Validation of McCARD for VHTR core with HTTR Benchmark

Jinsu Park^a, Tae Yong Han^b, Hyun Chul Lee^{c,*}, Deokjung Lee^a

^aDepartment of Nuclear Engineering, UNIST, UNIST-gil 50, Ulsan, 44919, Korea ^bKorea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, Korea ^cPusan National University, 2, Busandaehak-ro 63beon-gil, Geunjeong-gu, Busan 46241, Korea ^{*}Corresponding author: hyunchul.lee@pusan.ac.kr

Abstract – In this paper, high temperature engineering test reactor (HTTR) benchmark were analyzed using McCARD and the ability to analyze a very high temperature gas-cooled reactor (VHTR) core of McCARD was validated. The specification of HTTR core is described and it is suggested that the approximation method of geometry for modelling in computational code. The multiplication factor during the fuel loading (HTTR-FC), the control rod insertion depth for critical condition (HTTR-CR), and isothermal temperature coefficient (HTTR-TC) are estimated by McCARD using both ENDF/B-VII.0 and ENDF/B-VII.1 neutron cross section libraries. The maximum difference of multiplication factor between result of McCARD and experiment data of HTTR-FC and HTTR-CR is around 600pcm by using ENDF/B-VII.1 library. Although the discrepancy of isothermal temperature coefficient (ITC) from McCARD is different with the experiment data, it is similar with estimated ITC from Japan and France.

I. INTRODUCTION

High temperature engineering test reactor (HTTR) is constructed by Japan atomic energy research institute (JAERI) and it is graphited-moderated and helium gascooled reactor with an outlet temperature of 950°C and a power of 30MW_{th}. The HTTR is suitable for a benchmark problem because the geometry of reactor core is complex and experiment data can be accessed [1]. In many countries, a reactor analysis codes for very high temperature gascooled reactor have been validated by comparing a numerical result of computer code and experiment data from HTTR benchmark [2, 3].

McCARD is a Monte Carlo neutron transport code developed for the neutronics analysis of various nuclear system [4]. The code can handle a complex geometry using composition cells which can be used again through translation. Also, the randomly distributed fuel particle in high temperature gas-cooled reactor can be explicitly treated.

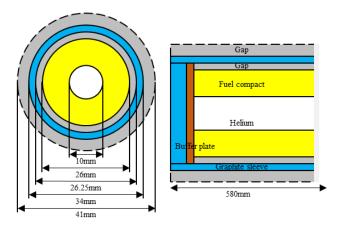
Section 2 describes the HTTR benchmark specification. Section 3 demonstrates the method of modelling in McCARD including approximation of geometry. Section 4 presents the numerical results of McCARD by comparing the experiment data from HTTR benchmark.

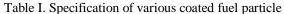
II. DESCRIPTION OF HTTR BENCHMARK

The HTTR was developed to improve a technological basis of advanced high temperature gas-cooled reactors (HTRGs) and to conduct a various irradiation experiment. It achieved a first criticality through annular shape fuel loading. The HTTR benchmark provides a various experiment data. The behavior of multiplication factor during fuel loading for first criticality (HTTR-FC), the control rod insertion depth for critical condition (HTTR-CR), and the isothermal temperature coefficient (HTTR-TC) are provided as experiment data and those data is used in this research. Also, the HTTR benchmark provides a detail specification of core geometry and the material of fuel, reflector, and control rod.

1. Fuel Assembly

The fuel assembly used in the HTTR core includes 33 or 31 fuel rods and 2 burnable poison rods in the hexagonal graphite block. The fuel rod is composed of graphite sleeve and 14 fuel compact which has coated fuel particles. Fig. 1 shows the configuration of the fuel rod.




Fig. 1. Configuration of fuel rod.

A. Fuel Compact and Coated Fuel Particle

The fuel rod includes 14 fuel compacts, which is composed of coated fuel particle in the annular cylinder graphite matrix. There are 12 types of coated fuel particle with various enrichment of ²³⁵U. The coated fuel particle

consists of sphere shape low enriched UO_2 kernel with a Tristructural-isotropic (TRISO) coating. Also, the TRISO coating consists of a low density, porous pyrolytic carbon (PyC) buffer layer adjacent to the fuel kernel, followed by high density isotropic PyC layer, a SiC layer and, a final outer PyC layer. Table I presents the detail specification of 12 types of the coated fuel particle used in HTTR. The configuration of fuel compact and coated fuel particle is shown in Fig. 2.

