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Abstract - The cumulative migration method (CMM) is a new method for computing diffusion coefficients
and transport cross sections in light water reactors that is both rigorous and computationally efficient. It
eliminates the sources of inaccuracy in the commonly applied “out-scatter” transport correction. The newly
developed method is directly applicable to lattice calculations performed by Monte Carlo and is capable
of computing rigorous homogenized diffusion coefficients for arbitrarily heterogeneous lattices. Directional
diffusion coefficients can also be computed in a natural approach using CMM. In this paper the group-wise
tally scheme for CMM is introduced. The group-wise tally is functionally equivalent to cumulative-group tally
but allows for simple integration into existing Monte Carlo codes.

I. INTRODUCTION

In the calculation of multi-group diffusion coefficients
and transport cross sections, the “out-scatter” approximation
is a widely adopted approach in production lattice physics
codes [1, 2, 3, 4]. It assumes that the in-scatter rate of neutrons
from energies E′ to E will approximately balance the out-
scatter rate of neutrons from E to all other energies. The
approximation can be represented as

∫ ∞

0
Σs1(r, E′ → E)J(r, E′)dE′ ≈∫ ∞

0
Σs1(r, E → E′)J(r, E)dE′

(1)

in which Σs1(r, E′ → E) is the P1 scattering cross section
from E′ to E at position r, and J(r, E′) is the neutron current
at energy E′ and position r. Based on this approximation, the
multi-group transport cross section is expressed as given in
Equation (2a), in which Σos

tr,g is the transport cross section from
the out-scatter approximation, Σt,g is the total cross section,
Σs0,g is the P0 scattering cross section, µg is the average scat-
tering cosine, and subscript g denotes the group index. The
spatial dependence on r is omitted in subsequent equations for
a clearer expression.

Since elastic scattering with 1H can be seen as purely
isotropic in the center-of-mass system, µg can be shown to
be 2/3 when thermal scattering effects are neglected. This
induced an easier way of computing diffusion coefficients
by taking µg to be 2/3 for all groups, with Σas

tr,g defined as
the transport cross section from the “asymptotic” out-scatter
approximation.

Another method makes the hypothesis that neutron cur-
rent can not exceed the scalar flux and it uses scalar flux
spectrum instead of neutron current spectrum for weighting
the P1 scattering cross sections [5]. The transport cross section
computed by this method as shown in Equation (2b) can be
called the “flux-limited" transport cross section. In Equation
(2b) φg is scalar flux in group g and Σs1,g′→g is the P1 cross
section of scattering from group g′ to group g.

Σos
tr,g = Σt,g − µgΣs0,g (2a)

Σ
f l
tr,g = Σt,g −

G∑
g′=1

Σs1,g′→gφg′

φg
(2b)

The deficiency of these approximations has been shown in
a previous paper [6] using a simple model with pure hydrogen
uniformly distributed in infinite medium. The results from
the three approximation methods are compared with those
computed from solving P1 equations and show deviations of
roughly 30% in the fast group.

The Cumulative Migration Method (CMM) for comput-
ing homogenized assembly multi-group diffusion coefficients
and transport cross sections is both rigorous and computation-
ally efficient [6]. In the limit of a homogeneous hydrogen slab,
this method is equivalent to the long-used CASMO transport
method [7]. The new method can be directly tallied in Monte
Carlo methods and provides better accuracy than the previ-
ously used “out-scatter” approximation. CMM is implemented
in a test version of OpenMC [8], and applications of CMM to
the BEAVRS benchmark problem [9] have shown significant
improvement in generating accurate homogenized assembly
diffusion coefficients for full-core diffusion calculations [10].

In conventional nodal diffusion calculations, material
properties are generally assumed isotropic and diffusion co-
efficients have no variation in different directions. However,
the isotropy in practical problems is never rigorously true and
sometimes it can be a very poor assumption, such as in the
TREAT (TRansient REactor Test facility) at the Idaho National
Laboratory (INL) [11].

The TREAT fuel assemblies were designed with vertical
streaming channels, which makes directional variations im-
portant axially as shown in Figure 1. Recent work on CMM
demonstrates the natural extension for computing directional
diffusion coefficients in Monte Carlo. An 11-group diffusion
test problem of a simplified model of TREAT fuel assembly
showed that both eigenvalue and flux distribution are more
accurate using the directional diffusion coefficients computed
by CMM.
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Fig. 1. The 2D geometrical layout and material composition
of active fuel zone of TREAT fuel assembly.

