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Abstract – This paper proposes a new method used for geometrical perturbation, namely region isolation 

method. The whole model is divided into perturbed region and unperturbed region. Transportation in two 

parts are divided to save total computation time. Basic principle of this method is introduced and it is found 

that the problem lies in the destruction of source convergence process. Fixed sampling number method is 

researched, and it is found that this method can only partially eliminate the error. 

 

I. INTRODUCTION  

 

Monte Carlo method has been widely used in the 

calculation of reactor eigenvalue due to the advantages of 

continuous energy and geometry fine modeling, but the 

problems of geometric perturbation such as control rod 

movement and reflection layer movement still exist. Besides, 

the inverse problem of geometrical perturbation is 

geometrical criticality search problem. 

Nowadays there has been direct differential method and 

random sampling method [1] used for geometrical 

perturbation, and direct differential method can be achieved 

by two independent criticality calculations or one criticality 

calculation with two simultaneous material perturbation 

calculations [2,3]. These two methods are time-consuming. 

An intuitive idea is to divide the whole computational 

region into perturbed region (such as moveable control rod) 

and non-perturbed regions. In bisection, regula falsi or other 

iteration-based methods [4,5] for geometrical eigenvalue 

search, to save time in multiple criticality calculation, the 

transportation process of non-perturbed region is reused and 

only perturbed region is calculated many times. In this paper, 

this method is temporarily named "region isolation method", 

and we try to explore the basic principle of the regional 

isolation method, source convergence correction problem 

and so on.  

This chapter is divided into four parts: introduction, 

method, result and conclusion. In method part, firstly it is 

showed that  how the region isolation method works; 

secondly, as the region is isolated, the source convergence 

process is destructed and fixed sampling number method is 

currently used to correct this effect; finally the region 

isolation method adapts to MPI parallel mode naturally. In 

result part, the effect of correction is shown by modeling 

Beavrs [6] hot zero power benchmark in reactor Monte 

Carlo code RMC [7]. 

 

II. METHOD 

 

1. Region Isolation Method 

 

In Monte Carlo criticality computation, the initial total 

weight is equally distributed to the source particles (the 

initial source particles are specified by input file, and the 

subsequent source particles are determined by the previous 

generation fission neutrons), which are transported until 

they are absorbed or out of boundary. The number of fission 

neutrons generated at a certain fission point is determined 

according to Equation (1). k is estimated by all previous 

generations. Dividing k can ensure that the number of 

particles simulated per generation is relatively stable both in 

supercritical and subcritical systems and the starting weight 

of all generations is nearly 1.  
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According to the above process, the region isolation 

method is as follows: the region where the parameter will 

change is defined as the “region”. When the particle arrives 

at the boundary of “region” from the outside, the code stores 

the particle’s generation, weight, position, energy and 

direction. These particles are marked as "region surface 

particles", and are treated to be “killed” after they are stored. 

After all the particles outside the “region” finish 

transportation, “region surface particles” begin normal 

transportation, as shown in Fig. 1. Normal transportation 

means no difference between “region” and out of “region”.  

 

 
Fig. 1. Basic flow of region isolation method. 
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In Fig. 1, there is no fissionable element in “region”. 

Therefore, there is no source particle in “region” that is 

generated from fission in previous generation. Besides, it is 

assumed that “region surface particles” do not produce 

fission neutrons. Strong absorption material in “region” or 

long distance between “region” and fissile material will 

meet this requirement. If not, the next part will discuss this 

problem. 

Assuming the original system is nearly critical and the 

eigenvalue is k0, then system out of “region” is a subcritical 

system whose eigenvalue is  k’. When transporting outside 

the “region”, as k0 is unknown, Equation (1) is replaced by 

Equation (2). This will decrease the number of source 

particle but increase the starting weight, when total starting 

weight keeps the same. After the “region surface particles” 

are released, the keff estimator Σ[keff]’i+1 is added to 

corresponding estimator outside the “region” Σ[keff]i+1, and 

normalization  is shown in Equation (3) to get k0 in every 

generation. 
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2. Source Iteration Correction 

 

If the "region" doesn’t include fissile material, and the 

absorption cross section is very large or the “region” is far 

away from the fission region, the result of region isolation 

method will be the unbiased estimation of original system. 