Enrichment (wt.%) 3.301 3.864 4.290 4.794 FuelDensity (g/cm ³) 10.80 10.75 10.78 10.76 Outer diameter (µm) 609.0 594.4 593.6 594.9 1^{st} Density (g/cm ³) 1.158 1.091 1.112 1.110 layerThickness (µm) 59.1 61.7 61.3 60.9 2^{nd} Density (g/cm ³) 1.873 1.879 1.905 1.907 layerThickness (µm) 30.9 30.4 30.5 30.3 3^{rd} Density (g/cm ³) 3.206 3.207 3.206 3.205 layerThickness (µm) 29.8 28.9 29.2 29.1 4^{th} Density (g/cm ³) 1.855 1.858 1.869 1.905 layerThickness (µm) 46.4 45.7 46.2 45.2 $Tuel$ Density (g/cm ³) 1.76 10.77 10.74 10.73 kernelOuter diameter (µm) 591.8 592.4 593.5 593.2 Impurity (ppm) 1.24 0.96 1.13 0.95 1^{st} Density (g/cm ³) 1.118 1.112 1.122 1.121 layerThickness (µm) 30.7 3.804 31.0 32.05 3^{std} Density (g/cm ³) 1.893 1.909 1.909 1.902 layerThickness (µm) 30.7 3.204 3.205 3.208 3^{std} Density (g/cm ³)	18	tble I. Specification of v			A03	
Fuel kernel Density (g/cm ³) 10.80 10.75 10.78 10.76 Verrent lawer Outer diameter (µm) 609.0 594.4 593.6 594.9 1st Density (g/cm ³) 1.158 1.091 1.112 1.110 layer Thickness (µm) 59.1 61.7 61.3 60.9 2 nd Density (g/cm ³) 1.873 1.879 1.905 1.907 layer Thickness (µm) 29.8 28.9 29.2 29.1 4 th Density (g/cm ³) 1.855 1.858 1.869 1.905 layer Thickness (µm) 46.4 45.7 46.2 45.2 Type A05 A06 A07 A08 Enrichment (wt.%) 5.162 5.914 6.254 6.681 Fuel Density (g/cm ³) 10.76 10.77 10.74 10.73 kernel Outer diameter (µm) 591.8 592.4 593.5 593.2 Impurity (ppm) 1.24 0.96						
kernel Outer diameter (µm) 609.0 594.4 593.6 594.9 Impurity (ppm) 0.92 0.89 0.92 0.94 1 st Density (g/cm ³) 1.158 1.091 1.112 1.110 layer Thickness (µm) 59.1 61.7 61.3 60.9 2 nd Density (g/cm ³) 1.873 1.879 1.905 1.907 layer Thickness (µm) 29.8 28.9 29.2 29.1 4 th Density (g/cm ³) 1.855 1.858 1.869 1.905 layer Thickness (µm) 46.4 45.7 46.2 45.2 Type A05 A06 A07 A08 Fuel Density (g/cm ³) 10.76 10.77 10.74 10.73 kernel Outer diameter (µm) 591.8 592.4 593.5 593.2 Impurity (ppm) 1.24 0.96 1.13 0.95 1 st Density (g/cm ³) 1.893 1.909 1.902 <td>E1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	E1					
Impurity (ppm) 0.92 0.89 0.92 0.94 1st Density (g/cm ³) 1.158 1.091 1.112 1.110 layer Thickness (µm) 59.1 61.7 61.3 60.9 2 nd Density (g/cm ³) 1.873 1.879 1.905 1.907 layer Thickness (µm) 29.8 28.9 29.2 29.1 4 th Density (g/cm ³) 1.855 1.858 1.869 1.905 layer Thickness (µm) 46.4 45.7 46.2 45.2 Type A05 A06 A07 A08 Enrichment (wt.%) 5.162 5.914 6.254 6.681 Fuel Density (g/cm ³) 10.76 10.77 10.74 10.73 kernel Outer diameter (µm) 591.8 592.4 593.5 593.2 Impurity (ppm) 1.24 0.96 1.13 0.95 1 st Density (g/cm ³) 1.893 1.909 1.902 1.902						
1st Density (g/cm ³) 1.158 1.091 1.112 1.110 layer Thickness (µm) 59.1 61.7 61.3 60.9 2nd Density (g/cm ³) 1.873 1.879 1.905 1.907 layer Thickness (µm) 30.9 30.4 30.5 30.3 3rd Density (g/cm ³) 3.206 3.207 3.206 3.205 layer Thickness (µm) 29.8 28.9 29.2 29.1 4th Density (g/cm ³) 1.855 1.858 1.869 1.905 layer Thickness (µm) 46.4 45.7 46.2 45.2 Thickness (µm) 46.4 45.7 46.2 45.2 Impurity (g/cm ³) 10.76 10.77 10.74 10.73 kernel Outer diameter (µm) 591.8 592.4 593.5 593.2 Impurity (ppm) 1.24 0.96 1.13 0.95 1st Density (g/cm ³) 1.893 1.909 1.909 <td>kernei</td> <td></td> <td></td> <td></td> <td></td> <td></td>	kernei					
layerThickness (µm)59.161.761.360.9 2^{nd} Density (g/cm³)1.8731.8791.9051.907layerThickness (µm)30.930.430.530.3 3^{rd} Density (g/cm³)3.2063.2073.2063.205layerThickness (µm)29.828.929.229.1 4^{th} Density (g/cm³)1.8551.8581.8691.905layerThickness (µm)46.445.746.245.2TypeA05A06A07A08FuelDensity (g/cm³)10.7610.7710.7410.73kernelOuter diameter (µm)591.8592.4593.5593.2Impurity (ppm)1.240.961.130.951stDensity (g/cm³)1.1181.1121.1221.121layerThickness (µm)30.730.831.131.03rdDensity (g/cm³)1.8931.9091.9091.902layerThickness (µm)32.053.2043.2053.208ayerThickness (µm)30.730.831.131.03rdDensity (g/cm³)1.8461.8901.8701.860layerThickness (µm)29.429.328.728.74thDensity (g/cm³)1.8461.8901.8701.860layerThickness (µm)45.745.945.046.1Density (g/cm³)1.8461.890 <td>4 st</td> <td></td> <td></td> <td></td> <td></td> <td></td>	4 st					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-					
