identifying the minimum Tally Entropy 
score needed to achieve a given amount of undersampling 
bias, but a large Tally Entropy does not guarantee a large 
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bias. For example, observing a Tally Entropy of 0.5 
indicates a Fraction of Undersampling between 0.02% and 
10%. This wide range of bias may not be useful to analysts 
because it will cause them to falsely reject tallies that do not 
possess a large degree of bias. Thus, although this metric 
may be successful at predicting the maximum amount of 
bias present, its correlation with the magnitude of 
undersampling biases is not strong enough to reliably 
predict the size of an undersampling bias. 

As shown in Fig. 8, the absolute uncertainty in the Tally 
Entropy scores was also examined to identify trends in the 
undersampling biases. The Tally Entropy uncertainty 
showed promise for predicting the magnitude of smaller 
undersampling biases, but it exhibited nonlinear behavior 
for larger biases (particularly for biases above 0.01 with a 
Tally Entropy uncertainty near 1.0E-04). As with the other 
metrics, the uncertainty in the Tally Entropy was not 
especially effective at predicting the magnitude of 
undersampling biases. 

 

 
Fig. 8. Effectiveness of the Tally Entropy metric absolute 
uncertainty at predicting undersampling biases. 

 
4. True Uncertainty in Tallies 
 

The true uncertainty in the tallied parameters was also 
examined as a metric to predict the magnitude of 
undersampling bias [2]. The true uncertainty was calculated 
by taking the standard deviation of the tally results from the 
30 independent repeated simulations for each NPG 
realization. As shown in Fig. 9, the true uncertainty of a 
tally seems reasonably correlated to the magnitude of the 
undersampling bias in that tally. These results seem to show 
the same banding effect that was observed for the other 
metrics, but to a much smaller degree. These data were 
filtered to include only the data points plotted that produced 
a relative uncertainty in their biases of less than 100%. 
(Previous plots used a 50% cutoff.) The sharp cutoff along 
the bottom edge of the data cluster is due to this filtering 
and should not be considered strength of correlation.  

 
Fig. 9. Effectiveness of the tallies’ true uncertainty at 
predicting undersampling biases. 

 
While examining the true uncertainty in tallies may 

seem like a reasonable approach for quantifying the 
magnitude of the undersampling bias, this metric does not 
hold up to closer examination. Figure 10 plots the same data 
shown in Fig. 9, but only for the flux and eigenvalue tallies 
from the simulations. Although the flux tally true 
uncertainties show good correlation with the magnitude of 
the undersampling biases within a single simulation, the 
different NPG realizations produce lines of data, where 
tallies with a certain uncertainty produce undersampling 
biases that can differ by more than an order of magnitude. 
These results suggest that the true tally uncertainty may not 
effectively predict undersampling across different 
simulations, but it may be useful for predicting the 
undersampling bias in difficult-to-tally parameters using the 
known bias in an easier-to-tally parameter in that 
simulation.  

 
Fig. 10. Effectiveness of the eigenvalue and flux tallies’ true 
uncertainty at predicting undersampling biases. 

 
IV. CONCLUSIONS 

 
This paper details a more thorough continuation of a 

previous study [2] for using statistical metrics to predict the 
presence and magnitude of undersampling biases using the 
CE TSUNAMI-3D within the SCALE code system [5]. All 
metrics that were examined showed limited correlation with 
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the magnitude of undersampling biases in eigenvalue 
estimates, flux tallies, and reaction rates, but no metric was 
able to consistently predict the magnitude of undersampling 
biases. Although this study used 20 times as many histories 
as the previous study [2], it was still difficult to obtain tally 
estimates that were sufficiently converged to yield low 
uncertainty bias estimates. Figure 11 plots the cumulative 
probability distribution of the relative uncertainty in 
undersampling biases for the roughly 11,500 tally estimates 
examined for each NPG realization. 

 

 
Fig. 11. Uncertainty in undersampling bias estimates. 
 
As shown in Fig. 11, only the NPG=100 and NPG=200 

cases produced bias estimates that generally contained less 
than 10% relative uncertainty. This occurred because the 
undersampling biases produced by these cases were larger 
in magnitude, making them easier to resolve. Many other 
NPG realization bias estimates reported an excess of 50% 
relative uncertainty, making it difficult to determine if the 
undersampling metrics performed poorly or if the data were 
too poorly resolved to evaluate the performance of the 
metrics. However, even the NPG=100 and NPG=200 cases 
did not produce undersampling metric data that correlated 
strongly with the magnitude of the undersampling biases, so 
the poor predictability observed for the undersampling 
metrics may not be due to insufficiently resolved bias 
estimates. 

The NPG=1,000,000 data in Fig. 11 produced lower 
uncertainty estimates than several cases with lower NPG 
values because these cases were simulated to a finer degree 
of convergence than the other cases. The NPG=1,000,000 
data were more finely resolved because they were originally 
intended to serve as the reference data. Each of the other 
NPG realizations used the same number of active histories 
in each simulation and the same number of repeated 
simulations. 

Accurate, efficient reactor and safety analyses require 
effective measures to guarantee the reliability of simulation 
results, and the methods investigated in this study failed to 
reliably predict the magnitude of undersampling biases. 
Future work includes using undersampling metrics (without 
running computationally expensive simulations to resolve 
potentially small undersampling biases) to evaluate the 
effectiveness of variance reduction schemes, such as the 
FW-CADIS method [5], for the potential to mitigate 

undersampling biases. The results from this study suggest 
that future studies on undersampling could benefit from 
developing a more rigorous set of metrics for detecting and 
predicting undersampling biases. 
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