The algorithm above is simply dividing normal keff estimator 

into two parts. 

If not, the region isolation method will destroy the 

normal source convergence process, that is, the distribution 

of the fission source after convergence outside the region 

will be different from the original fission source distribution. 

In order to correct this effect, it is necessary to transport the 

“region surface particles” (RSP) of the ith generation 

together with the fission neutrons generated from RSP of 

the (i-1)th generation, as shown in Fig. 2 and Fig. 3. 

 
Fig. 2. The transportation of particles outside the “region”. 

 
Fig. 3. The transportation in the “region”. 

 

In the first active generation in Fig.3, “region surface 

particles” of generation 1 (RSP1) will generated fission 

neutrons whose number is n1’. To avoid biasness, n1 should 

also determined by Equation (2) and their weights are same 

as w1 in Fig.2. These neutrons (n1’,w1) are transported 

together with RSP2. This process is repeated every 

generation and Equation (3) is therefore replaced by 

Equation (4). 
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As total weight per generation outside the “region” is 

constant, a fixed share of  total weight will be  allocated to 

the “region surface particles” every generation. This can 

guarantee the computational time of  “region surface 

particles” is stable. The problem lies in the fission neutrons 

generated by “region surface particles”. In order to ensure 

the unbiasedness of fission source in the (i+1)th generation, 

the fission neutrons generated by the ith “region surface 

particle” should be included in the fission source of the 
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(i+1)th generation, and the weight should be equal to the 

initial weight of the (i+1)th generation. Thus more and more 

fission neutrons are generated, namely n1’<n2’<…<ni’.   

In order to ensure the unbiased correction and control 

the computation time, fixed sampling number method is 

tried. The fixed number is marked as N. When ni’ ≤ N, ni’ 

source neutrons are transported. When ni’ > N, N source 

neutrons sampled from ni’ neutrons are transported. That 

means that each generation will lost part of information, but 

the number of particles simulated per generation is stable. 

The following results will show that when the fixed number 

is small, it will result in a low estimation of Keff, similar to 

the traditional Monte Carlo undersampling problem [8]. The 

low estimation problem can be further diagnosed by 

Shannon entropy, which is beyond the scope of this paper. 

However, when the fixed number is large enough, it seems 

that the low estimation error can be decreased, but cannot be 

canceled. 

 

3. Natural Parallelism 

 

In MPI parallelism mode, for load balance, the fission 

source of the ith generation outside the “region” is 

rearranged. Therefore the “region surface particles” of  the 

(i+1)th generation are also distributed uniformly, as well as 

the fission neutrons generated by “region surface particles”. 

Therefore, for MPI parallel mode, the region isolation 

method has natural parallelism, which can directly inherit 

the critical fission source rearrangement algorithm. When 

sum  of the fixed sampling numbers of different cores in 

MPI mode equals that of serial mode, the expectations of 

Monte Carlo result are the same, while the random number 

algorithm can’t  guarantee the repeatability.  The following 

results will verify this conclusion. 

 

III. RESULT 

 

The algorithm is implemented on reactor Monte Carlo 

code RMC, and the Beavrs benchmark in HZP condition is 

used for verification. There are two computing platforms.  

In Intel(R) Xenon(R) CPU E5-2690 v3 @ 2.60GHz with 48 

cores, 100,000 particles per generation with 200 inactive 

generation and 200 active generation are used. In 

Milkyway-2 supercomputer with 1000 cores, 1,000,000 

particles per generation with 100 inactive generation and 

200 active generation are used. Both use MPI parallel mode. 

 In all control rod out status, D bank is chosen for 

verification, namely 5(assembly)* 25(pin) * 2(layer) = 250 

cells are marked as “region”, the materials of which is Ag-

In-Cd or boron water, shown in Fig. 4 and Fig. 5. In Fig. 5, 

stainless 304 (blue part) is exclude from the “region” for 

simplification. Purple and green parts are the same boron 

water, but are marked as two different materials in input file. 

This is because in repeated model, using material rather than 

cell or surface as the indicator of entering the “region” is 

easier. 