layerThickness (µm) 30.9 30.4 30.5 30.3 3^{rd} Density (g/cm ³) 3.206 3.207 3.206 3.205 layerThickness (µm) 29.8 28.9 29.2 29.1 4^{th} Density (g/cm ³) 1.855 1.858 1.869 1.905 layerThickness (µm) 46.4 45.7 46.2 45.2 TypeA05A06A07A08FuelDensity (g/cm ³) 10.76 10.77 10.74 10.73 kernelOuter diameter (µm) 591.8 592.4 593.5 593.2 Impurity (ppm) 1.24 0.96 1.13 0.95 1^{st} Density (g/cm ³) 1.118 1.112 1.122 1.121 layerThickness (µm) 60.4 60.3 60.4 60.8 2^{nd} Density (g/cm ³) 1.893 1.909 1.909 1.902 layerThickness (µm) 30.7 30.8 31.1 31.0 3^{rd} Density (g/cm ³) 1.846 1.890 1.870 1.860 layerThickness (µm) 29.4 29.3 28.7 28.7 4^{th} Density (g/cm ³) 1.846 1.890 1.870 1.860 layerThickness (µm) 29.4 29.3 28.7 28.7 4^{th} Density (g/cm ³) 1.846 1.890 1.870 1.810 layerThickness (µm) 594.0 608.1 593						
3^{rd} Density (g/cm ³) 3.206 3.207 3.206 3.205 layerThickness (µm) 29.8 28.9 29.2 29.1 4^{th} Density (g/cm ³) 1.855 1.858 1.869 1.905 layerThickness (µm) 46.4 45.7 46.2 45.2 TypeA05A06A07A08Enrichment (wt.%) 5.162 5.914 6.254 6.681 FuelDensity (g/cm ³) 10.76 10.77 10.74 10.73 kernelOuter diameter (µm) 591.8 592.4 593.5 593.2 Impurity (ppm) 1.24 0.96 1.13 0.95 1^{st} Density (g/cm ³) 1.118 1.112 1.122 1.121 layerThickness (µm) 60.4 60.3 60.4 60.8 2^{nd} Density (g/cm ³) 1.893 1.909 1.909 1.902 layerThickness (µm) 30.7 30.8 31.1 31.0 3^{rd} Density (g/cm ³) 1.846 1.890 1.870 1.860 layerThickness (µm) 29.4 29.3 28.7 28.7 4^{th} Density (g/cm ³) 1.846 1.890 1.870 1.860 layerThickness (µm) 45.7 45.9 45.0 46.1 TypeA09A10A11A12FuelDensity (g/cm ³) 1.846 1.890 1.870 1.816 la						
layerThickness (µm)29.828.929.229.1 4^{th} Density (g/cm3)1.8551.8581.8691.905layerThickness (µm)46.445.746.245.2TypeA05A06A07A08Enrichment (wt.%)5.1625.9146.2546.681FuelDensity (g/cm3)10.7610.7710.7410.73kernelOuter diameter (µm)591.8592.4593.5593.2Impurity (ppm)1.240.961.130.951stDensity (g/cm3)1.1181.1121.1221.121layerThickness (µm)60.460.360.460.82ndDensity (g/cm3)1.8931.9091.9091.902layerThickness (µm)30.730.831.131.03rdDensity (g/cm3)1.8461.8901.8701.860layerThickness (µm)29.429.328.728.74thDensity (g/cm3)1.8461.8901.8701.860layerThickness (µm)45.745.945.046.1TypeA09A10A11A12LayerThickness (µm)594.0608.1593.1591.4layerThickness (µm)594.0608.1593.1591.4LayerDensity (g/cm3)1.1471.1431.1701.152layerThickness (µm)64.958.761.1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
4th layerDensity (g/cm³) Thickness (µm)1.855 46.41.858 45.71.869 46.21.905 45.2TypeA05A06A07A08Enrichment (wt.%)5.162 	-					
layer Thickness (µm) 46.4 45.7 46.2 45.2 Type A05 A06 A07 A08 Enrichment (wt.%) 5.162 5.914 6.254 6.681 Fuel Density (g/cm ³) 10.76 10.77 10.74 10.73 kernel Outer diameter (µm) 591.8 592.4 593.5 593.2 Impurity (ppm) 1.24 0.96 1.13 0.95 1 st Density (g/cm ³) 1.118 1.112 1.122 1.121 layer Thickness (µm) 60.4 60.3 60.4 60.8 2 nd Density (g/cm ³) 1.893 1.909 1.909 1.902 layer Thickness (µm) 30.7 30.8 31.1 31.0 3 rd Density (g/cm ³) 3.205 3.204 3.205 3.208 layer Thickness (µm) 29.4 29.3 28.7 28.7 4 th Density (g/cm ³) 1.846 1.890 1.870						
TypeA05A06A07A08Enrichment (wt.%) 5.162 5.914 6.254 6.681 FuelDensity (g/cm ³) 10.76 10.77 10.74 10.73 kernelOuter diameter (µm) 591.8 592.4 593.5 593.2 Impurity (ppm) 1.24 0.96 1.13 0.95 1^{st} Density (g/cm ³) 1.118 1.112 1.122 1.121 layerThickness (µm) 60.4 60.3 60.4 60.8 2^{nd} Density (g/cm ³) 1.893 1.909 1.909 1.902 layerThickness (µm) 30.7 30.8 31.1 31.0 3^{rd} Density (g/cm ³) 3.205 3.204 3.205 3.208 layerThickness (µm) 29.4 29.3 28.7 28.7 4^{th} Density (g/cm ³) 1.846 1.890 1.870 1.860 layerThickness (µm) 45.7 45.9 45.0 46.1 TypeA09A10A11A12LayerDensity (g/cm ³) 10.77 10.82 10.79 10.81 layerThickness (µm) 594.0 608.1 593.1 591.4 Impurity (ppm) 0.90 0.92 0.88 0.88 1stDensity (g/cm ³) 1.147 1.143 1.170 1.152 layerThickness (µm) 31.0 29.2 31.9 30.5 3^{rd} Density (g/cm ³) 1.867						
