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Abstract – The conventional continuous-energy Monte Carlo (MC) sensitivity and uncertainty (S/U) 

analysis using multi-group covariance matrices has a theoretical pitfall that it is inconsistent with the 

principle of continuous-energy MC neutronics calculations in that it regards covariance data as multi-

group variables rather than continuous-energy ones. As a way to get around this deficiency and perform 

the MC S/U analysis with theoretical consistency, a new continuous-energy MC S/U analysis formulation 

which directly utilizes the continuous-energy covariance data in the evaluated nuclear data libraries was 

proposed by previous studies. As an extension of the preceding researches, this paper deals with the 

Doppler broadening effect on the new MC S/U analysis along with the recently modified formulation. The 

validity of the new MC S/U formulation is examined in terms of the input-nuclear-data-induced k 

uncertainty of the TMI-1 pin cell problem by a Seoul National University MC code, McCARD.  

 

I. INTRODUCTION 

The nuclear design parameters are bound to have 

uncertainties because of uncertainties of input data used to 

compute them, regardless of deterministic or Monte Carlo 

(MC) design calculations. For the economic and safety 

evaluation of nuclear design, it is indispensable to make 

quantitative estimation of their uncertainties. This paper is 

intended to introduce a recent advancement on the 

formulation for the continuous-energy MC sensitivity and 

uncertainty (S/U) analysis method designed to quantify 

nuclear design parameter uncertainties caused by input data 

uncertainties-particularly nuclear cross section input data 

uncertainties.  

The MC estimates on nuclear design parameters 

generally carry two types of uncertainties; one statistical and 

the other input-data-uncertainty-induced uncertainties. 

Earlier we presented a continuous-energy MC S/U 

formulation which is capable of computing the two types of 

uncertainties separately, and demonstrated its applications 

for computing uncertainties induced by those of nuclear 

cross section input data independently from the statistical 

uncertainty in terms of criticality benchmark problem 

calculations [1]. Recently, however, we recognized a 

theoretical pitfall of the early formulation that it is not 

consistent with the spirit of the continuous-energy MC 

analysis because it treats the nuclear cross sections as 

discrete parameters instead of continuous parameters. We 

presented a new continuous-energy MC SU formulation that 

treats uncertain nuclear cross section inputs as continuous 

parameters in consistent with the continuous MC design 

analysis.[2] Also, we showed performance of the new 

formulation in comparison with the early one in the 

continuous-energy MC S/U analysis for a thermal and a fast 

spectrum criticality benchmark problem calculations. 

In our continuous efforts to examine how the new 

formulation plays out in the continuous-energy MC S/U 

analysis, this paper presents how the new MC S/U 

formulation can deal with the Doppler broadening effect on 

quantification of nuclear design parameter uncertainties 

arising from uncertain resonance parameters, which have 

been left out in our previous study [2]. As a numerical 

example of illustrating the Doppler broadening effect in the 

uncertainty quantification, k-uncertainty of the TMI pin cell 

criticality problem [3] is analyzed by the new MC S/U 

analysis, and its results are compared with those by the early 

MC S/U analysis [1] based on multi-group covariances. 

The new continuous-energy MC S/U formulation is not 

well publicized, simply because it is formulated very 

recently. Despite the risk of repletion, therefore, we outline 

the formulation in the following section.  

 

II. DERIVATION OF CONTINUOUS-ENERGY 

SANDWICH EQUATION 

 

A nuclear design parameter or tally denoted by Q here 

can be expressed as an integral of its tally response over all 

the neutron collision sites [4]: 

 

0 4
( , , ) ( , , )

V
Q g E E d dEd





    r Ω r Ω r Ω ,  (1) 

 

where r, E, and  are the location, energy, and direction of 

neutron, respectively, and V is the spatial volume of the tally 

Q. g is the tally response function to Q.   is the neutron 

collision density that may be obtained from the neutron 

transport equation. 

Suppose that one is conducting a continuous-energy 

MC neutron transport calculation to compute the nuclear 

design parameter Q. Assume that the continuous-energy 

nuclear data inputted for the MC calculation have 

uncertainties. Then, there can be an infinite number of 

different input nuclear data sets, which is denoted by 
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 ,( ) ( )   ; (0, ) ( 1,2, )i

rE x E i I, r R E       x  (2) 

 

where , ( )i

rx E  is the r-type nuclear datum of nuclide i for 

neutron of energy E of set and I and R are the total 

number of nuclides and reaction types involved, 

respectively. 

Viewing Q from th data set or Qas a functional of 

input data set, ( )E
x , one may express it as, 

 

 ( )Q Q E

  x ,               (3) 

 

It is shown in Ref. 1 that the uncertainty of Q due to 

those of input data,  2

I Q , can be calculated separately 

from statistical one by 
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where the angular bracket above, < >, is used to denote the 

expected value of  the quantity in it. 