 

 
Fig. 4. Beavrs control rod bank distribution. 

 

 
Fig. 5. “Region” of a single pin marked as red dotted box. 

 

Firstly, the correctness of MPI parallel algorithm is 

verified in Table I. The total fixed sampling numbers of 

three cases are all 10,000. It can be seen the keff differences 

are in the range of relative standard error.  

 

Table I. Comparison of serial and parallel results 
 serial 100 cores 1000 cores 

N/core 10,000 100 10 

keff 0.99666±20 0.99666±20 0.99657±20 

Time/min 221.2558 2.4880 0.3914 

 

Secondly, the result of region isolation method in 

Windows platform is shown in Table II. 100,000 particles 

per generation with 200 inactive generation and 200 active 

generation are run in 48 cores. The computation time 

outside the “region” is t1 and total computation time is t2. 

For reference, the Keff without region isolation method is 

0.99889±14, and the total transportation time t0 is 20.3222 

min. If there are n geometric perturbation calculations, the 

total transport time will be t1+n(t2-t1), while the time of 

direct calculation is nt0. When n increase to infinity, the 

time ratio [t1+n(t2-t1)]/ nt0 will converge to (t2-t1)/t0. Thus we 

define the acceleration ratio as: 

AR =
𝑡0

𝑡2 − 𝑡1
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Table II. Results of region isolation method 
Number/core Keff t1/min t2/min AR 

10 0.99677±14 19.6922 19.8636 118.6  
50 0.99719±14 19.9367 20.3644 47.5  
100 0.99739±14 19.959 20.6517 29.3  
200 0.99766±14 19.626 20.8129 17.1  
300 0.99782±14 19.7825 21.4113 12.5  
400 0.99812±14 19.5157 21.6522 9.5  
500 0.99817±13 19.6347 22.2576 7.7  
600 0.99827±13 19.7965 22.9006 6.5  
700 0.99831±13 19.6006 23.1712 5.7  
800 0.99843±14 20.0137 24.0759 5.0  
900 0.99855±13 19.5889 24.1495 4.5  
1000 0.99838±13 19.6584 24.6719 4.1  
1200 0.99858±14 19.8176 25.8569 3.4  

 

The Keff and acceleration ratio curves over fixed 

sampling number per core are shown in Fig. 6. The meaning 

of fixed sampling number has been explained in Method 

chapter. It can be seen that with the increase of sampling 

number, the Keff is getting closer to the reference value, but 

the corresponding acceleration ratio gets lower and lower. 

 
Fig.  6. Keff and acceleration ration curve. 

 

It seems that there is a gap between keff of region 

isolation method and reference keff. To avoid the effect of 

statistic fluctuation, larger population is used in Milkyway-2 

supercomputer with 1000 cores. The reference keff is 

0.998581±15, calculated with 10,000,000 particles per core, 

200 inactive cycles and 200 active cycles. Then using fixed 

sampling number method, 1,000,000 particles per 

generation with 100 inactive generation and 200 active 

generation are run again. The results are shown in Table III 

and Fig. 7. 

 

Table III. Results of region isolation method with larger 

population 
Number/core Keff Time/min 

0 0.996300±48 4.3705 

50 0.997120±50 4.4500 

100 0.997403±48 4.6136 

200 0.997675±49 4.8787 

500 0.997917±50 5.6189 

1000 0.998051±49 6.8261 

 

 
Fig. 7. Correction effect of fixed sampling number 
method 

 

It is shown that even using large number of particles, 

keff of region isolation method is still lower than the 

reference keff. This is probably caused by Monte Carlo 

undersampling problem, which needs more research. 

 

IV. CONCLUSION 

 

Region isolation method can save multiple geometrical 

perturbation calculation time. The accelerating effect 

depends on the region isolation effect on fission source 

distribution. The fixed sampling number method can reduce 

the influence of fission neutrons generated by “region 

surface particles”, but cannot totally cancel this effect. Other 

more effective methods need to researched to eliminate the 

gap between keff of region isolation method and reference 

keff . If so, the computation time of geometric perturbation 

will be shortened greatly, and the efficiency of geometric 

search will also be improved greatly. 
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