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Abstract - The coupled electron-photon Monte Carlo transport code ITS (Integrated Tiger Series) has recently
been extended to include a single-scattering algorithm using data from the evaluated cross section data
libraries from LLNL (Lawrence Livermore National Laboratories) to enable transport below 1 keV. In order
to begin improving the computational efficiency of this algorithm, a moment preserving modification to the
electron elastic scattering cross sections known as the GBFP (Generalised Boltzmann Fokker-Planck) method
has been implemented and is described here. The method is then applied to a variety of test problems, where
it is seen to be in good agreement with experimental and analogue Monte Carlo results, while significantly
decreasing the processing required for elastic scattering. However, the runtimes are still limited by inelastic
processes, and the method must be extended to include these to observe a significant improvement in runtime.

I. INTRODUCTION

Recent development efforts on the Integrated Tiger Series
(ITS)[1] Code have worked towards implementing photon and
electron transport using cross sections and data provided in the
EEDL (Evaluated Electron Data Library), EPDL (Evaluated
Photon Data Library) and EADL (Evaluated Atomic Data
Library)[2] developed at LLNL to extend transport below
1 keV. To take advantage of the detailed atomic data available,
a single-scattering algorithm has been developed.

The analogue Monte Carlo transport of electrons is how-
ever computationally intensive due to the short mean free paths
associated with long range Coulomb interactions. These in-
teractions lead to a differential cross section which is highly
peaked in the forward direction. The generalised Boltzmann
Fokker-Planck (GBFP) method[3, 4] (or Moment-Preserving
method) aims to replace a portion of the tabulated differential
cross section (DCS) with an approximate DCS based on dis-
crete angles. By preserving only a finite number of differential
cross section moments, the GBFP method is computationally
efficient, and has been shown to be accurate and robust for a
wide range of physics, including stochastic media problems[5].
In this paper, the GBFP method is applied using the electron
elastic scattering data contained in the EEDL. The accuracy
and efficiency of the GBFP method are assessed mostly rel-
ative to analogue simulations. As this is the first publication
assessing the performance of the single-scattering algorithm
in ITS based on the LLNL data libraries, comparisons are also
made with experimental data and the traditional condensed
history algorithm in ITS.

II. THEORY

For elastic scattering, the EEDL provides a table of the to-
tal cross section on an energy grid between 10 eV and 100 GeV.
The distance to a collision for an electron with energy E is
obtained by using an interpolated value of the tabulated total
cross section, σelast(E). A much coarser energy grid structure
is used to tabulate scattering angles and their corresponding
probability. The tabulated data however does not cover the

full range of µ = cos θ scattering angles, instead just the range
from µ = −1 to µ = µsr = 1 − 10−6. This is due to angular
distributions becoming increasingly forward peaked and dif-
ficult to resolve on a grid with increasing energy. Instead, an
analytical function f (µ) = A/(η + 1 − µ)2 is prescribed for
the angular probabilities above µsr, where A is a normalising
factor to ensure continuity with the tabulated data at µsr and η
is the screening parameter due to Seltzer[6].

The essence of the GBFP method is to replace the tabu-
lated σ(µ, E) differential cross section with an approximate
cross section, σ̃(µ, E) represented as a superposition of dis-
crete scattering angles,

σ̃(µ, E) =

L∑
l=1

αl(E)
2π

δ
[
µ − ξl(E)

]
+
α0(E)

2π
δ[µ − 1] (1)

which is constrained to conserve a finite number of momentum
transfer moments,

σn,elast(E) = σ̃n,elast(E) n = 0, 1, 2... 2L (2)

where the momentum transfer moments are given by

σn,elast(E) = 2π
∫ 1

−1
(1 − µ)nσ(µ, E)dµ n = 0, 1, 2... (3)