Fuel FuelEnrichment (wt.%) Density (g/cm3) 5.162 5.914 6.254 6.681 KernelOuter diameter (µm) Impurity (ppm) 10.76 10.77 10.74 10.73 1^{st} Density (g/cm3) 1.118 591.8 592.4 593.5 593.2 1^{st} Density (g/cm3) 1.118 1.112 1.122 1.121 $1ayer$ Thickness (µm) 60.4 60.3 60.4 60.8 2^{nd} Density (g/cm3) 1.893 1.909 1.909 1.902 $1ayer$ Thickness (µm) 30.7 30.8 31.1 31.0 3^{rd} Density (g/cm3) 3.205 3.204 3.205 3.208 $1ayer$ Thickness (µm) 29.4 29.3 28.7 28.7 4^{th} Density (g/cm3) 1.846 1.890 1.870 1.860 $1ayer$ Thickness (µm) 45.7 45.9 45.0 46.1 $1ayer$ Thickness (µm) 7.189 9.820 9.358 9.810 $1ayer$ Density (g/cm3) 10.77 10.82 10.79 10.81 $kernel$ Outer diameter (µm) 594.0 608.1 593.1 591.4 $1st$ Density (g/cm3) 1.147 1.143 1.170 1.152 $1ayer$ Thickness (µm) 64.9 58.7 61.1 59.3 2^{nd} Density (g/cm3) 1.894 1.878 1.902 1.879 $1ayer$ Thickness (µm) 31.0 29.2	layer	Thickness (µm)				
Fuel kernelDensity (g/cm³)10.7610.7710.7410.73kernelOuter diameter (µm)591.8592.4593.5593.2Impurity (ppm)1.240.961.130.951stDensity (g/cm³)1.1181.1121.1221.121layerThickness (µm)60.460.360.460.82ndDensity (g/cm³)1.8931.9091.9091.902layerThickness (µm)30.730.831.131.03rdDensity (g/cm³)3.2053.2043.2053.208layerThickness (µm)29.429.328.728.74thDensity (g/cm³)1.8461.8901.8701.860layerThickness (µm)45.745.945.046.1TypeA09A10A11A12Enrichment (wt.%)7.1899.8209.3589.810FuelDensity (g/cm³)10.7710.8210.7910.81kernelOuter diameter (µm)594.0608.1593.1591.4Impurity (ppm)0.900.920.880.881stDensity (g/cm³)1.1471.1431.1701.152layerThickness (µm)31.029.231.930.53rdDensity (g/cm³)1.8941.8781.9021.879layerThickness (µm)31.029.231.930.53rdDensity (g/cm³)1.8671.8691.848						
kernelOuter diameter (µm)591.8592.4593.5593.2 1^{st} Density (ppm)1.240.961.130.95 1^{st} Density (g/cm ³)1.1181.1121.1221.121layerThickness (µm)60.460.360.460.8 2^{nd} Density (g/cm ³)1.8931.9091.9091.902layerThickness (µm)30.730.831.131.0 3^{rd} Density (g/cm ³)3.2053.2043.2053.208layerThickness (µm)29.429.328.728.7 4^{th} Density (g/cm ³)1.8461.8901.8701.860layerThickness (µm)45.745.945.046.1 \mathbf{M}^{th} Density (g/cm ³)10.7710.8210.7910.81kernelOuter diameter (µm)594.0608.1593.1591.4Impurity (ppm)0.900.920.880.88 1^{st} Density (g/cm ³)1.1471.1431.1701.152layerThickness (µm)31.029.231.930.5 2^{nd} Density (g/cm ³)1.8941.8781.9021.879layerThickness (µm)31.029.231.930.5 3^{rd} Density (g/cm ³)1.8671.8691.8481.853 4^{th} Density (g/cm ³)3.2023.2013.2073.202layerThickness (µm)31.029.23						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fuel					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	kernel					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Impurity (ppm)	1.24	0.96	1.13	0.95
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1^{st}	Density (g/cm ³)	1.118	1.112	1.122	1.121
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Thickness (µm)	60.4	60.3	60.4	60.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 nd	Density (g/cm ³)	1.893	1.909	1.909	1.902
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Thickness (µm)	30.7	30.8	31.1	31.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 rd	Density (g/cm ³)	3.205	3.204	3.205	3.208
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	layer	Thickness (µm)	29.4	29.3	28.7	28.7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4 th	Density (g/cm ³)	1.846	1.890	1.870	1.860
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	layer	Thickness (µm)	45.7	45.9	45.0	46.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Туре	A09	A10	A11	A12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Enrichment (wt.%)	7.189	9.820	9.358	9.810
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fuel	Density (g/cm ³)	10.77	10.82	10.79	10.81
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	kernel		594.0	608.1	593.1	591.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Impurity (ppm)	0.90	0.92	0.88	0.88
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 st		1.147	1.143	1.170	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	layer		64.9		61.1	59.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
layer Thickness (μm) 28.6 28.7 28.2 26.7 4 th Density (g/cm ³) 1.867 1.869 1.848 1.853						
4 th Density (g/cm ³) 1.867 1.869 1.848 1.853						
	layer	Thickness (µm)	46.2	45.6	46.0	46.3