Additionally, a new equivalent group-wise tally method
has now been developed, which provides greater efficiency
and is simpler to implement in conventional Monte Carlo
tallies. The new tally method provides a promising bridge for
computing heterogeneous diffusion coefficients and transport
cross sections.

II. THEORY OF CMM

1. Migration Area

In one-group diffusion theory, the relationship between
migration area M2, diffusion coefficient D, absorption cross
section Σa and the mean square crow flight distance of the
neutrons

〈
r2〉 is M2 = D/Σa =

〈
r2〉/6. Similar analysis can be

done from birth to a lower energy bound. In other words, the
“partial” migration area while the neutron slows down can be
defined as

M2(E > Eg) =
D(E > Eg)
Σr(E > Eg)

(3)

In Equation (3), M2(E > Eg) is the cumulative migra-
tion area before the neutron’s energy becomes less than Eg,
D(E > Eg) is the diffusion coefficient for the energy range of
[Eg, Emax], and Σr(E > Eg) is the removal cross section for
the energy range of [Eg, Emax], which will include not only
absorption, but also net down scatter to an energy lower than
Eg.

From the perspective of energy groups, the energy range
of [Eg, Emax] can be seen as a “broad” group whose upper
boundary always starts from Emax. In a multi-group structure,
as Eg is the lower boundary of group g, then the “broad” group
can be seen as a “cumulative group” from group 1 to group g.
The concept of cumulative group is illustrated in Figure 2, in
which the group structure is represented in the pyramid frame
with cumulative group g and cumulative group (g + 1) shown
in shadowed areas. Based on this concept, Equation (3) can
be expressed in the form of cumulative group as

(Mc
g)2 =

Dc
g

Σc
r,g

(4)

where the superscript c indicates that all the quantities in this
equation are for the cumulative group g, that is to say, the
combined “broad” group from group 1 to group g.

Equation (4) provides a scheme for computing cumula-
tive multi-group diffusion coefficients through the theory of
cumulative migration area, using the one-sixth relationship

Fig. 2. Illustration of the concept of “cumulative group”. (Left:
cumulative group g, right: cumulative group (g + 1).)

with the mean square of neutron’s crow flight length, as shown
as

(Mc
g)2 =

1
6
〈
(rg)2〉 (5)

where rg is the crow flight length from the neutron’s birth po-
sition to the position where it is removed from the cumulative
group g, and rg is a quantity that can be tallied directly in
Monte Carlo codes. Then group-wise diffusion coefficients
Dg can be calculated by “unfolding” cumulative multi-group
diffusion coefficients Dc

g using flux-weighting as shown in
Equation (6).

Dc
g =

g∑
g′=1

Dg′φg′

g∑
g′=1

φg′

(6)

2. Directional Diffusion Coefficients Generation

In CMM, directional dependency can be handled naturally
by projection of neutrons’ cumulative migration vector to
respective axes. In a Cartesian coordinate system, every track
vector of the neutron’s flights can be decomposed into different
components by projecting according to the x, y, z axes. As
shown in Figure 3, r is the neutron’s cumulative migration
vector, and rz is the vertical component of r. Since r = rx +
ry + rz and

〈
(r)2〉 =

〈
(rx)2〉 +

〈
(ry)2〉 +

〈
(rz)2〉, in isotropic

materials, it is obvious that
〈
(r)2〉 = 3 ·

〈
(rz)2〉. The directional

diffusion coefficients can be computed by using rz as shown
in Equation (7).

(Mc
z,g)2 =

1
6
〈
(rz,g)2〉 (7a)

Dc
z,g = 3 · (Mc

z,g)2 · Σc
r,g (7b)

The multiplier factor 3 in Equation (7b) can ensure that
the directional diffusion coefficients Dc

z,g will be the same as
the averaged diffusion coefficients Dc

g in isotropic materials.

III. GROUP-WISE TALLY FOR CMM

Based on the concept of cumulative migration area, as
illustrated in Figure 2, cumulative-group quantities are neces-
sary for calculating group-wise diffusion coefficients. But for
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Fig. 3. Illustration of directional projection of cumulative
migration vector.

the implementation in general Monte Carlo codes, it is not nat-
ural to tally cumulative-group quantities. In this paper, a new
group-wise tally scheme is proposed to replace the previous
way of directly tallying cumulative-group quantities in Monte
Carlo codes.

