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Abstract - The advance of computational technique allows Monte Carlo method being utilized for the neutronics 

evaluation of a nuclear reactor core. However, the solution of time dependent neutronics equation still remains a challenging 

problem. Correspondingly, a weighted Monte Carlo kinetics method (wMCk) is proposed based on traditional analog Monte 

Carlo kinetics method (aMCk). By using this method, a code named NECP-Dandi was developed mono-energetic point-

kinetics simulation to focus on the time space. 11 test problems with different reactivity insertions were employed to verify the 

method. Numerical results demonstrate encouraging conclusions that wMCk is superior to aMCk in terms of accuracy. 

 

I. INTRODUCTION 

Compared with deterministic method, Monte Carlo 

method can unfold the physical process regarding to the 

numerical solution of the neutron transport equation. Due to 

the advance of computational technique, Monte Carlo 

method could be employed as a first principle approach for 

the neutronics evaluation of a nuclear reactor core [1, 2]. 

Among those researches, most are concentrated on space-

angle-energy phase-space, leaving the time-space as a 

challenging problem mainly due to the short neutron 

generation time. However, accurately simulating the reactor 

core changes over time during a transient process is very 

important for safety analysis. 

Several research groups have devoted their effort to 

solving the neutron kinetics equations using Monte Carlo 

method. Dr. Shen [3] solved the time-dependent neutron 

transport equation with delayed neutrons ignored. Serpent2 
[4] simulated the trajectory of each neutron to analyze multi-

physics coupling process. OpenMC-TD [5] tracked both 

neutrons and delayed neutron precursors. G4-Stock [6] 

considered both prompt and delayed neutrons. However, 

they all employed the analog Monte Carlo kinetics method 

(aMCk), which suffers from large variance and low 

computing efficiency. 

In this paper, a weighted Monte Carlo kinetics method 

(wMCk) is proposed and verified. To concentrate on the 

time-space, the spatial-angle-energy space is condensed 

considering the excellent flexibility in geometry, angle and 

energy spaces of Monte Carlo method. 

 

II. THEORETICAL MODEL 

 

1. Neutron Kinetics Equations 

Condensing the time-dependent neutron kinetics 

equations in its space-angle-energy space yields the mono-

energetic point neutron kinetics equations: 
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where i=1,2,…,I and j=1,2,…,J index the precursor group 

and isotopic nuclide, while other notations are common. 

Define the solution vector as: 
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is the decay and transport matrix, and 
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is the probability and weighting matrix. 

 

2. Integral Solution of the Neutron Kinetics Equations 

To solve neutron kinetics equation by utilizing Monte 

Carlo method, an integral solution has to be obtained first. 

By using the method of variation of constant, the solution of 

Eq. (3) can be obtained: 
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represents the contribution from the particles at time 't  to 

the solution vector at time t . 

With a known initial value (0)x , Eq. (6) can be solved 

iteratively: 
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is an operator representing two processes. The first part 

1
( )
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  is the living fraction at time tl originated from 

time tl-1. It provides the timing of the next nuclear reaction. 

The second part P(tl) provides the number of new particles 

generated by the last nuclear reaction and their status. 

Since the contribution matrix in Eq. (7) can be 

reformulated as:  
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Eq. (6) can be reformulated into the form as below: 
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Thus, an integral solution of Eq. (3) that can be directly 

simulated by Monte Carlo method is obtained. 

 

3. The Analog Monte Carlo Kinetics Method 

According to Eq. (10) and Eq. (11), the particles at 

time t that construct the solution x(t) can be originated back 

to the initial value of x(0) by dating back m nuclear 

reactions, where the number m can vary from 0 to a large 

enough integer. If the Monte Carlo method is employed by 

tracking each of those particles, it is named as analog Monte 

Carlo kinetics method (aMCk). 

The simulation process is very straight forward. (1) For 

a neutron generated at time tl-1, its living time 
lt  can be 

sampled according to
1( )l lf t t  as: 
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where ξ represents a random number. It means the neutron 

collides with a nuclide at time: 

  
1l l lt t t   (14) 

(2) There are three types of nuclear reactions, including 

neutron capture, neutron scattering and fission. The 

corresponding probabilities are Σc/Σt, Σs/Σt and Σf/Σt. Thus, a 

discrete sampling can determines the nuclear reaction type. 

