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Abstract – The Modified Power Method (MPM) has been implemented and applied to three-dimensional 

(3D) criticality eigenvalue problems. Monte Carlo (MC) implementation of the MPM has been difficult due 

to the inherent statistical noises introduced during the MC simulations. The one-cycle tally should be 

avoided because it contains too much noises and cause big fluctuation in the MPM simulation. Therefore, 

accumulation should be adopted. In addition, previous studies have shown that to obtain the first several 

eigenmodes for the multi-dimensional problems, more number of sub-regions than the number of desired 

eigenmodes should be adopted for the calculation of the transfer matrix, which makes the linear system of 

equations become over-determined and the accumulation become problematic. In this paper, a proper 

accumulation scheme was developed, which was based on the preprocessing of the neutron weight 

integrals. The performance of the proposed method has been successfully demonstrated with the 3D 

numerical tests.   

 

I. INTRODUCTION 

 

In this work, the modified power method (MPM) [1-7] 

has been applied to 3D criticality eigenvalue problems to 

demonstrate its performance, and discussions on the 

implementation issues are presented. A new Monte Carlo 

accumulation scheme for the MPM will be proposed. 

Previous study has shown that the application of MPM 

to 2D/3D problems may be unstable due to the degeneracy 

issues [8]. The way to solve this problem is to use more 

number of sub-regions (coarse meshes) than the number of 

desired eigenmodes to distinguish the first several 

eigenmodes. In this case, the solving of the transfer matrix 

(TM) may have some problems. These issues will be 

explained and will be followed by the proposed methods to 

solve the issues and the discussion on 3D applications. 

 

II. IMPLEMENTATION OF MPM FOR 3D 

APPLICATIONS 

 

1. Review of the MPM 

 

The N initial distributions and the results after applying 

the power operator are: 
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where  ,i ik   are the eigenpairs of the system, j  is the 

j-th distribution, A is the power operator and the higher 

modes of order larger than N are neglected. 

The first N eigenfunctions can be solved by the linear 

combination of the N distributions: 
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For any sub-region Rj of the system, the power operator 

and eigenfunctions satisfy: 
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Dividing the whole system into N sub-regions, denoting 
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Q dr  , and 

according to Eqs. (1), (2) and (3), there is: 
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(4) 

 

and  
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(5) 

 

The eqs. (4) and (5) can be rewritten as: 

 

  ,WX = VXK   (6) 

 

and  

 

  .VX = Q   (7) 

 

The TM is defined as: 

 

  
1,P QKQ   (8) 

 

where K and Q consist of the eigenvalues and eigenvectors 

of the TM. The eigenvalues are of the TM are also the 

eigenvalues of the system, while the eigenvectors of the TM 

depend on the sub-region definition. According to Eqs. (6), 

(7) and (8), there is: 
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so the TM can be solved with 

 

  
1,

P = WV   (10) 

 

and then its eigenvectors can be used to solve the linear 

combination coefficients: 

 

  ,-1
X = V Q   (11) 

 

which will then be used to update the first N eigenfunctions. 

 

2. Extension of the MPM for Multi-Dimensional 

Problems 

 

Based on last section, the remaining problem for the 

MPM is how to get the unique N sub-regions of the system. 

For simple 1D homogeneous problems, the system can be 

divided into N uniform meshes. However, for 2D/3D 

problems, it may be difficult and not practical to find the 

unique N sub-regions. 

In previous study, it is proposed to use more number of 

meshes than the number of modes. In this case, Eq. (6) will 

become an over-determined equation system. Some 

techniques need to be developed to solve it. 

 

A. Approach 1 

 

One approach is to rewrite Eq. (6) as: 

 

 ,VY W   (12) 

 

where  

 

 
1.Y XKX   (13) 

 

The solution strategy is: first solve Y with least square 

method based on Eq. (12), and then apply eigen-

decomposition to Y to get X and K. 

This approach is well suitable for deterministic 

calculations. For Monte Carlo implementation, this can be 

done with just one-cycle tally. However, in practice the one-

cycle tallies are never used due to the inherent statistical 

noises.  

 

B. Approach 2 

 

Another approach is to calculate the TM by solving a 

minimum norm problem: 

 

 ,W PV   (14) 

 

where , M NW V R , M MP R , M is the number of 

sub-regions, M > N. Then the eigen-decomposition of the 

TM is done similarly as Eq. (8), and the first N eigenvectors 

of the TM are used to calculate the X matrix: 

 

  :,1: ,NVX Q   (15) 

 

where , M NV Q R , N NX R . X can be solved using 

the least square method. In order to reduce the affection of 

the stochastic noises, the neutron sources or the TM can be 

accumulated. 

Accumulating the neutron sources works well if there 

are no degenerated eigenmodes, otherwise it may have 

problem, because the eigenvectors of the degenerated modes 

cannot be fixed and will change gradually due to the 

stochastic noises. 

Accumulating the TM does not have the problem of the 

gradually changing eigenvectors of the degenerated modes. 