To describe Eq. (4) in terms of uncertainties of cross 

section input data, let us take the first-order Taylor 

expansion approximation of Q   in the fluctuation of 

, ( )i

rx E
about its average values, namely , ( ) ( )i i

r rx E x E  ,  

as follows,  
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where Q  is assumed to be 

 

 ( )Q Q E x .                (8) 

 

The notation “
0

 ” in Eq. (6) implies calculating the 

sensitivity Q / ( )i

rx E    by putting , ( ) ( )i i

r rx E x E  . The 

integration over energy E in the right hand side of Eq. (6) is 

a result of the Taylor expansion of the functional Q  in 

energy-dependent cross sections,
, ( )i

rx E
 [5]. 

Substituting Eq. (6) into Eq. (4) results in continuous-

energy (CE) sandwich equation, 
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III. MC S/U ANALYSIS FOR CONTINUOUS-

ENERGY SANDWICH EQUATION 

 

Eq (9), Eq. (10) and Eq. (11)  can serve as a theoretical 

basis to quantify
2[ ]I Q . The double integrals of 

multiplication of the sensitivities at two different energy 

points, however, are difficult to directly utilize in the course 

of the MC particle tracking. Thus the double integrals are 

needed to be degraded into single ones for practical purpose, 

and it can be achieved by extracting energy-independent 

parameters from ENDF covariance data. 

The ENDF represents covariance data in two formats 

[6], File32 and File33. The File32 covers the short-range 

covariance components of partial resonance cross sections 

by containing covariance of resonance parameters, while 

File 33 does the long-range ones by storing energy-group-

wise matrix form. By the definition of covariance in ENDF, 

cov ( ), ( )i i

r rx E x E



   , in CE sandwich Eq. (10), can be 

denoted by 
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where 
i
 is a vector whose elements are the uncertain 

resonance parameters that affect the uncertainty of the 

partial resonance cross sections of nuclide i. 

Use of Eq. (12) for Eq. (9) divides 
2[ ]I Q  into two 

uncertainty components as, 
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By the uncertainty propagation rule [7], the uncertainty 

component from File32, MF32cov ( | ), ( | )i i i i

r rx E x E
 


  Γ Γ , 

can be expanded as, 
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where 
i

m  is the m-th element of vector 
i
. 

By substituting Eq. (16) for Eq. (14), Eq. (14) can then 

be rewritten as, 

 

2

MF32 Q; , cov , , , ;i i i i Q i i Q i i

r r m m r m r m

m m

x x S x S x
   

   



                    

    (17) 

 

0

( | )
,

( )

i i

Q i i r

r m i i

m r

x E Q
S x dE

x E

   
      

Γ
. (18) 

 

The cross section sensitivity to a resonance parameter, 

( | )i i i

r mx E Γ in Eq. (18), can be computed by a second 

order finite difference scheme as applied in ERRORJ [8]; 
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i

m  is set to 0.01 i

m  for this paper. 

For uncertainty components from File33, it also has 

finite parameters for discrete energy. Instead of providing 

the point-energy covariance directly, File 33 does in the 

following matrix form [6]: 
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where  rcov ,X Y  indicates the relative covariance between 

X and Y,    rcov , cov , / ( [ ] [ ])X Y X Y E X E Y  .Note that 

 MF33rcov ,i i

r r
gg

x x





    is constant within each energy group. 

By introducing Eq. (20) into Eq. (15), double-integral 

equation for File 33 can also be rewritten as follows, 
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Before applying this result for computation, it is 

important to note that File 33 provides the covariance data 

in two types of format, NI-type and NC-type [6], depending 

on the reaction type. In case of the NI-type covariance data, 

values of  are explicitly given and therefore Eq. (21) can be 

straightforwardly applicable. On the other hand, in case of 

the NC-type covariance data, the corresponding cross 

section is provided by a linear combination of those cross 

sections whose covariance data are given in the NI-type as 

follows; 

 

ˆ ˆ,

ˆ

( ) ( )i i i

r r r r

r

x E C x E ,                          (23) 

 

where ˆ,

i

r rC  is a correlation constant of the two reaction 

types r and r̂  of nuclide i. 

Then the relative covariance of the NC-type reaction 

cross sections in this case becomes 
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By using Eq. (24), 2

MF33 ; ,i i

r rQ x x



    of Eq. (21) for the 

NC-type reaction, 2

MF33-NC ; ,i i

r rQ x x



    can be written as 
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Equations (14), (18), (21), and (25) imply that
2[Q]I  

can be determined directly using the covariance data given 

in File 32 and 33 of ENDF. What is needed to do so is 

calculate sensitivities to the resonance parameters, 

,Q i i

r mS x    of Eq. (18) and those to cross sections, 

Q i

g rS x    of Eq. (22). They can readily be obtained by taking 

advantage of the conventional MC AWP [9], which has 

been used to estimate 
1

Q> / ( )
g

g

E
i

r
E

x E dE


   . All one has 

to do to get the required sensitivities is to modify MC AWP 
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calculation by introducing weighting factors, 

( | )i i i

r mx E Γ  or ( )i

rx E . 

