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Abstract – A a data-adaptive regular paving method is presented for density estimation regarding particle 

distributions. The algorithm halves each phase space segment sequentially in each dimension creating an 

unevenly segmented but regular mesh. Division target functions of smallest L2norm and equal relative 

variance have been studied. The results were applied to multidimensional MCNP tallying using PTRAC 

files and surface source sampling.  

 

I. INTRODUCTION 

 

Monte Carlo nuclear particle transport calculations 

produce a set of samples with phase space dimensions of 

spatial location, solid angle, energy and time. For 

sophisticated problems we may add more phase space 

variables: number of collisions, starting location, parent 

history number etc. When we wish to analyze our Monte 

Carlo calculation in terms of phase-space dependent 

distributions to understand particle pathways, to visualize 

response flow or to optimize variance reduction a 

multidimensional bin structure is needed. Without detailed 

knowledge of the system we may overpartition some 

unpopulated part of the phase space and will get a few to 

none hits per bin. In this paper we propose an adaptive tally 

binning using regular paving using samples generated by 

MCNP [1]. Further, the created tallying system is used for 

surface source sampling. 

The problem at hand is similar to Probability Density 

Estimation (PDE) with a long history of development [2].  

Some techniques have found their way to the nuclear field 

like PDE with continuous functions [3], using kernel density 

estimators [4] or even adaptive binning [5]. We would like 

to contribute to this ongoing effort by optimizing for the 

most information that statistic allows for when a sample set 

has already been generated in order to obtain useable MC 

estimates in each bin. A further development regards the use 

of such binned quantities as surface or volumetric tallies. 

 

II. THEORY AND ALGORITHMS 

 

1. Density estimation using Monte Carlo samples 

Adaptive binning with variable bin boundaries face its 

greatest challenge by multidimensionality: variable 

boundaries in at least two dimensions would lead to a 

paving problem where a small step toward generality would 

mean a way bigger step towards unproductive sophistication. 

To ease the treatment we have settled for a tree structure 

where parent bins are divided into two daughters along bin 

boundaries that are set along hyperplanes perpendicular to 

each other and each level of branching happens in the same 

dimension.  

To establish nomenclature let us model the Monte Carlo 

quantity estimation mathematically by considering an f(P) 

probability density function (pdf) with argument P standing 

for a set of phase space variables, let us denote a pay-off or 

detector function as g(P) and an I result of a definite integral 

on the whole phase space domain that is the outcome of the 

Monte Carlo calculation: 

  

    I f P g P dP   (1.1) 

With Pi samples following the f(P) distribution we can 

estimate I by 
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We may attribute a wi weight for each coordinate 

sample (P’i, wi) as long as the following holds: 
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With this definition the restriction on f to be a pdf can 

be relaxed as long as we can formulate our problem as 

Eq.(1.1) and a random variable–weight set that fulfills 

Eq.(1.3). 

 The r2 relative variance may be estimated [1] by 
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In a Monte Carlo transport we obtain samples (Pi, wi) 

by a complicated simulation process where f(P) (a quantity 

proportional to a density that describes particle population 

e.g. the particle flux) is not known explicitly but in many 

instances we would very much like to reconstruct it. Monte 

Carlo may estimate definite integrals as in Eq.(1.1) where 

the set of pay-off functions can be chosen according to our 

needs. We may use kernel functions [4] for such purpose or 

a set of orthogonal functions gj(P) such that:  

    j k jk jkg P g P dP c   (1.5) 
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with cjk a known normalization constant and jk the 

Kronecker delta. If a function may be expanded into a series 

of gj(P): 
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the coefficients dj can be calculated as  

     /j j jjd g P f P dP c   (1.7) 

and can be therefore estimated by a Monte Carlo 

calculation. 

We can choose for example gj(P) to be Legendre 

polynomials [3] or as it is most often done as a disjoint set 

of intervals  completely covering the support of f,  with a 

constant scoring function: 
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with j characteristic function (1 if P falls in the jth 

interval, 0 otherwise) and j the size of the domain. By this 

the estimation is simply the average value of function on a 

certain domain. 

For the best estimate of f formulating an optimal 

strategy seems within reach if we operate in one dimension, 

however already for two dimensional problems the need for 

paving the whole support of f adds serious complications to 

the otherwise already challenging task. In the nuclear field 

most commonly the phase space dimensions are segmented 

independently resulting in a structured mesh with some bins 

obtaining many Monte Carlo scores and some obtaining 

very little. 

As very commonly done in pdf estimation in the field 

of mathematical statistics we may partition our phase space 

along perpendicular hyperplanes in a recurring succession of 

the phase space dimensions always halving the bins only 

along the dimension in turn. 

