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Abstract - In Monte Carlo criticality calculation, the formation of a confidence interval is based on the 
central limit theorem (CLT) for a series of tallies from generations in equilibrium. A fundamental assertion 
resulting from CLT is the convergence in distribution (CID) of an interpolated standardized time series 
(ISTS) of tallies. This work reports a spectral analysis approach to ISTS in order to assess the convergence 
of tallies in terms of CID. Numerical results are demonstrated for a preliminary model of uranium-concrete 
debris. 

 
I. INTRODUCTION 
 

In Monte Carlo (MC) criticality calculation, the 
formation of a confidence interval is based on the central 
limit theorem1 (CLT) for a series of tallies from generations 
in equilibrium. A fundamental assertion resulting from CLT 
is the weak convergence of an interpolated standardized 
time series (ISTS) of tallies formulated as the convergence 
in distribution (CID).2 In this work, the spectral analysis 
with power spectrum computation was applied to ISTS in 
order to assess the convergence of tallies in terms of CID. 
Numerical results are demonstrated for a preliminary model 
of UO2-concrete debris.3 These results are interpreted 
compared with the reference power spectrum of Brownian 
motion. 

A significant amount of research has been conducted on 
the standard deviation estimation of the sample mean of 
tallies as testified in extensive literature citations in recent 
works.4,5 Many estimators were investigated in these works 
in order to incorporate or exclude the influence of 
correlation. However, no attempt was made at convergence 
assessment in the framework of CID. Currently, a reference 
methodology is not available concerning how to measure 
the converged state of distribution. For this reason, it is 
worthwhile investigating the spectral analysis of ISTS with 
power spectrum computation. If contrasted with the spectral 
analysis approach to MC fission source distribution6, the 
availability of the reference stochastic processes of 
Brownian motion and Brownian bridge is a unique and 
noble aspect in this work. 

 
II. CENTRAL LIMIT THEOREM AND SPECTRAL 
ANALYSIS  

 
In MC criticality calculation, a fission source 

generation in equilibrium is iterated in a form of the power 
method with particle population normalization. 
Consequently, the generations yield a correlated series of 
tallies denoted as x1, x2, …, xn for which the joint statistical 
property of xj and xk is the same as that of xj+h and xk+h. Here, 
the subscripts denote generation numbers, n is the total 

number of generations run through equilibrium, and h is 
generation shift. The tally x is estimated by the sample mean 
of x1, x2,…, xn  and the variance of this estimate is 
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where AC(j) is the autocovariance of xk and xk+j and n is 
assumed to be sufficiently large in terms of the attenuation 
of AC(j). To proceed, it is convenient to introduce the partial 
sample mean of x1, x2, …, xn for the first m generations as 
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Denoting the true mean/expected value of xi as a form of 
CLT reads2,7 
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for 0tas nwhere ntis the largest integer not 
exceeding nt, D stands for CID and  BM(t) is the path of 
Brownian motion. A fundamental assertion derived from the 
CLT in Eq (3) is2,7 
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for 0tas nwhere Tn(t) is ISTS referred to in Sec. I, 
BB(t) is known as the path of Brownian bridge. In Eq (4), 
Tn(m/n) = m(psnpsm)/(n1/2), m=0,1,…,n, is called the  
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standardized time series of tallies. In MC criticality 
calculation, the convergence theorem in Eq (4) has been 
utilized for the variance estimation with orthonormally 
weighted standardized time series (OWSTS).4,7 In the 
OWSTS methodology,  weighting functions are introduced 
as  
 

( ) 8 cos(2 ),C
jw t j jt   1, 2, ... ,j   

( ) 8 sin(2 ),S
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and a statistic is defined as  
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Note that  in front of Tn and  in the denominator of Tn 
cancel each other. The variance of sample mean is then 
computed as 
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where J is the order of pairs of weighting functions. The 
OWSTS estimator in Eq (7) was demonstrated to be 
unbiased if n is sufficiently large.4 However, in order to 
ensure the reliability of tally estimation, the condition of “n 
is sufficiently large” should be characterized by some 
measurable criterion. 

Brownian motion in Eqs (3) and (4) is a special case of 
fractional Brownian motion (FBM). The power spectrum of 
FBM was argued and established in previous works8,9, 
which yielded  
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for Brownian motion. This work seeks to utilize Eq (8) for 
assessing the convergence of Tn(t). 

For a function g(t), power spectrum can be formally 
expressed as 
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where i is the imaginary unit (i2=1). If the observation of 
g(t), which is denoted as ˆ( )g t , is available only for 0t1, 

Eq (9) is approximated as  
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by assuming that ˆ( )g t  on [0,1] is extended periodically to . 

As Tn(t) in Eq (4) is obtained for 0t1 in one MC 
calculation, the power spectrum of Tn(t) is computed using 
Eq (10) as 
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Here, the summation over m is 1 through n1 because of 
Tn(0)=Tn(1)=0. The power spectrum of Brownian bridge on 
[0,1] is also formally expressed as  
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For Eqs (11) and (12), the convergence theorem in Eq (4) 
implies  
 

 ( ) ( )Tn BBS f S f  as n . (13) 

 
Therefore, it is worthwhile arguing whether or not SBB(f)= 
SBM(f) since SBM(f) is known as in Eq (8). 