According to Equation (5), cumulative-group migration
area (Mc

g)2 is defined as one sixth of the average of (rg)2, the
square crow flight distance. The two positions related to rg
forms the cumulative migration vector rg, starting from the
position where the neutron is born to the position where it
is removed from cumulative group g. On the other hand,
the “group-wise migration vector” can be represented by lg,
starting from the position where the neutron’s energy falls in
group g to the position where it is removed from group g.

An illustration of the cumulative migration vectors and
group-wise migration vectors is shown in Figure 4. On the left
side of this figure, a neutron born at spatial point O (source
origin) is depicted to undergo a series of scattering reactions
and finally gets absorbed at point C. When this neutron is
emitted (at the origin O), the neutron’s energy belongs to group
1 in a given multi-group energy structure. As the neutron
travels in the space, its energy varies as scattering reactions
occur. In the scenario of the neutron in Figure 4, at point
A, a down-scatter reaction slows down the neutron so that its
energy after the reaction belongs to group 2. Similarly, at point
B, the neutron’s energy is changed from group 2 to group 3.
Finally, after a few more scattering reactions (but the energy
group is no longer changed), the neutron is absorbed at point
C.

The right part in Figure 4 shows the “evolutionary his-
tory” of the neutron’s energy versus the reaction sequence in
time. For the purpose of illustration, the whole energy range
is divided into 5 groups, with the darkest background color
representing the group of the highest energy and the lightest
color representing the group of lowest energy. The bright
yellow line represents the neutron’s energy corresponding to
separate flights between each successive reactions as shown
on the left part.

From the neutron’s spatial and energetic variation record

in Figure 4, for the first group, it is obvious that the cumulative-
group migration vector and “group-wise migration vector” are
the same, i.e., r1 = l1 =

#   »
OA.

For group 2 and group 3, the cumulative-group migration
vector rg can be decomposed into two components, as

rg = rg−1 + lg (8)

Thus for square crow flight distance, it’s straightforward
to employ vector math to obtain

(rg)2 = (rg−1)2 + (lg)2 + 2 · rg−1 · lg (9)

In this case the neutron’s energy group variations hap-
pened in two consecutive groups, i.e., from group 1 to group 2
and from group 2 to group 3. More generally, if the neutron is
in group gp (previous group) before a scattering reaction and
group g afterwards, the geometrical relationships in Equation
(8) and (9) will become

rg = rgp + lg (10a)

(rg)2 = (rgp)2 + (lg)2 + 2 · rgp · lg (10b)

The (rg)2 and (rgp)2 in Equation (10b) are just the values
used to compute the cumulative-group migration area (Mc

g)2.
In this way, starting from group 1, in which the cumulative
group tally is the same as group-wise tally, (rg)2 of all groups
can be computed by a recursive process. In Equation (10b),
the first term on the right hand side can be obtained recursively
from previous groups. The second term and the third term can
be computed using the information of the neutrons’ positions,
which can both be obtained through conventional group-wise
tallies.

In this way, CMM can be implemented in a pure group-
wise tally scheme and this removes the need for tallying
cumulative-group tallies. The new group-wise tally scheme
is equivalent to the cumulative-group tally but with higher
efficiency. Additionally, the group-wise tally is more “natural”
with conventional Monte Carlo tally systems.

1. Group-wise Tally Scheme

The new scheme using group-wise tallies is shown in the
flowchart of Figure 5. The flowchart presents the tally scheme
for one reaction of the tracked neutron. It is assumed that
the neutron’s energy group evolution history is (group gp)
→ (group g)→ (group gn): before the reaction the neutron’s
energy is in group g, and after the reaction it’s in group gn
(new group). In addition, before the neutron enters group g,
it was in group gp (previous group). Although the reaction
only has a direct impact on group g and gn, the tally for this
reaction will contribute to the migration area of group g. For
instance, if this is a down-scatter case (gn > g), the neutron’s
energy has left cumulative group g, but not cumulative group
gn. Thus the tally will need the information of group g and the
previous group before it enters group g, i.e., group gp. For the
special case of a neutron being born in group g (no previous
group), the cumulative-group migration vector rgp will be a
zero vector thus the tally scheme is still general.
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Fig. 4. Spatial and energetic illustration of an example of a neutron undergoing a series of scattering reactions and finally
absorbed. On the left: flight tracks of the neutron (in black dashed line), cumulative-group migration vectors (in red) and
group-wise migration vectors (in green); On the right: corresponding energy transitions during the neutron’s traveling history
(shown in yellow line).