To illustrate this process let us choose an optimization 

strategy of creating bins with equal number of samples 

falling into each in a two dimensional setup. The algorithm 

is as follows: take all the samples and divide them into two 

groups by finding the median of the group along the first 

dimension. Take the two groups and divide each 

independently by finding the median along the second 

dimension. This process can be continued restarting with the 

first dimension until the desired number of bins is reached.  

After the binning is done the corresponding tally estimate is 

formed by adding up the contributions to that phase space 

cell and division by the cell size. 

Fig. 1 shows such a process. 5 independent two 

dimensional Gaussian distributions were set at the 

beginning of the calculation each had randomly selected 

centers and spreads. From theses distributions altogether 106 

random samples were drawn and binned adaptively into 

more and more bins (succession goes top to bottom then 

along columns, only some images of the process are shown) 

reaching 32x32 bins (divisions in respective dimensions) at 

the end. 
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Fig. 1. Adaptive histogram of 5 independent Gaussians 

using 106 samples, with increasing number of bins. Color 

scale indicates relative density. 

 

 The effort leading to [5] does an adaptive binning but 

the optimization criterion is stated rather than derived from 

a preset goal and even the underlying algorithm is not 

thoroughly explained. We attempt here to set optimization 

goals first and derive the belonging optimization scheme 

next. 

  

2. Optimizing for the best L2 norm for tallying 

application 

If our aim is to recreate a density of interest to the 

highest precision allowed by the data we can try to 

minimize the L2 distance of the estimate f̂  to the actual 

function f.  
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The L2 residual is a sum of the deterministic error and 

stochastic error. 

Now let us choose optimal division of a certain interval 

with respect to the L2 error. Let our interval length be to 

be subdivided into 1 and 2 with function estimates d1 and 

d2. The D2
Stat stochastic error on this interval reads: 
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To facilitate the simple interpretation of this formula for 

finding the optimum, let us take an analog case, when M 

number of particles is started, out of which N has hit our 

interval and after the subdivision N1 and N2. Omitting the 

1/M term and using Eq.(1.4), the total variance will be 

proportional to 
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If the density function is such that N1 grows at least 

linearly with 1 the optimum is at 1=0, otherwise an 

optimum falling within the interval exists. Also, if we only 
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have a low number of scores in a bin, the error estimate 

becomes very unstable and the minimization fails.  

The disretization error is harder to estimate but a linear 

approximation may be given and can be used for 

optimization of the segmenting. Given a segment we would 

like to subdivide, and with that a single dimension selected 

we can expand f into Legendre polynomials. The zeroth 

order term does not give any discretization error, the linear 

term is the first to consider. We can transform the 

coordinates onto an interval of (-) and calculate  
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thereby obtaining an estimate of the linear component of the 

density in question since Eq. (1.12) is the estimate of the 

coefficient of the firs Legendre expansion term. Integrating 

the L2 error caused by the linear component on the interval, 

the deterministic D2
Det error is proportional to  
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The total L2 error can be thus approximated by combining 

Eq.(1.10), Eq.(1.12) and Eq. (1.13) and do a numerical 

optimization for the best division. Note that if N is small the 

stochastic error contributes to the total error the most and 

may yield a degenerate division point at one of the interval 

edges. Also in this case the deterministic error estimate 

becomes suspect. For testing the method we have chosen 

100 points in an interval and calculated the estimated total 

L2 error and selected the best value, posing an obvious 

burden on the calculation time. 

 

3. Optimizing for the best relative variance for surface 

source applications 

 

Dividing a Monte Carlo calculation into two disjoint 

geometrical parts is often done when a series of calculation 

is to be performed while altering the setup in a closed 

geometrical region. This is usually achieved by writing the 

raw particle data crossing a surface separating the two 

geometrical parts. This may also be done by calculating the 

particle population distribution at the surface and sampling 

this distribution as a source term for the rest of the geometry. 

For both cases we may formulate the mathematical model 

for the second calculation as follows [6]: 

  

    I n P P dA    (1.14) 

with  the angular flux,  the adjoint function, dA 

denoting a surface integral on all variables and n the surface 

normal. The calculation starting from the surface source 

would give formally a sample of the adjoint function and 

finally a contribution to the estimate of I.  

For a surface source with source density estimated on 

disjoint bins we can formulate the estimator using the 

discrete flux estimate on the surface as: 
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with (n) the discrete surface source density estimates 

and their respective contribution to the final estimate. 

The variance estimator can be expressed as follows: 
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Let us disregard the double product of the relative 

variances and focus on the first two terms. The term r2() 
stands for the variance associated with the simulation 

staring from the ith surface source bin with as many samples 

as we wish to start and by that this term can be decreased 

without theoretical limit regardless how we optimized our 

surface source. The error term r2(n)however should 

yield a criterion for optimal binning. At the time of creating 

the surface source we have no information on the adjoint 

function thus the best option we have is to create an even set 

of relative variances in every bin. 