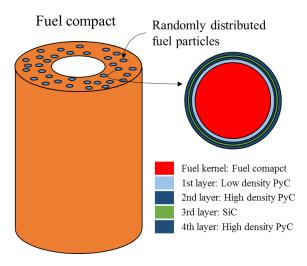


Fig. 2. Configuration of fuel compact and coated fuel particle.

B. Burnable Poison Rod

The fuel assembly has 3 holes for insertion of burnable poison rod and 2 burnable poison rods are inserted. The burnable poison rod is composed of a 20 B₄C pellets (40cm) and 20 graphite disks (10cm). There are two types of burnable poison rod, H-1 type use 2.22wt.% and H-2 type use 2.74wt.% enrichment of ¹⁰B. Fig. 3 shows the cross section of fuel assembly including 33 fuel holes.

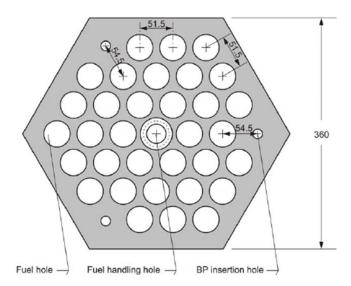


Fig. 3. Configuration of fuel assembly (33 fuel holes).

2. Control Rod Guide Block, Replaceable Reflector Block, and Dummy Fuel Block

Except fuel block, there are control rod guide block, replaceable reflector block in the HTTR core. The control

rod guide block has 2 holes for control rod insertion and 1 hole for insertion of reserved shutdown system (RSS) at accident situation. There are 12 replaceable reflector blocks in the active core and top and bottom of the core. The reflector block located at the top and bottom of the core has 2.3cm diameter holes for coolant flow and the lowest reflector block has 6 large holes. The dummy fuel block is inserted in the core before fuel loading and it will be substituted with the fuel block one by one during fuel loading.

3. Permanent Reflector Block

The HTTR core components are surrounded by 12 polygonal shape permanent reflector block. There are several holes for the irradiation experiment and the void fraction of permanent reflector block with hole is 0.7%.

III. MCCARD MODELLING

The 3-dimensional HTTR core is modelled using McCARD. The Monte Carlo calculations are performed with ENDF-B/VII.0 and ENDF/B-VII.1 continuous energy neutron cross section libraries. The simulation parameters are 200,000 histories per cycle, 100 inactive cycles, and 400 active cycles to set a standard deviation of the multiplication factor under 20pcm.

The fuel compact with randomly distributed coated fuel particles is explicitly modelled in McCARD using FCEL card. Because the coated fuel particle cells cannot be overlapped and cut by surface, it can be occurred that the sensitivity along the height of fuel compact cell. Therefore, the height of fuel compact was set to exactly same with real height of fuel compact in the HTTR benchmark.

1. Approximation of Geometry

Several parts of geometries are approximated in modelling because of the limitation of McCARD and the simplicity for modelling. The cone shape cannot be modelled in McCARD, the chopped cone shape structures are approximated to cylinder shape structures with volume weighting. All blocks have chopped cone shape fuel handling hole for the insertion and withdrawal of block during fuel loading. Fig. 4 shows approximation of fuel handling hole model.