 

IV. DOPPLER BROADENING EFFECT ON S/U 

ANALYSIS 

 

In the conventional nuclear data processing codes, the 

calculation of sensitivities to resonance parameter, 

( | )i i i

r mx E Γ , is conducted for 0 K cross sections. 

Because of this, Doppler broadening effect is not properly 

handled [10]. In the previous study by our new continuous 

energy MC S/U analysis [2], this scheme was also used 

since it is consistent with the nuclear data processing codes. 

As a way to properly deal with Doppler broadening 

effect in this study by the new MC S/U analysis, we 

modified Eq. (19) as follows. 

 
, ,, ( | , , ) ( | , , )( | )

i T i i i T ii T i

r m m r mr

i i

m m

x E x Ex E    


 

Γ , 

(26) 

 

where T denotes the temperature. 

Instead of an on-the-fly calculation strategy of our 

previous study [2], this study utilizes pre-generated Doppler 

broadened cross sections for every perturbed resonance 

parameters for Eq. (19), because calculation of sensitivity to 

resonance parameter with Doppler broadening is too time-

consuming for applying it for the on-the-fly simulation 

currently. In addition, the first-order finite difference 

approximation is chosen to reduce the required number of 

pre-generated cross section sets. Note that this is just a 

preliminary strategy at this point and more improved one 

will be introduced in the future. 

 

V. NUMERICAL RESULTS 

 

The proposed method, with and without Doppler 

broadening, have been implemented in McCARD [11], a 

Seoul National University MC code. Then it is applied to 

estimate the k-uncertainty induced by the uncertainty of 
238

U 

capture cross section in JENDL-3.3 File 32 for the TMI-1 

pin-cell problem [3]. The cross section sensitivities to the 

resonance parameter in Eq. (26), ( | )i i i

r mx E Γ , is 

calculated at 0 K and 900 K for each case. The results are 

compared with those from the early MC S/U analysis [1,9] 

using SCALE-44 group [12] covariance data and more fine 

groups, 334g, 634g and 934g, generated by the ERRORR 

module in NJOY along with reaction-type-wise comparison 

between with and without Doppler broadening cases. The 

MC calculations are performed on 100 active cycles with 

1,000,000 histories per cycle. For MC Wielandt Method 

[13], which is employed here to save computer memory 

space required for the adjoint angular flux estimations [14], 

the ke and convergence interval of the adjoint angular flux is 

set to 1.5 and 10, respectively.  

 

Table I. k-Uncertainties [pcm] induced by the those of 
238

U capture cross section in JENDL-3.3 File 32 for 

TMI-1 pin-cell problem 

# of 

Groups 

Doppler 

Broadening 
Δk/k SD 

44G w/o (0 K) 230.95 0.17 

334G w/o  (0 K) 216.22 0.16 

634G w/o  (0 K) 206.77 0.16 

934G w/o  (0 K) 203.15 0.16 

CE w/o  (0 K) 214.11 0.21 

CE w/  (900 K) 221.42 0.21 

 

Table II. k-Uncertainties [pcm]  induced by the those of  
238

U cross sections in JENDL-3.3 File 32 for TMI-1 pin-cell 

problem with cross section sensitivities to resonance 

parameters at 0 K and 900 K 

Covariance 

Type  

Doppler Broadening of Resonance 

Uncertainty 

w/o 

(0 K) 

w/ 

(900 K) 

Δk/k  SD  Δk/k  SD  

(n, γ), (n, γ) 214.0  0.1 221.9  0.1 

(n, γ), (n, fis) -0.2  0.0 -0.3  0.0 

(n, γ), (n, n) 17.7  0.9 -19.6  0.8 

(n ,fis), (n, fis) 0.0  0.0 0.0  0.0 

(n, fis), (n, n) 0.0  0.0 0.0  0.0 

(n, n), (n, n) 15.3  0.3 27.0  0.2 
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VI. CONCLUSION 

 

The new continuous energy MC S/U formulation has 

been implemented in McCARD and applied for the k-

uncertainty quantification for TMI-1 pin-cell problem. From 

the results, it is found that the k-uncertainties due to the 

covariance of the resonance parameters notably differ from 

those from the early MC S/U counterpart. The way 

proposed in this paper aimed at taking into account Doppler 

broadening effect by the new continuous-energy MC S/U 

analysis is a preliminary but a useful one. More improved 

strategies for applying Doppler broadening on MC S/U 

analysis and further finding from those will be discussed in 

the conference.  
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