Keeping the same relative variance in each bin would 

also mean in the analog case keeping the amount of samples 

contributing to a bin estimate constant along all bins. For an 

analog case the algorithm is as follows: take all the samples 

and divide them into two groups by finding the median of 

the group along the first dimension. Take the two groups 

and divide each independently by finding the median along 

the second dimension. This process can be continued along 

each following dimension going through the available 

dimensions repeatedly until the desired number of bins is 

reached. After the binning is done the corresponding tally 

estimate is formed by adding up the contributions to that 

phase space cell and division by the cell size with an 

appropriate surface flux estimator. 

 

III. RESULTS  

 

1. Analysis of variance as function of number of bins 

The number of bins is optimal for a given sample set if 

the discretization error of the underlying (probability 

density) function given as the squared difference to the 

piecewise constant approximation equals to the variance of 

the statistical estimator. For a well behaving smooth 

function the discretization error decreases with the length of 

the interval and the statistical variance decreases by the 

number of samples falling into a bin in an analog case 

strictly proportional to the number of bins. Thus an 

optimum may exist as a trade-off. 

For demonstrating this behavior we have analyzed 

analog samples generated from a simple one dimensional 

Gaussian with sample numbers 29, 210, 211, 212, and  213. The 

optimization scheme was the equal relative variance 

criterion. The depth of the binary tree was increased and the 

relative squared deviation of the estimated piecewise 
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constant function recorded. This procedure was repeated 20 

times and the relative deviation was calculated as the 

average of the deviations over the 20 sets. Results are 

shown in fig.2. 

 

 
 

Fig. 2. Relative deviations with different number of samples 

and tree depth 

 

Optimal sample number per bin was found in this case 

at 32. We aim at bins where the expected value can be 

determined and as such this estimate is sound.  Note that as 

a rule of thumb [7] 10% relative error is cited under which 

the estimate may be expected. Also note that analogue 

scores would fulfill this criterion by having 100 scores per 

bin. For regular, equidistant non-adaptive binning such 

requirement could not be fulfilled in each bin only for flat 

distributions or vast number of samples. 

 

2. Comparing optimization strategies for a known 

function 

 

We have compared three segmentation strategies for 

samples generated from a 2D Gaussian distribution: first an 

equidistant binning (the “Struct”), second the constant 

relative variance binning (the “Median”) and last the L2 

optimized method (the “min(L2)”). The resulting paving can 

be seen in Fig. 3 for one quarter of the space. 

 

 
Fig. 3. Bin structures for different optimization strategies 

from left to right: “Struct”, “Median”, “min(L2)” 

 

The “Median” strategy results in the best resolution at 

high function values, “min(L2)” strategy gives smaller 

divisions at lower function values. 

We can compare the total deviation from the analytical 

function as can be seen in Fig.4.  We have taken 105 

samples from a 2D Gaussian centered at (0,0) and showed 

the L2 norm with increasing number of divisions per 

dimensions (n). The same type of behavior can be seen as in 

Fig.2. 

The best L2 norm deviation is given by the “min(L2)” 

method as to be expected. For this curve data points vanish 

at the minimum deviation point as after these divisions the 

algorithm started producing zero or very small sized cells 

with high fluctuations in the norm therefore we omitted 

them from the graph. 

 

 
Fig. 4. Total deviations for the different optimization 

strategies: “Struct”, “Median”, “min(L2)” with increasing 

number of divisions per dimension 

 

Somewhat surprisingly the “Struct” equidistant binning 

produced better total deviation figures than the “Median” 

strategy.  

 

3. Implementation in MCNP6 for tallying: verification 

against analytical calculations 

 

The first step of the implementation of the method for 

use with MCNP-generated data was coding a particle log 

(PTRAC file) processor in C++ that is capable of binning 

the MCNP data and printing any 2D plot along any 

hyperplane. This step did not require any modification of 

MCNP. The developed code MOnte Carlo SegmentING 

(MOCSING) is capable of reading the MCNP6 generated 

binary PTRAC files. User input may provide the order of 

dimensions in which the segmentation should proceed, 

together with the level of the tree structure. The produced 

data involves nodes in a tree structure; each node includes 

the total weight in the bin the upper boundary and pointers 

to the daughter nodes. Thus memory need is approximately 

triple of the needs for a structured mesh.  