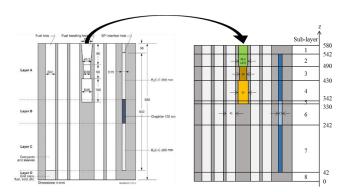


Fig. 4. Approximation of the fuel handling hole model.

Except the fuel handling hole, the holes for insertion of control rod and RSS in the control rod guide block are chopped cone shape. Fig. 5 and 6 show the approximation of control rod insertion hole in 6th layer and RSS insertion hole in 7th layer of control rod guide block.

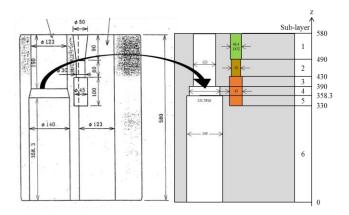


Fig. 5. Approximation of the control rod insertion hole in control rod guide block at 6th layer.

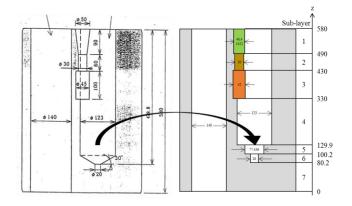


Fig. 6. Approximation of the RSS insertion hole in control rod guide block at 7th layer.

The coolant channel, which existed in replaceable reflector block at lowest region of core, is approximated to hexagon with volume weighting due to simplicity of modelling. Fig. 7 shows approximation of the coolant channel in replaceable reflector block at 9th layer.

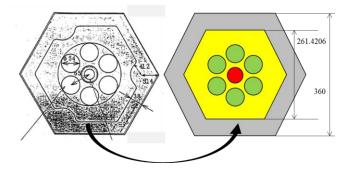


Fig. 7. Approximation of the coolant channel in replaceable reflector block at 9th layer.

The dodecagonal shape permanent reflector block is approximated to cylinder shape with volume weighting of graphite. Also, several holes in the block for irradiation experiment is ignored in McCARD model. Therefore, the number density of permanent reflector block is modified by considering the void fraction.

IV. NUMERICAL RESULTS

In this section, the numerical results of McCARD are presented. Among various experiment data in HTTR benchmark, HTTR-FC, HTTR-CR, and HTTR-TC data are produced by McCARD.

1. HTTR-FC

The Monte Carlo simulation is performed step by step through substituting the pre-inserted dummy fuel block with the fuel block. Fig. 8 shows the fuel loading order of HTTR-FC.

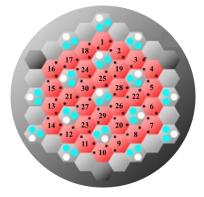


Fig. 8. Fuel loading order of HTTR-FC.

The McCARD calculations are performed with ENDF/B-VII.0 and ENDF/B-VII.1 neutron cross section library. Table II represents the effective multiplication factors and the difference with experiment data. The difference of multiplication factor between McCARD and experiment data decrease when ENDF-B/VII.1 library used. From the result of HTTR-FC, the discrepancy of McCARD with experiment data is around 600pcm. Fig. 9 shows the behavior of multiplication factor during fuel loading.

Table II. Multiplication factors of HTTR-FC

Fuel	Experiment	McCA	ARD (ENDF	-B/VII.0)
Columns	- k _{eff}	k _{eff}	SD (pcm)	Diff. (pcm)
9	0.92820	0.94575	16	1755
12	0.94810	0.96926	14	2116
15	0.96520	0.98620	16	2100
16	0.97010	0.99154	15	2144
17	0.97850	1.00117	15	2267
18	0.99130	1.01345	16	2215
19	1.01520	1.03210	14	1690
21	1.04170	1.06148	15	1978
24	1.08340	1.10191	15	1851
27	1.11980	1.13344	15	1364
30	1.13460	1.14040	15	580
		McCARD (ENDF-B/VII.1)		
Fuel	Experiment	McCA	ARD (ENDF	-B/VII.1)
Fuel Columns	Experiment k _{eff}	McCA k _{eff}	ARD (ENDF SD (pcm)	-B/VII.1) Diff. (pcm)
	-			,,
Columns	k _{eff}	k _{eff}	SD (pcm)	Diff. (pcm)
Columns 9	<i>k_{eff}</i> 0.92820	<i>k_{eff}</i> 0.93129	SD (pcm) 14	Diff. (pcm) 309
Columns 9 12	<i>k_{eff}</i> 0.92820 0.94810	k _{eff} 0.93129 0.95434	SD (pcm) 14 15	Diff. (pcm) 309 624
Columns 9 12 15	<i>k_{eff}</i> 0.92820 0.94810 0.96520	k _{eff} 0.93129 0.95434 0.97108	SD (pcm) 14 15 15	Diff. (pcm) 309 624 588
Columns 9 12 15 16	k _{eff} 0.92820 0.94810 0.96520 0.97010	k _{eff} 0.93129 0.95434 0.97108 0.97617	SD (pcm) 14 15 15 14	Diff. (pcm) 309 624 588 607
Columns 9 12 15 16 17	k _{eff} 0.92820 0.94810 0.96520 0.97010 0.97850	k _{eff} 0.93129 0.95434 0.97108 0.97617 0.98506	SD (pcm) 14 15 15 14 14	Diff. (pcm) 309 624 588 607 656
Columns 9 12 15 16 17 18 18	k _{eff} 0.92820 0.94810 0.96520 0.97010 0.97850 0.99130	k _{eff} 0.93129 0.95434 0.97108 0.97617 0.98506 0.99768	SD (pcm) 14 15 15 14 14 14	Diff. (pcm) 309 624 588 607 656 638
Columns 9 12 15 16 17 18 19	k _{eff} 0.92820 0.94810 0.96520 0.97010 0.97850 0.99130 1.01520	k _{eff} 0.93129 0.95434 0.97108 0.97617 0.98506 0.99768 1.01686	SD (pcm) 14 15 15 14 14 14 14 14	Diff. (pcm) 309 624 588 607 656 638 166
Columns 9 12 15 16 17 18 19 21	$\begin{array}{c} k_{eff} \\ 0.92820 \\ 0.94810 \\ 0.96520 \\ 0.97010 \\ 0.97850 \\ 0.99130 \\ 1.01520 \\ 1.04170 \end{array}$	k _{eff} 0.93129 0.95434 0.97108 0.97617 0.98506 0.99768 1.01686 1.04704	SD (pcm) 14 15 15 14 14 14 14 14 14	Diff. (pcm) 309 624 588 607 656 638 166 534