(3) If it is the neutron capture reaction, the neutron tracking 

stops. (4) If it is the neutron scattering reaction, a new 

neutron is generated at time tl and the simulation execution 

returns back to step (1). (5) If it is a fission reaction, ν new 

neutrons would be generated. Considering that ν is not an 

integer, the number of new neutrons would be [ν+ξ], where 

ξ represents a random number. Among those new neutrons, 

only one of them remains to be simulated while others 

would be stored waiting for their simulation sequentially. (6) 

For each of those new fission neutrons, there is a probability 

of βi to be delayed neutron precursor of group i, while a 

probability of 1-β to be prompt neutron. If it is a neutron, 

the simulation execution returns back to step (1). (7) If it is 

a precursor, its living time can be sampled by using: 
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which means it becomes a delayed neutron at time: 

  
1l l lt t t   (16) 

Then, the simulation execution returns back to step (1). 

However, several problems would be encountered. (1) 

If one neutron capture reaction is happened in a particle 

sequence before the targeted time t, there would be no 

contribution to the solution for the corresponding sequence. 

(2) Considering the fact that fission reaction would produce 

more than one neutrons or precursors, those extra particles 

need to be stored until they can be simulated, which would 

make the computing code more complicated and increase 

the storage requirement. (3) It samples each step of the 

entire evolution process, which involves a strong stochastic 

effect, making the solution results possessed by large 

variance. 

 

4. The Weighted Monte Carlo Kinetics Method 

Define a weighting factor w  as the contribution to the 

solution from a particle can yield the weighted Monte Carlo 

kinetics method (wMCk). There are two main differences in 

wMCk compared with the above aMCk. 

Firstly, define new neutron capture cross-section, new 

fission cross-section and new average number of neutrons 

per fission as: 

  0=c'Σ  (17) 
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In this way, there would be no capture with zero 

contribution fully eliminated. 

Secondly, the weighting factor is not going to be 

changed during a scattering process since the number of 

neutrons is taken as the same in this model. It will be 

changed by a factor of x in the future if (n,xn) scattering is 

considered. In contrast, the weighting factor is going to be 

changed by a factor of ν’ during a fission process. In this 

way, there is no need to temperately store any new neutrons, 

while will simplify the code development and save storage 

requirements. 

In addition, the contribution from each initial neutron to 

the solution, in aMCk, could be 0 if the neutron was 

captured before the time of interest, while it could be a large 

integer if a sequence of fission reactions were experienced. 

In contrast, the corresponding contribution, in wMCk, 

would be the weighting factor. It will never be zero since 

there is no capture. And it is not going to be as large as in 

aMCk since ν’<ν always holds. Thus, the variance of those 

contributions in wMCk would be much smaller than the 

variance in aMCk. 
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III. RESULTS 

Based on the weighted Monte Carlo kinetics method 

proposed in this paper, a code named NECP-Dandi has been 

developed in Fortran 90 and verified by 11 test problems 

with difference reactivity insertions. The reference solutions 

are provided analytically or by a fully implicit backward 

finite difference method (FDM). The initial states of those 

tests are all critical with neutron density equal 1.0. The 

definition details of those test problems are shown in Table 

1. The cross-sections are listed in  

Table 2. The simulating durations are all 1ms. Test 

problems 1-4 and 6-7 simulates step reactivity insertion, 

while test problems 8-9 are designed to simulate pulse (0.1 

ms) reactivity insertion. Test problems 5 and 10 are 

designed to simulate critical operation to demonstrate the 

variation of the Monte Carlo solution, while a linear 

reactivity is inserted in Test problem 11. 

 

Table 1 Definition details of 11 test problems 

Case 

No. of 

precursor 

groups 

Reactivity 

insertion 

Reactivity 

insertion 

duration 

(ms) 

No. of 

particles 

(million) 

1 1 0 1 2500 

2 6 0 1 2500 

3 0 +0.0065 1 1 

4 0 -0.0065 1 1 

5 1 +0.0065 1 2500 

6 1 -0.0065 1 2500 

7 6 +0.0065 1 2500 

8 6 -0.0065 1 2500 

9 6 +0.0065 0.1 2500 

10 6 -0.0065 0.1 2500 

11 6 ≈0.65t 1 2500 

 

Table 2 Macroscopic cross-sections 

ρ 0 +0.0065 -0.0065 0.65t 

Σt (cm-1) 0.165258 0.165258 0.165258 0.165258 

Σs (cm-1) 0.156187 0.156187 0.156187 0.156187 

Σf (cm-1) 0.00365747 0.00368140 0.00363384 1 

ν 2.48 

v (cm/s) 3.04665510×106 

Before the discussion of accuracy, two definitions has 

to be clarified. (1) Statistic error (errS) is obtained by the 

central-limit theorem with confidence coefficient at 0.95. (2) 

Relative error (errR) is the deviation relative to reference 

solution. 