For checking the validity of the codes an analytically 

verifiable model was run with MCNP with a point source of 

1 MeV photons and an aluminum plate of 5 cm thickness 

located 30 cm from the source, the plate had a 4 cm 

diameter circular hole and only unscattered events were 

recorded. Numerical and analytical results matched within 

statistics. 
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Fig. 5. Transmission through a circular whole. Adaptively 

binned (left) and regularly binned  tally (right) 

 

Fig. 5 shows the comparison of the images obtained by 

constant relative variance aimed adaptive and equidistantly 

spaced binning on the plate bounding plane further from the 

source. Color scale indicates net current values, with red 

color for higher and green color for lower values. 

 

4. Implementation in MCNP6 for tallying: verification of 

the binning algorithm 
 

Our next step was to verify the PTRAC processor 

MOCSING against the MCNP tallying. MCNP does not 

give a simple solution for a 2D structured mesh tallying in 

spatial dimensions. We have chosen therefore an energy-

angle regular mesh for particles crossing a surface. The 

geometry consisted of a monodirectional gamma point 

source of 0.9MeV was directed towards a 1cm lead sphere. 

Only those particles were registered that scatter only once in 

the lead sphere and reach an almost  infinite plane placed on 

the other side of the sphere, thereby a strong correlation of 

energy and cosine with the surface normal was expected. 

We have compared the results given by MCNP and our 

regular (“Struct”) binning based on PTRAC events. The 

resulting 2D distribution can be seen on Fig. 6 

 

 

 

 

 

 

Fig. 6. Energy-Angle distribution of single scattered 

photons 

 

. Numerical values of the PTRAC binning and the 

MCNP output matched to the last digit. With this 

verification we were able to move on to comparing 

distributions using only our PTRAC processor code.  

 

5. Implementation in MCNP6 for surface source 

sampling and an illustration 

 

MCNP has a very well established system for using 

surface sources by printing out the trajectories crossing a 

future surface source. The code gives opportunity to 

resample this file if the subsequent run for the second part 

of the problem requires more particles. 

Using this surface source files may challenge the user 

because of their prohibitively large size for complex 

problems and the lack of information on the sampling 

quality of the second calculation: it may easily happen that 

important directions may have a low number of source 

particles and they get heavily resampled in the second run. 

Our motivation to modify MCNP to read source density 

files tried to address these two issues, the adaptive tree 

structure offers a compact representation of the surface 

source file going down to all the information the data set 

contained and may be resampled without fear of heavy 

correlations. 

To achieve this goal the first step was modifying 

MCNP to be able to read the binned file on a subsequent run 

and sample the data as a surface or volumetric source. The 

SOURCE subroutine of MCNP was modified to read and 

use the density file produced by MOCSING. The surface 

density file was created with the equal relative variance 

scheme in mind. A single random number is enough to 

select the sampled bin in the binary tree. When a bin is 

found, in every dimension the rest of the coordinates are 

sampled uniformly in the segment. The modifications do not 

influence parallel processing capabilities of the code.  

For illustration of the use of surface density files we 

have built a complex geometry for a transmission problem.  

The problem geometry can be seen in Fig.7. 
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Fig. 7. MCNP geometry for surface source sampling of the 

density file 

 

2.2 MeV photons were started from a surface 

perpendicular to the surface normal. Various shapes of 

material cells were filled with lead, aluminum, copper and 

graphite.  A surface has been created after the photons pass 

the aluminum cylinder to write out the surface source. In a 

subsequent run the surface density file is sampled and 

transmission through the rest of the geometry is recorded at 

the geometry edge. This result is compared to a transmission 

without applying any surface source in the process. The 

resulting transmission spatial distributions are compared in 

Fig. 8 and Fig. 9. 

 
Fig. 8.Spatial distribution of photons without using surface 

source  

 

 
Fig. 9.Spatial distribution of photons  using surface source 

from a density file 

 

The results show excellent agreement, tough note 

that the problem was very heavily forward-peaked and we 

applied no segmenting in the direction perpendicular to the 

surface normal. 

 

 

IV. CONCLUSIONS  

 

We have analyzed adaptive density estimation of quantities 

arising from Monte Carlo event generation. Two 

optimization strategies were devised and their results 

compared. An event log file processor code was written for 
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binning raw event files produced by MCNP6. The equal 

relative variance scheme was put into practice in a modified 

version of MCNP6 where particles were started from the 

surface density file. 

The work presented here is preliminary in a sense that 

further analysis could reveal the practical usefulness of 

these techniques in actual cases. More importantly the 

technique proposed here for surface sampling is inherently 

biased because of the discretisation error.  

Further work may include a partitioning scheme where the 

order of the dimensions is also determined by the algorithm 

and instead of a strict pre-given order the code should 

decide which segment should be further subdivided. Further 

application may involve forward-adjoint coupling , 

volumetric source sampling and weight window generation. 
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