An eight point Gauss-Legendre quadrature is used to cal-
culate the moments of the EEDL tabulated differential cross
section, where the data is interpolated to the quadrature points
using the method suggested in the EEDL data file piecewise
across each angular bin. A recursion relation[7] is used for the
moments of the analytic portion above µsr, as the quadrature
becomes increasingly poor at capturing the forward peak at
higher energies. Equation 2 represents a nonlinear system of
equations for the discrete scattering angles, ξl and correspond-
ing amplitudes αl that is solved using a method developed by
Sloan et al.[8, 9]. Sloan’s method utilises a Radau quadrature
which ensures that an angle will be generated in the forward
direction. The amplitude of this angle can then be removed
from the interaction cross section, and thus the distance to
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interaction is increased. In electron transport calculations, the
mean free paths are short compared to geometry features. The
computational cost is dominated by the processing of interac-
tions. Reducing the number of interactions in the simulation
can speed up the simulation proportionally. While all interac-
tion types need to be considered, here we consider only the
elastic scattering interaction, which dominates at high ener-
gies. From Figure 1, we see that the GBFP method reduces
the elastic interaction cross section by factor between 10 and
100 at 100 keV, by about a factor of 100 to 1000 at 10 MeV,
and by several orders of magnitude at 1 GeV. In the results,
we focus on lower energies where analogue simulations are
computationally affordable. However, the greatest benefit of
the method is at higher energies.

10−5 10−4 10−3 10−2 10−1 100 101 102 103 104 105

E (MeV)

10−6

10−4

10−2

100

102

104

106

108

1010

C
ro

ss
Se

ct
io

n
(B

ar
ns

)

Analogue
GBFP µcut = 0.9, 1 Angle
GBFP µcut = 0.5, 1 Angle
GBFP µcut = 0.0, 1 Angle
GBFP µcut = −0.5, 1 Angle
GBFP µcut = −1.0, 1 Angle

Fig. 1: Reduction in the electron elastic cross section in silicon
for decreasing µcut

1. Hybrid Method

A hybrid method[10] restricts the discrete approximation
to a fraction of the DCS. A cutoff angle, µcut can be defined,
below which the continuous DCS is used. In the hybrid case,
interaction cross sections are defined for elastic scattering
above and below µcut. These are then implemented as separate
interactions.

To compute these cross sections, we must first understand
how the EEDL cross sections are normalised. The tabulated
differential cross sections between −1 and µS R are normalised
to unity, ∫ µS R

−1

dσEEDL(µ, E)
dµ

dµ = 1 (4)

but the screened Rutherford portion,∫ 1

µS R

dσS R(µ, E)
dµ

dµ = σS R(E) (5)

is normalised such that the analytical differential cross section
is anchored to the data at µ = µS R, so σS R(E) << 1 at low
energy and >> 1 at high energy. The EEDL provides an
interaction cross section for elastic scattering σel,cuto f f (E),
but this cross section does not include the contribution from

the screened Rutherford portion. The total electron elastic
scattering can be calculated as the sum of the integrals over
both parts of the differential cross section, multiplied by the
cutoff cross section:

σel,total = σel,cuto f f (E)
(
1 +

∫ 1

µS R

dσS R(µ, E)
dµ

dµ
)
. (6)

The fraction of the total cross section that lies above µcut is
then

σel, µ>µcut

σel,total
=

∫ µS R

µcut

dσEEDL(µ, E)
dµ

dµ +

∫ 1

µS R

dσS R(µ, E)
dµ

dµ

1 +

∫ 1

µS R

dσS R(µ, E)
dµ

dµ

(7)
and the fraction that lies below µcut is

σel, µ<µcut

σel,total
=

∫ µcut

−1

dσEEDL(µ, E)
dµ

dµ

1 +

∫ 1

µS R

dσS R(µ, E)
dµ

dµ

. (8)

The cross section for an interaction below µcut, σel,cont which
samples from the continuous DCS is then given by

σel,cont =

[
1 −

σel,>µcut

σel,total

]
σel,total (9)

and the discrete cross section is

σel,disc =

[
1 −

σel,<µcut

σel,total
− α0

]
σel,total (10)

where α0 is the weight of the µ = 1, straight-ahead angle.

III. RESULTS

In this section, the full electron-photon transport physics
is modelled in all Monte Carlo results. The GBFP is applied
to the elastic scattering only and unless otherwise stated, the
inelastic physics are handled using the analogue method.