Cases 1 and 2 are both critical problems with different 

number of precursor groups. The results of case 2 can be 

similar to those of case 1. Thus, only the results of case 1 

are presented in Fig. 1 and Fig. 2. From the neutron density 

results as in Fig. 1, it can be found that the statistic error of 

aMCk (9.76×10-3) is larger than that of wMCk (6.56×10-4). 

                                                           
1 0.00365747+0.00237736t 

In addition, stronger fluctuation has been observed from 

aMCk. In Fig. 2, the fluctuation still exists but it seems 

smaller due to the large increment of the precursor density. 
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Fig. 1 Neutron density in case 1 
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Fig. 2 Precursor density in case 1 

Fig. 3 and Fig. 4 present the neutron density results of 

cases 3 and 4 which have no precursors. Cases 5 and 7 are 

both supercritical with precursors considered, while Cases 6 

and 8 are both subcritical. Thus, the results of cases 7 and 8 

are not represented here, while Fig. 5 to Fig. 8 shows the 

neutron density and precursor density comparisons. Cases 9 

and 10 are positive and negative pulse reactivity insertion, 

which is designed to analyze rod ejection/insertion accidents. 

Even there is no feedback, both neutron density and 

precursor densities will approach their new steady states 

once the pulse insertion is over, as shown in Fig. 9 and Fig. 

10. The largest statistic and relative errors in each cased are 

listed in Table 3. About one magnitude of smaller statistic 

and relative errors can be observed for the wMCk than the 

aMCk, which demonstrate the advantage of wMCk. 

Case 11 represents an approximate linear positive 

reaction insertion to analyze neutron and precursor density 

change over time during a control rod withdrawal process. 

The results are displayed in Fig. 11. Being similar to 

positive and negative pulse reactivity insertion, an accurate 
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result in terms of neutron density can be obtained by wMCk, 

which is impossible for aMCk with the same number of 

simulated particles. 
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Fig. 3 Neutron density in case 3 
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Fig. 4 Neutron density in case 4 
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Fig. 5 Neutron density in case 5 
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Fig. 6 Precursor density in case 5 
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Fig. 7 Neutron density in case 6 
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Fig. 8 Precursor density in case 6 

 

IV. CONCLUSIONS AND DISSCUSSIONS 

 

In this paper, to take advantage of the Monte Carlo 

method for solving the neutron kinetics equation, a 

weighted Monte Carlo kinetics method (wMCk) was 

proposed and compared to the currently employed analog 

Monte Carlo kinetics method (aMCk). Numerical results 11 

test problems with zero, positive or negative step, linear 
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reactivity insertions demonstrate promising conclusions. 

To extend this mono-energetic point kinetics solution to 

three-dimensional continuous energy simulation, there are 

two issues requiring attention as we can imagine. Firstly, the 

number of particles would increase dramatically due to the 

unfoldment of the phase space. Secondly, it is the 

appearance of the prompt and delayed neutron spectrums, 

which requires additional sampling process to determine the 

energy of those new fission neutrons. However, either of 

those issues can be overcome by simply increase the 

number of simulated particles or by investigating new 

variance reduction techniques. 
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Fig. 9 Neutron density in case 9 
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Fig. 10 Neutron density in case 10 
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Fig. 11 Neutron density in case 11 

 

Table 3 The largest statistic and relative errors 

No. 
wMCk aMCk 

errR errS errR errS 

① -0.014% 6.56×10-4 0.73% 9.76×10-3 

② 5.38×10-6% 2.67×10-7 1.91×10-5% 5.51×10-7 

③ 3.83×10-3% 6.75×10-5 1.06% 1.24×10-2 

④ -3.48×10-3% 6.67×10-5 0.559% 1.35×10-2 

⑤ -0.12% 6.62×10-4 0.76% 9.44×10-3 

⑥ 1.40×10-6% 2.93×10-7 2.79×10-5% 5.97×10-7 

⑦ 9.89×10-2% 6.62×10-4 1.02% 1.01×10-2 

⑧ 8.44×10-6% 2.45×10-7 2.96×10-5% 5.10×10-7 

⑨ -1.80×10-2% 6.45×10-4 0.77% 9.39×10-3 

⑩ -1.62×10-2% 6.45×10-4 0.89% 9.49×10-3 

⑪ -1.21×10-2% 6.45×10-4 0.91% 9.43×10-3 

 