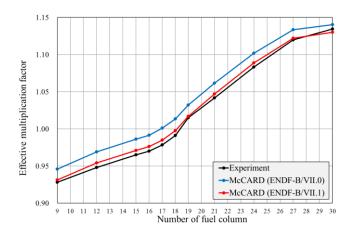


Fig. 9. Behavior of multiplication factor during fuel loading.

The major difference of the ENDF/B-VII.0 and ENDF/B-VII.1 libraries for analysis of VHTR core is capture cross section of carbon. Generally, the material of moderator used in the VHTR is graphite, the change of cross section of graphite can occur significant reactivity change. Fig. 10 shows capture cross section of carbon in the ENDF/B-VII.0 and ENDF/B-VII.1 library. In 0.01 to 2MeV energy ration, capture cross section of ENDF/B-VII.1 is larger than that of ENDF/B-VII.0. The larger cross section of ENDF/B-VII.1 decreases the multiplication factor and the results can be accurate.

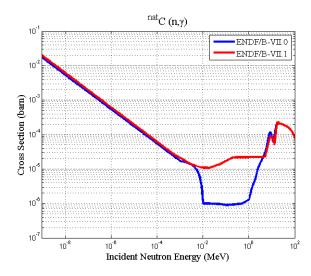


Fig. 10. Behavior of multiplication factor during fuel loading.

2. HTTR-CR

The HTTR benchmark provides the control rod insertion depth from 19 to 30 fuel columns core. There are 4 bunches of control rod; C, R1, R2, and R3. Table III presents the information of control rod sets.

Table III. Information of control rod sets

Туре	Location of control rod
С	A01
R1	C01, C03, C05, C07, C09, C11
R2	E03, E07, E11, E15, E19, E23
R3	E01, E09, E17

There are three types of control rod behavior pattern. First pattern is flat standard (FS) pattern, the control rods named C, R1, and R2 are inserted in same level and R3 rods are fully withdrawn. Second pattern is F23 pattern, the R2 and R3 rods located in core periphery region are inserted in same level and C and R1 rods are fully withdrawn. Last pattern is C pattern, only C rods are inserted and other rods are fully withdrawn. Table IV represents the measured control rod insertion depth for critical condition.

Table IV. Measured control rod depth for critical conditions.

Case	Fuel	Critical rod position (mm)				Remark
Case	Columns	С	R1	R2	R3	Kelliark
1	19	1739	4050	3325	4050	С
2	21	2647	2645	2646	4049	FS
3	24	2213	2215	2215	4049	FS
4	24	4051	4050	1593	1592	F23
5	27	1901	1899	1899	4050	FS
6	30	1775	1775	1775	4049	FS

The Monte Carlo simulation of each fuel columns core with various control rod location are performed with both ENDF/B-VII.0 and ENDF/B-VII.1. Table V represents the multiplication factors of HTTR-CR. As shown in the result of HTTR-FC, the difference of multiplication factor between McCARD and experiment data decrease when ENDF/B-VII.1 library used. The effect of difference of library is gradually reduced with the fuel loading. Along the fuel loading, the amount of fuel in the core is increased and it leads to reduction of effect of graphite.

Table V. Multiplication factors of HTTR-CR.