In the flowchart, Tg is designated as the variable for stor-
ing the summation of all neutron’s group-wise tallies in group
g needed for computing cumulative migration area. For down-
scatter and absorption reactions, only one tally in group g
needs to be made. For up-scatter reactions, it will be more
complicated to maintain the equivalence to cumulative migra-
tion area tallies, which will be further explained in following
examples.

Using this group-wise tally scheme, all tallies needed for
calculating migration area and diffusion coefficients are done
group-wise. The spatial and energy information needed to
complete the tallies are only related to group g (including
group gp and gn). Compared with the cumulative-group tally
scheme in the previous paper [6], the group-wise Monte Carlo
tallies can entirely replace the cumulative ones and signifi-
cantly simplifies implementation.

2. Calculation After Tallies

As in general Monte Carlo simulations, the statistical
average of these tallied quantities can be computed after re-
peating the tally process for a large number of neutrons. As
explained in the example neutron of Figure 4, for group 1,
the cumulative-group migration vector and “group-wise mi-
gration vector” are the same, thus the average of (r1)2 can be
computed as

〈
(r1)2〉 =

T1

NC
1

(11)

in which NC
1 is the net number of neutrons removed from

cumulative group 1, which is just equal to the number of
neutrons born in group 1.

For all subsequent groups, the average of (rg)2 can be
recursively computed as

〈
(rg)2〉 =

〈
(rg−1)2〉 · NC

g−1

NC
g

+
Tg

NC
g

(12)

in which NC
g is the net number of neutrons removed from

cumulative group g and it can be computed by accumulating
the number of neutrons born in each group.

3. Tally Examples for Scatter Reactions

To better illustrate the scheme in Figure 5, the tally pro-
cesses for two example neutrons are shown and explained
in this section. Both neutrons have tracks similar to the one
in Figure 4, but with different energy group transition histo-
ries. The energy group transition of the neutron in Figure 4
is (group 1)→ (group 2)→ (group 3), but for these two ex-
ample neutrons they are (group 1)→ (group 3)→ (group 4)
and (group 1)→ (group 5)→ (group 3), as shown in Figure
6. For simplicity, it’s further assumed that both example neu-
trons have energy groups changed by scattering reactions at
spatial points A and B, and are finally absorbed at C.

The first example neutron undergoes a series of pure
down-scatter reactions, and the cumulative-group tally (as
described in the previous paper on CMM [6]) and group-wise
tally process are listed side-by-side in Table I. The only differ-
ence between this example neutron and the one in Figure 4 is
that in the scenario of the neutron in Figure 4, the neutron’s
energy group variations both happened in two consecutive
groups, while in Figure 6 the variations are not always in
consecutive groups and can “jump over” groups (such as the
transition of (group 1)→ (group 3)).

As shown in the table, using the recursive relationship in
Equation (12), group 2 gets the information tallied from group
1, which eliminates the redundancy in the cumulative-group
tally. In addition, the recursive relationship actually enables
all lower groups to “inherit” the information from group 1.
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Fig. 5. Flowchart for the group-wise tally scheme using Cumulative Migration Method. It’s assumed that the neutron’s energy
group evolution history is (group gp)→ (group g)→ (group gn). Before the reaction the neutron’s energy is in group g, and
after the reaction it’s in group gn. In addition, before the neutron enters group g, it’s in group gp.

Fig. 6. The “evolutionary histories” of two example neutrons’ energy versus reaction sequence. Both example neutrons have
energy groups changed by scattering reactions at point A and B, and are finally absorbed at C. The energy group transitions are
(group 1)→ (group 3)→ (group 4) and (group 1)→ (group 5)→ (group 3), respectively.

Thus at point A, there is a tally of
#   »
OA

2
recorded in group 3.

Combined with the tally of (
#  »
AB

2
+ 2 ·

#   »
OA ·

#  »
AB) at point B, it

becomes
#   »
OA

2
+ (

#  »
AB

2
+ 2 ·

#   »
OA ·

#  »
AB) =

#   »
OB

2
, which is the same

as (MC
3 )2 (the cumulative group tally in group 3) as shown on

the left part of the table.
For the second example neutron, up-scatter reactions are

shown in the rise of yellow line in the rightmost illustration in
Figure 6. The cumulative-group and group-wise tally are also
listed side-by-side in Table II.