However, another problem arises that the TM calculated 

with one-cycle tallies have N nonzero eigenvalues, while the 

accumulated TM will have more than N nonzero 

eigenvalues. Fig. 1 shows an example that the first 60 

eigenmodes of the BEAVRS 3D whole core model are 

calculated with MPM, and the accumulated TM can give the 

first 50 eigenvalues consistently while the rest 10 

eigenvalues fluctuate a lot during the simulation. 
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Fig. 1. The first 60 eigenvalues of the TM for a BEAVRS 

3D whole core model with 6x6x6 coarse mesh space 

discretization. 

 

3. The Preprocessing Approach 

 

The problem described previously mainly lies in the 

mismatch of the number of coarse meshes and the number 

of modes to be solved. A natural idea is to apply 

preprocessing to the weight integrals, which is intuitively 

like mapping the M coarse meshes to the specific N meshes, 

so the equation system described by Eq. (6) can be well 

determined. 

Multiplying Eq. (6) with a matrix N MG R  from 

left results in: 

 

     ,GW X GV XK   (16) 

 

where , M NW V R ,    , , , N NR GW GV X K . 

Then the linear equation system can be solved with the 

strategy represented by Eqs. (10) and (11). 

The requirements for matrix G are: 

(1)  GV  should be a square matrix of full rank; 

(2) G should be kept the same during the simulation. 

Requirement (1) is easy to understand. The 

consideration for requirement (2) is that if G changes, the 

mesh mapping will be different, and so the corresponding 

TM will also be changed, in which case the TM cannot be 

accumulated. 

There are many choices for matrix G. Two options for 

G are recommended in this study. One option is to calculate 

G with the following equation: 

 

 .N NGV I   (17) 

 

Another option is choosing G as: 

 

 .TG V   (18) 

 

Both options satisfy requirement (1) and work well. The 

BEAVRS 3D whole core model is simulated again with 

applying the preprocessing matrix and the results are shown 

in Figs. 2 and 3. It can be noticed that the eigenvalues given 

by the TM are all stable and consistent with the tallied 

results. 

 

 
Fig. 2. The first 60 eigenvalues of the TM for the BEAVRS 

3D whole core model with preprocess matrix applied. 

 

 
Fig. 3. The eigenvalue spectrum of the BEAVRS 3D whole 

core model with preprocessing matrix applied. 

 

However, there is another problem related with 

requirement (2). As previously discussed, if there are 

degenerated eigenmodes, the corresponding eigenvectors 

may gradually change cycle by cycle. G matrix is 

determined at the first cycle from which the accumulation 

begins, so at later cycles it may not work well if the 

eigenvectors change a lot due to stochastic noises 

introduced cycle by cycle. 

Two measures are recommended to alleviate the 

problem. One is using better initializations for all the 

neutron sources; the other is updating the G matrix. 
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A. Initialization of the Neutron Sources 

 

To start the Monte Carlo simulation, the initial neutron 

sources are needed. For this study, it is required to distribute 

the neutron sources over all the active volume, so the 

neutron source positions are randomly sampled in the entire 

system space. The neutron weights can be all set to 1.0, or, 

random numbers, both of which work well. 

During the running of the first inactive cycle, the fission 

matrix (FM) based on the pre-defined coarse meshes is 

tallied. After finishing the first cycle, the tallied FM is used 

to calculate the first N eigenvectors that are also based on 

the coarse mesh. The neutron weights for different modes 

are then corrected with the corresponding eigenvectors. This 

finishes the initialization process of the MPM. 

In case of there are degenerated eigenmodes, after 

solving the eigenvectors of the FM, all the eigenvectors are 

corrected to be orthogonal to each other. This can make sure 

that all the eigenvectors are separated as clearly as possible 

at the beginning of the simulation, and the inter correlation 

of the degenerated eigenmodes due to the gradual changing 

cycle by cycle can be reduced as much as possible. 

 

B. Updating the Preprocessing Matrix 

 

For the later cycles, the eigenvectors of the degenerated 

eigenmodes may change a lot comparing to their initial 

values. Updating of the G matrix may be needed to ensure 

the stable performance of the MPM. 

Suppose for the previous cycle, the G matrix is 

determined by: 

 

 
(1) (1) ,G V I   (19) 

 

and the corresponding TM is calculated with: 

 

    (1) (1) (1) (1) (1) .G W P G V   (20) 

 

For current cycle, the G matrix and the TM are 

calculated with current cycle tallied values: 
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P(1) and P(2) cannot be added together as they are 

corresponding to different mesh configurations. The relation 

between G(2) and G(1) is: 

 

 
(2) (1) ,G HG   (22) 

 

and H can be calculated with: 

 

  (1) (2) .H G V I   (23) 

 

Multiplying H to both sides of Eq. (13) from left results 

in: 
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From Eqs. (14) and (17) it can be noticed that 
(2)

P  and 

 (1) 1
HP H  are corresponding to the same mesh 

configuration, so they can be accumulated: 

 

  (1) 1 (2) , P HP H P   (25) 

 

where P  denotes the accumulated TM up to current cycle. 