1. 1D Energy Deposition Convergence

Figure 2 plots the energy deposition profile into a slab of
silicon due to a 30 keV monoenergetic electron source and the
associated error. The 1D TIGER geometry is used and 2× 107

source particles are simulated to improve convergence in the
low deposition region at the rear of the slab. To study the effect
of varying µcut, the number of discrete angles is held constant
and set to 1. For this problem, it is seen that the deposition
profiles converge to the analogue result for increasing µcut.
Table I shows the computational effort required using the
GBFP method compared to analogue. Since the method is
applied only to the elastic component of electron transport,
both the average number of elastic scatters per history and the
average time taken per history are shown. The reduction in
the number of elastic scatters per history are in line with what
would be expected for a 30 keV source with respect to the
cross section reduction at this energy shown in Figure 1.

c©British Crown Owned Copyright 2017/AWE



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

TABLE I: Computational speedups obtained by varying µcut with a single discrete angle above cutoff.

µcut Avg. No. of Elastic Scatters per History GBFP/Analogue Avg. Time per History (sec) GBFP/Analogue

Analogue 1093.45 - 0.09553 -
0.9 392.50 0.3590 0.07466 0.7815
0.5 241.42 0.2208 0.06878 0.7200
0.0 181.19 0.1657 0.06638 0.6948
-0.5 145.46 0.1330 0.06529 0.6834
-1.0 119.32 0.1091 0.06388 0.6687

0

10

20

30

40

50

60

E
ne

rg
y

D
ep

os
it

io
n

(M
eV

-c
m

2/
g)

Analogue
GBFP µcut = 0.9, 1 Angle
GBFP µcut = 0.5, 1 Angle
GBFP µcut = 0.0, 1 Angle
GBFP µcut = −0.5, 1 Angle
GBFP µcut = −1.0, 1 Angle

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Depth (cm)

0.95
1.00
1.05
1.10
1.15
1.20
1.25

R
at

io
to

A
na

lo
gu

e

Fig. 2: Varying µcut for the 30 keV electrons into Silicon
problem

2. 1D Comparison with Experiment

Figure 3 plots experimental data obtained by McLaughlin
et al.[11] against the Monte Carlo results. The analogue results
plotted are obtained using the LLNL cross sections. The GBFP
curves are obtained with GBFP applied to the elastic scatter
with analogue inelastic scatter, both using the LLNL data.
240000 particle histories were run in all cases. The condensed
history curve is ITS in its default setting: condensed history for
both elastic and inelastic scatter using the default cross section
data. The experimental data sits roughly between the Monte
Carlo results using the LLNL data and the ITS condensed
history result. The experimental error was not published. The
difference between the analogue and the GBFP result, even for
a single discrete angle over the entire angle range is small in
comparison to the difference between the analogue and both
the experimental data and the ITS condensed history. The
experimental response is greater than the numerical results

at the rear side of the material. This is in agreement with
what was observed by McLaughlin in his comparison with
numerical results and is explained as being due to the dye film
system used in the experiment.
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Fig. 3: 100 keV electrons into polystyrene. Experimental data
vs. LLNL Analogue vs. LLNL GBFP vs. ITS Condensed
History.

3. Angular Scattering Through Thin Foils

The results so far have presented quantities integrated in
angle. One might expect these results to be less sensitive to
changes to the elastic scattering method. Figure 4 plots the
angular distribution of electrons escaping the rear of a 0.1 mi-
cron tantalum foil due to a 100 keV electron source at the front.
In this problem, µcut = −1 and the number of discrete angles is
varied. 4.8×108 particle histories are run in all cases. Artefacts
are clearly visible in the angular distribution corresponding
to locations of the discrete angles. The amplitudes of these
perturbations however decrease with the number of discrete
angles, becoming almost indistinguishable from the analogue
result at 8 angles. The ITS condensed history results suffer
from errors at escape angles near µ = 0. These were described
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by Foote and Smyth[12] and are due to the angular scattering
at the material boundaries imposed by the algorithm.
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Fig. 4: Angular distribution of electrons emitted from the
rear surface of a 0.1 micron tantalum foil with respect to the
location of a 100 keV electron source.