As in the pure down-scatter case, the recursive rela-
tionship enables all lower groups to “inherit” tally informa-
tion from higher groups, so all lower groups have implic-

itly recorded the tally of
#   »
OA

2
at point A, including group 5.

Then for the up-scatter reaction, from which the neutron’s
energy is increased from group 5 to group 3, in addition to

the tally of (
#  »
AB

2
+ 2 ·

#   »
OA ·

#  »
AB) (as done for down-scatter

reactions), another adjustment must be made to agree with
the cumulative-group tally. As shown in the table, the dif-
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TABLE I. The cumulative-group and group-wise tallies for the first example neutron, which undergoes a series of pure down-
scatter reactions with the energy group transition history of (group 1)→ (group 3)→ (group 4). (The neutron’s energy group
is changed by scattering reactions which happened at point A and B, and it’s finally absorbed at C.)

Cumulative-group Tally Group-wise Tally
Group at A at B at C at A at B at C

1 (MC
1 )2 +

#   »
OA

2
T1 +

#   »
OA

2

2 (MC
2 )2 +

#   »
OA

2
T2

3 (MC
3 )2 +

#   »
OB

2
T3 +

(
#  »
AB

2
+ 2 ·

#   »
OA ·

#  »
AB

)
4 (MC

4 )2 +
#   »
OC

2
T4 +

(
#  »
BC

2
+ 2 ·

#   »
OB ·

#  »
BC

)
5 (MC

5 )2 +
#   »
OC

2
T5

ference of
#   »
OB

2
and

#   »
OA

2
must be added to group 5 and sub-

tracted from group 3. It makes more sense when incorporating
the absorption reaction at point C, which has a total tally of
(

#   »
OA

2
−

#   »
OB

2
+

#   »
OC

2
) for group 3 in cumulative-group tally. In

group-wise tally for group 3, the “inherited” tally from group
1,

#   »
OA

2
, is finally converted into

#   »
OC

2
) by the geometrical rela-

tions:
#   »
OA

2
+ (

#  »
AB

2
+ 2 ·

#   »
OA ·

#  »
AB) + (

#  »
BC

2
+ 2 ·

#   »
OB ·

#  »
BC) =

#   »
OC

2
.

So the subtracted term of (
#   »
OB

2
−

#   »
OA

2
) balances the non-

geometrical but physical tallies in the cumulative-group tally.
The group-wise tally scheme for CMM has been imple-

mented and tested in a prototype Monte Carlo code. As ex-
plained in this section, it is mathematically equivalent to the
cumulative-group tally, thus duplication of results is omitted.

IV. RESULTS AND ANALYSIS

A 3D Monte Carlo simulation is carried out using
OpenMC for a simplified model of the TREAT fuel assembly.
In the 3D model, on the horizontal plane (x and y directions)
reflective boundary conditions are employed, and axially (z
direction) it consists of the top reflector of 64 cm, the fuel
region of 120 cm and bottom reflector of 60 cm, as shown in
Figure 7. Vacuum boundary conditions are employed outside
of the top and bottom reflectors in the axial direction.

In addition, the eigenvalue as well as flux distribution
for the same problem are computed by a 1D 11-group ho-
mogenized diffusion calculation. The 11-group diffusion co-
efficients and cross sections are tallied and computed using
OpenMC for the fuel and reflector separately, each with the
actual configuration in 2D horizontal plane and infinite in ax-
ial direction, as traditionally done for PWR fuel assemblies.
Using the 3D Monte Carlo results as a reference, it is com-
pared with the 1D 11-group diffusion results with diffusion
coefficients generated by four different approaches. The four
approaches include:

• Dos
g : Out-scatter approximation for computing Σos

tr,g, then
Dos

g = 1/3Σos
tr,g.

• Das
g : Asymptotic out-scatter approximation for comput-

ing Σas
tr,g, then Das

g = 1/3Σas
tr,g.

• DCMM
g : CMM method for tallying cumulative migration

area (Mc
g)2 using OpenMC, then computing Dc

g and Dg.

Fig. 7. The axial layout of the simplified TREAT fuel assembly
model.

• DCMM
z,g : CMM method for tallying directional cumulative

migration area (Mc
z,g)2 using OpenMC, then computing

Dc
z,g and Dz,g.