Therefore, once updating of the preprocessing matrix is 

required, the H matrix is calculated, and then the previously 

accumulated TM is corrected with this H matrix and added 

with the current cycle TM. 

 

C. Detection of the Degenerated Eigenmodes 

 

Another important issue that should be taken into 

consideration is the detection of the degenerated 

eigenmodes. 

If degeneracy happens, the eigen-decomposition of the 

TM cannot give fixed eigenvectors, but rather the linear 

combinations of its real eigenvectors. In this study, the 

degeneracy is detected using the eigenvalues of the TM: 

 

 
310 ?   , 0, 1.i jk k i j N      (26) 

 

Once degeneracy is detected, the shape fixing technique 

described in [9] is used to correct the corresponding 

eigenvectors. 

 

III. RESULTS 

 

1. The 3D Cube Problem 

 

The multi-group 3D homogeneous cube neutron 

transport problem is modeled to demonstrate the 

performance of the MPM. This problem is featured with 

degeneracy of multiplicity of 3 and 6. The techniques used 

to deal with degeneracy are very important for the 

performance. 
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The 7-group cross sections are from the C5G7 

benchmark specification for the 8.7% MOX fuel-clad 

macroscopic cross sections. The side length of the 3D cube 

is 400 cm, with black boundary conditions on all the 

surfaces. The 6x6x6 uniform coarse meshes are used to 

discretize the system space. The Monte Carlo simulations 

are done with 100 inactive cycles, 300 active cycles and 

500,000 histories per cycle. 

The eigenvalue results are shown in Figs. 4-6. The first 

32 eigenmodes are calculated at the same time with MPM. 

It can be confirmed that there is degeneracy of multiplicity 

of 3 and 6, and the MPM can give consistent results for 

nearly all the modes. For the last mode, it’s not converged 

completely, since its convergence rate should be determined 

by k32/k31, which is very close to 1.0. 

The Shannon Entropy results are compared and shown 

in Fig. 7, which confirms the ability of MPM for 

accelerating the fission source convergence. 

 

 
Fig. 4. The eigenvalues of the TM. 

 

 
Fig. 5. The cycle tallied eigenvalues (defined as the ratio of 

the total absolute weight to the number of histories per 

cycle). 

 

 
Fig. 6. The eigenvalue spectrum. 

 

 
Fig. 7. The Shannon Entropy results. 

 

2. The BEAVRS 3D Whole Core Problem 

 

The 3D PWR core of the BEAVRS benchmark was 

modeled to demonstrate the capability of the MPM for real 

practical problems [10]. There was strong geometry 

heterogeneity, and the continuous energy point cross 

sections for the materials were used. 

The simulation parameters were: 200 inactive cycles / 

600 active cycles / 500,000 histories per cycle. The 9x9x9 

coarse meshes were used to discretize the whole core space. 

For the weight cancellation, the 36x36x45 fine mesh 

configuration was adopted. 

For this problem, the results with and without 

preprocessing are compared. The eigenvalue results without 

preprocessing are shown in Fig. 1. It is obvious that the last 

several eigenvalues of the TM fluctuate a lot and are smaller 

than the normal values. The reason is as following. For 

every cycle, the current cycle TM of size M-by-M (M=729 

for this problem) will be calculated by solving a minimum 

norm problem while it has only N (N=60 for this problem) 

nonzero eigenvalues. The corresponding eigenpairs are not 

the same for the successive two cycles due to the statistical 

noises, so if the TM of the two cycles are added together, 
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the accumulated TM may give more than N non-zero 

eigenvalues, and the last several eigenvalues will usually be 

smaller than their nominal values. 

The results with preprocessing are shown in Figs. 2 and 

3. It can be noticed that the performance of the MPM is 

stable for all the eigenmodes. 

 

IV. CONCLUSIONS 

 

A proper accumulation scheme was developed, aimed 

at achieving a more stable performance for the MC 

implementation of the MPM. The new method is based on 

the preprocessing of the neutron weight integrals, with 

which the number of elements representing one eigenvector 

matches well with the number of eigenmodes to be solved. 

To make it work, the accompanied techniques were 

developed, including the initialization of the neutron sources 

and the updating of the preprocess matrix. 

The performance of the new method was successfully 

demonstrated with the 3D cube problem, which features 

degeneracy of multiplicity of 3 and 6. The techniques 

dealing the degenerated eigenmodes are very important for 

this problem. The 3D BEAVRS whole core was also 

modeled, and the results demonstrate the capability of the 

MPM for the practical problems. 

It is apparent that the MPM can be applied to more 

general eigenvalue problems. Since the information of the 

higher modes can be obtained at the same time, there may 

be a way to reduce the inter-cycle correlation using the 

higher mode information. This is another topic requiring 

further investigation. 
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