Figures 5 and 6 plot the angular distributions of elec-
trons escaping the rear and front surfaces of a 1 micron foil
respectively. With this thicker target the artefacts in the an-
gular distribution from the discrete angle approximation are
significantly damped due to enough electrons having scattered
elastically more than once. The GBFP results are indistin-
guishable from the analogue results using more than 2 discrete
angles at the rear surface. At the front surface, the artefacts
are more persistent, albeit with narrower peaks.

4. 2D Results

This problem measures the energy deposition distribu-
tion of a 300 keV electron source incident on a cylindrically
symmetric slab of water using the CYLTRAN geometry in
ITS. The energy deposition plots using the analogue method
and the GBFP method using various combinations of µcut and
number of discrete angles are shown in Figure 7. As with the
results shown here previously, the GBFP method is applied to
the elastic scattering only, with energy losses handled using
the analogue method. Photon transport is enabled using the
analogue method. Macroscopic EM fields are not simulated.
1 × 107 particles are run in all cases. In the case where a
single scattering angle is used over the entire cosine range
(Figure 7b), the spread of the deposition near the source is
reduced, and there is noticeably less deposition close to the
z = 0 axis. The GBFP results in Figures 7c and 7d are similar
to the analogue result. Table II shows the average number of
elastic scattering events that occur during a particle history us-
ing the GBFP method. While up to 100 fewer elastic scattering
interactions are processed using the GBFP method compared

0.0 0.2 0.4 0.6 0.8 1.0
µ

10−4

10−3

10−2

10−1

100

101

102

N
um

be
r

/M
eV

-s
r

Analogue
Condensed History (ITS Data)
GBFP 1 Angle
GBFP 2 Angles
GBFP 4 Angles
GBFP 8 Angles

Fig. 5: Angular distribution of electrons emitted from the rear
surface of a 1 micron tantalum foil with respect to the location
of a 100 keV electron source.
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Fig. 6: Angular distribution of electrons emitted from the front
surface of a 1 micron tantalum foil with respect to the location
of a 100 keV electron source.

to analogue, this is not manifested to the same extent in the
average compute time per particle (Table III). Once again,
this highlights a need to extend this method to the inelastic
physics.

The ratios of the GBFP results to the analogue results
integrated around the cylindrical volume as a function of radius
and depth are shown in Figure 8. The results shown are not
normalised by volume and are binned uniformly in radius (ρ).
The cells at greater radii therefore correspond to an integration
over a larger volume. Figure 8b plots the worst case results
for the GBFP method: a single discrete angle over the entire
cosine range. Artefacts of the method are clearly visible in this
case, with the GBFP method overestimating the deposition
in the line of sight of the source by more than a factor of

c©British Crown Owned Copyright 2017/AWE



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

0.00 0.01 0.02 0.03 0.04 0.05
z (cm)

0.00

0.01

0.02

0.03

0.04

0.05

ρ
(c

m
)

10−6

10−5

10−4

10−3

M
eV

/s
ou

rc
e

pa
rt

ic
le

(a) Analogue method using LLNL cross section data.
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(b) GBFP elastic scattering. µcut = −1, 1 Angle.
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(c) GBFP elastic scattering. µcut = −1, 4 Angles.
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(d) GBFP elastic scatting. µcut = 0.9, 1 Angle.

Fig. 7: Energy deposition in a 2D slab of water due to a 300 keV electron source at (0,0) emitting in the positive z direction.
Figure (a) plots the analogue results. Figures (b-d) plot the results using the GBFP method for elastic scattering with analogue
inelastic scattering.

2.7, and underestimating the deposition in the regions away
from the discrete angle by around a factor of 2. In Figure 8c, 4
discrete angles are used over the entire cosine range. While the
ray effects are still visible close to the source, the amplitude
of the rays is substantially decreased in comparison to the
single angle case in 8b, with the overestimation in the rays
being below 1.2 times the analogue result, and 0.84 times the
analogue result outside the rays. In Figure 8d the discrete
angle cutoff, µcut is increased to 0.9 with a single discrete
angle between µcut and 1. The ray effects here are faintly
visible near the source. In this case the greatest and smallest
ratio is actually found down the z = 0 axis and is around 10%,
although statistical error is likely to be responsible for these

extreme values. The GBFP results are all seen to agree with
the analogue result at a radius of 0.045cm into the material.