The results of the eigenvalue for this problem are listed
and compared in Table III. Compared to the 3D OpenMC
results, ke f f from the diffusion calculation with diffusion coef-
ficients from CMM produce much more accurate results than
those from out-scatter approximations. The accuracy of flux
distribution is also improved with CMM by reducing the max
relative error of roughly 6% with out-scatter approximations
to about 2% with CMM. The accuracy of group-wise flux dis-
tribution is improved in both the fuel region and the reflector
region.

Comparison of the 11-group diffusion coefficients com-
puted by different methods is shown in Table IV with the
energy group structure. It is obvious that the diffusion coeffi-
cients of group 1 and group 2 generated by CMM are larger
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TABLE II. The cumulative-group and group-wise tallies for the second example neutron, which undergoes a series of both
down-scatter and up-scatter reactions with the energy group transition history of (group 1) → (group 5) → (group 3). (The
neutron’s energy group is changed by scattering reactions which happened at point A and B, and it’s finally absorbed at C.)

Cumulative-group Tally Group-wise Tally
Group at A at B at C at A at B at C

1 (MC
1 )2 +

#   »
OA

2
T1 +

#   »
OA

2

2 (MC
2 )2 +

#   »
OA

2
T2

3 (MC
3 )2 +

#   »
OA

2
−

#   »
OB

2
+

#   »
OC

2
T3 +

(
#  »
AB

2
+ 2 ·

#   »
OA ·

#  »
AB

)
−

(
#   »
OB

2
−

#   »
OA

2)
+
(

#  »
BC

2
+ 2 ·

#   »
OB ·

#  »
BC

)
4 (MC

4 )2 +
#   »
OA

2
−

#   »
OB

2
+

#   »
OC

2
T4

5 (MC
5 )2 +

#   »
OC

2
T5 +

(
#   »
OB

2
−

#   »
OA

2)

TABLE III. Comparison of eigenvalues computed by different
approahes for the TREAT fuel assembly problem.

Method ke f f Difference

OpenMC 1.44399 (±0.00006) (reference)
Diffusion by Dos

g 1.45750 0.01351
Diffusion by Das

g 1.45680 0.01281
Diffusion by DCMM

g 1.44738 0.00339
Diffusion by DCMM

z,g 1.44413 0.00014

than those of the out-scatter approximation, which impact
the axial leakage. CMM improves the accuracy of the diffu-
sion coefficients by better representing the anisotropic neutron
transport of the problem.

TABLE IV. Comparison of 11-group diffusion coefficients
computed by different methods. (The units of diffusion coeffi-
cients in this table are all cm.)

Group & Energy (MeV) Dos
g Das

g DCMM
g DCMM

z,g

1 (3.329E00-2.000E+1) 3.055 2.678 4.068 4.081
2 (1.156E-1-3.329E00) 1.531 1.498 1.748 1.773
3 (3.481E-3-1.156E-1) 0.969 1.008 1.010 1.039
4 (1.327E-4-3.481E-3) 0.944 0.993 0.991 1.020
5 (8.100E-6-1.327E-4) 0.942 0.990 0.987 1.014
6 (6.250E-7-8.100E-6) 0.942 0.989 0.985 1.011
7 (2.096E-7-6.250E-7) 0.927 0.983 0.970 0.997
8 (7.650E-8-2.096E-7) 0.906 0.973 0.951 0.980
9 (4.730E-8-7.650E-8) 0.877 0.956 0.923 0.951
10 (2.001E-8-4.730E-8) 0.836 0.928 0.879 0.908
11 (0.000E00-2.001E-8) 0.697 0.814 0.749 0.777

V. CONCLUSIONS

The Cumulative Migration Method (CMM) overcomes
shortcomings in various approximation methods for comput-
ing multi-group diffusion coefficients and transport cross sec-

tions. Based on the theory of cumulative migration area and its
relationship with diffusion coefficients, CMM is further devel-
oped to compute directional diffusion coefficients in a natural
approach. The 11-group diffusion calculations for a simplified
TREAT fuel assembly model showed that the results for both
eigenvalue and flux distribution can be more accurate using
the directional diffusion coefficients computed by CMM.

The new group-wise tally is equivalent to cumulative-
group tally and it produces identical results, with the added
benefit of simplifying the tally edits needed in the previous
cumulative-group implementation for Monte Carlo codes.

Moreover, the new group-wise tally method for cumula-
tive migration area is also a promising bridge to computing
heterogeneous diffusion coefficients and transport cross sec-
tions.
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