Case	Experiment	McCARD (ENDF-B/VII.0)			
Case	keff	k_{eff}	SD (pcm)	Diff. (pcm)	
1	1.00049	1.01575	16	1526	
2	1.00037	1.02001	15	1964	
3	1.00037	1.01566	15	1529	
4	1.00037	1.01276	15	1239	
5	1.00037	1.00931	25	894	
6	1.00025	1.00650	15	625	
		McCARD (ENDF-B/VII.1)			
Casa	Experiment	McCA	RD (ENDF-	B/VII.1)	
Case	Experiment <i>k_{eff}</i>	McCA k _{eff}	RD (ENDF- SD (pcm)	B/VII.1) Diff. (pcm)	
Case	-	_	<u> </u>	/	
	k _{eff}	keff	SD (pcm)	Diff. (pcm)	
1	k _{eff} 1.00049	k _{eff} 1.00311	SD (pcm) 14	Diff. (pcm) 262	
1 2	<i>k_{eff}</i> 1.00049 1.00037	k _{eff} 1.00311 1.00620	SD (pcm) 14 14	Diff. (pcm) 262 583	
$ \begin{array}{c} 1\\ 2\\ 3 \end{array} $	<i>k_{eff}</i> 1.00049 1.00037 1.00037	<i>k_{eff}</i> 1.00311 1.00620 1.00396	SD (pcm) 14 14 15	Diff. (pcm) 262 583 359	

3. HTTR-TC

The isothermal temperature coefficients (ITC) are calculated from the difference of multiplication factor for the 30 fuel columns core. Although the control rod insertion depth should be changed due to thermal expansion of control rod along the increment of core temperature, the control rod insertion depth is fixed to obtain the difference of multiplication factor. The McCARD simulations are performed for 300K, 400K, 500K, and 600K as a core temperature with both ENDF/B-VII.0 and ENDF/B-VII.1

libraries. The isothermal temperature coefficient of the fully-loaded core can be evaluated from the effective multiplication factors, using following relationship.

$$\rho_n = \frac{k_{n+1} - k_n}{k_{n+1} \cdot k_n} \cdot \frac{1}{T_{n+1} - T_n}.$$
 (1)

The ρ_n is the temperature coefficient between T_n and T_{n+1} , the T_n is the core temperature nth simulation, the T_{n+1} is the core temperature $(n+1)^{th}$ simulation, k_n is the effective multiplication factor at T_n , and k_{n+1} is the effective multiplication factor at T_{n+1} . Table VI represents a multiplication factors and ITC of HTTR-TC.

There is 2~3pcm/K difference of ITC between the ITC calculated by McCARD and the experiment data. Also, the effect of different library is not reflected in the ITC calculation.

Temperature	Experiment	McCAR	D (ENDF-B	/VII.0)		
(K)	(%dk/k/K *10 ⁻⁴)	k _{eff}	SD (pcm)	ITC		
300		1.00650	15	-1.599		
400	From -1.4	0.99056	13	-1.588		
500	to -1.3	0.97522	14	-1.578		
600		0.96044	14	-		
		0.96044 14 -				
Temperature	Experiment	McCAR	D (ENDF-B	/VII.1)		
Temperature (K)	Experiment (%dk/k/K *10 ⁻⁴)	McCAR k _{eff}	D (ENDF-B SD (pcm)	/VII.1) ITC		
-	(ŵdk/k/K		,	, í		
(K)	(ŵdk/k/K	k _{eff}	SD (pcm)	ITC		
(K) 300	(%dk/k/K *10 ⁻⁴)	k _{eff} 0.99783	SD (pcm) 15	ITC -1.595		

Table VI. Multiplication factors and ITC of HTTR-TC.

V. CONCLUSIONS

In this paper, the accuracy of McCARD for analyzing VHTR core is demonstrated by using the HTTR benchmark problems. The geometry and material specifications of HTTR benchmark problem are described and modelling methods of complex geometry of HTTR system are also presented. Among HTTR benchmark problem sets, the HTTR-FC, HTTR-CR, and HTTR-TC situations are simulated by McCARD using both ENDF/B-VII.0 and ENDF/B-VII.1 neutron cross section libraries. When the ENDF-B/VII.1 library used, the differences of multiplication factor between McCARD and experiment data are around 200~600pcm. The change of capture cross section of carbon in ENDF/B-VII.1 library is major reason of the accuracy improvement of VHTR core analysis. The ability of McCARD for analyzing VHTR core is validated through this research, it is expected that McCARD can be utilized for VHTR core design and analysis.

ACKNOWLEDGMENTS

REFERENCES

- 1. N. Nojiri, et el, "Benchmark Problems Data for the HTTR's Start-up Core Physics Experiments," JAERImemo 10-005, Japan Atomic Energy Research Institute (1998).
- 2. J. D. Bess, et el, "Evaluation of the Start-up Core Physics Tests at Japan's High Temperature Engineering Test Reactor (Fully-Loaded Core)," INL/EXT-08-14767, Idaho National Laboratory (2009).
- 3. A. Badulescu, et el, "Evaluation of High Temperature Gas Cooled Reactor Performance: Benchmark Analysis related to Initial Testing of the HTTR and HTR-10," IAEA-TECDOC-1382, International Atomic Energy Agency (2003).
- H. J. Shim, et el, "McCARD: Monte Carlo Code for Advanced Reactor Design and Analysis," *Nuclear Engineering and Technology*, 44, 161-176 (2012).