The default ITS code is compared with the analogue re-
sults in Figure 8a. To clarify, the default ITS code uses a con-
densed history method, using cross section data from NIST
supplemented with built in physics models. The analogue
method refers to the single-scattering algorithm implemented
using only cross section data from the EEDL, EADL and
EPDL data libraries from LLNL. The largest difference is seen
in the straight-ahead direction from the source at a distance
corresponding to the condensed history substep size. The de-
fault substep size for 300 keV electrons in water is 0.0025825
cm. Error persists in the simulation as an artefact from the first
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(a) Default ITS Condensed History / Analogue with LLNL cross
sections
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(b) GBFP/Analogue. µcut = −1, 1 Angle.
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(c) GBFP/Analogue. µcut = −1, 4 Angles.
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(d) GBFP/Analogue. µcut = 0.9, 1 Angle.

Fig. 8: Figures (b-d) plot the ratio of GBFP results shown in Figure 7 to the analogue result for energy deposition in a 2D slab of
water due to a 300 keV electron source at (0,0) emitting in the positive z direction. The ratio of the default ITS method and cross
sections to the analogue method with LLNL cross sections is plotted in (a).

substep over which the electron only moves in the z direction
and scatters in angle at the end of the substep. The dose is
over-estimated along the z-axis and is greatest at depths of 2-3
substeps. The dose is underestimated at small radii at depths
from 0.5-2 substeps due to the delay in the angular scattering.
These artefacts could be reduced by decreasing the substep
size in the condensed history algorithm. However, since there
is currently no facility in ITS to run an analogue simulation
using the NIST data, it is not clear to what extent the differ-
ences are due to the condensed history method, rather than
differences in the cross section data.

IV. SUMMARY

The GBFP method has been applied to produce an ap-
proximate elastic differential cross section from the tabulated
data in the Evaluated Electron Data Library. The method has
been shown to converge to the analogue result with increasing
µcut for the energy deposition problem, and was shown to offer
up to an order of magnitude decrease in the number of elastic
scattering events for a 30keV electron source. For the 300 keV
electron source problem, this speedup was seen to be even
larger. The effect of the discrete representation on quantities
differential in angle was demonstrated, with artefacts visible
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TABLE II: The average number of elastic scattering events
processed per history using GBFP method for the 300 keV
electrons into water problem.

µcut
Number of Discrete Angles

1 2 4 Analogue

-1.0 24.00 58.99 139.21 -
0.0 37.81 91.02 208.59 -
0.9 169.27 351.89 558.87 -

Analogue - - - 2409.33

TABLE III: The average compute time per history (in seconds)
using the GBFP method for the 300 keV electrons into water
problem.

µcut
Number of Discrete Angles

1 2 4 Analogue

-1.0 0.469 0.474 0.479 -
0.0 0.472 0.476 0.486 -
0.9 0.481 0.492 0.513 -

Analogue - - - 0.592

in thin films which are attenuated with increasing thickness.
In 2D, ray effects were visible near the source for an electron
beam problem. These effects however are seen to be alleviated
with increasing both the number of discrete angles and µcut.

The computational speedups presented here (Tables I and
II) are expressed in terms of the reduction in the number of
elastic scattering events that are required to be processed by
the method. This does not account for the time taken to process
the inelastic physics. No biasing has been applied to any of
the simulations. The implementation of the electron trapping
(or range rejection) biasing mechanism will also significantly
improve runtimes. The EADL contains detailed atomic ionisa-
tion and relaxation data which is implemented currently using
an analogue scattering algorithm. To realise the significant
runtime improvements implied by the reduction in the number
of elastic scattering events that require processing due to the
GBFP treatment, a moment preserving method for inelastic
processes is essential.
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