On the domain of Brownian bridge [0,1], the difference 
between Brownian motion and Brownian bridge is tBM(1). 
Its Fourier transform is proportional to 
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As it is not possible to see low frequency components from 
the Fourier transform of time domain values on 0t1, one 
should restrict attention to 1f  . This restriction leads to 
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The above characteristic implies that the presence of tBM(1) 
in BB(t) does not introduce in SBB(f) a frequency component 
decreasing slower than 21/ f . On the other hand, Brownian 

motion is a stochastic process with stationary increments, 
zero mean and scale invariant statistical properties.10 (In 
probability theory11, BM(ut) =d u1/2BM(t) for u0 where =d 
stands for equality in distribution.) Therefore, Eq (8) leads 
to 
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These arguments through Eqs (14)-(16) yield 
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Finally, based on Eqs (13) and (17), one can compute STn(f) 
in Eq (11) to see if  
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in order to make a judgment on the convergence of tallies in 
terms of CID. In this work, we compute STn(f) for 
10f1000 to see if log(STn(f)) decreases at the slope of 2 
with respect to log(f). We also utilize the OWSTS estimator 
in Eq (7) for the standard deviation of the sample mean of 
tallies because of the direct relevance to CID as implied in 
Eqs (4), (6) and (7). 
 
III. UO2-CONCRETE MODEL WITH MATERIAL 
DISTRIBUTION UNCERTAINTY 
 

In this work, a preliminary model of UO2-concrete 
debris3 is a demonstration problem for the utility of Eq (18). 
The model geometry is a cube of 140×140×140 cm3. Inside 
this cube, a smaller cube of 100×100×100 cm3 is situated at 
center with the corresponding faces parallel to each other. 
The smaller cube is occupied by concrete and UO2 fuel at 
the burnup of 12 GWd/t with the average volume ratio of 
7:1 in concrete to fuel. The outside of the smaller cube is 
occupied by concrete only. Table I below shows one energy 
group cross sections computed by the MVP code.12  
 
 

Table I. One energy group cross sections in cm1 

material fuel (F) concrete (C) 

total (t) 0.45324 0.47736 
absorption(a) 0.07038 0.00159 
scattering(s) 0.38286 0.47577 
-fission(f) 0.09551 0.0 

 
 

Inside the smaller cube, the cross section of reaction-
type rt is assigned by 
 

 ( ) [v(1 v( ))] [1 v(1 v( ))]F C
rt rt rt         r r r  

 [0,100] [0,100] [0,100]  r   (19) 

 
where r is the space coordinates inside the smaller cube, the 
superscripts F and C correspond to fuel and concrete, v=1/8 
is the mean volume fraction of fuel, and v(r) is the space-
dependent variation of the volume fraction of fuel satisfying 
1v(r). In this work, v(r) is assigned the randomized 

Weierstrass function (RWF)13 for the reason argued as 
follows. In general, statistical information for the spatial 
distribution of material composition will not be available for 
the medium formed via molten core concrete interaction 
(MCCI). However, it is certain that the real MCCI 
compounds are formed under disorder in uncontrollable 
situations. It was shown in a quite general context that the 
dynamical system state reached via extreme disorder can be 
characterized by 1 21/ f    0 0.5    in the frequency 

domain representation14 under the consistency requirement 
for intrinsic random fields.15 Here, it is worthwhile noting 
that 0 and=0.5 correspond to the 1/f  fluctuation and 
Brownian motion, respectively, and RWF13 is known to be a 
stationary approximation to the stochastic process 
characterized by 1 21/ f    in terms of small separation 

distances. For these reasons, RWF can be a prime approach 
of choice when no specific statistical information is 
available. The explicit expression of RWF for Δv in Eq (19) 
is  
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where d is the parameter determining the level of fluctuation, 
Bj are the independent Bernoulli random variables taking 1 
equally likely, >1, R is the scaling factor, j  are unit 
vectors chosen uniformly and independently on the unit 
sphere at the origin, and Aj are independent random 
variables uniformly distributed on [0,2). As Bj, j and Aj 
are independent and the expected value of Bj is zero, the 
expected value of v(r) is zero. In practice, when the 
summation in Eq (20) is truncated at j=M, d is chosen to be 
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so that 1 v(r) is satisfied Note that v(r) is strictly 
upper and lower bounded unlike the modeling with normal 
and log-normal distributions. In other words, it is not 
necessary to discard non-physical realizations such as 
negative and larger-than-100% values. 

Outside the smaller cube in the cube of 
140×140×140 cm3, the cross section of reaction-type rt is 
assigned by 
 

 ( ) C
rt rt  r , [0,100] [0,100] [0,100]  r  . (22) 

 
so that 100% concrete is represented. 
 
IV. NUMERICAL RESULTS 
 

In this section, numerical results are demonstrated for 
the UO2-concrete model in Section III. A single whole set of 
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MC criticality calculation, which consisted of 4000 
generations and 20000 particles per generation with 1000 
skip generations, was conducted using the delta tracking16 
for each of 100 realizations of the RWF replicas for v(r). 
In Eq (20), the parameters ,  and R were set 0.5, 1.5 and 
25 cm, respectively; the summation was truncated at M=23 
so that M=0.009; the parameter d was determined by 
Eq (21); Bj, j, Aj were sampled independently over 100 
realizations of the RWF replicas. The standard deviation of 
the sample mean of effective multiplication factor (keff) 
tallies is shown in Fig. 1 for each realization of the RWF 
replicas. It is seen that the standard deviation estimates 
obtained by OWSTS (the square root of Eq (7)) are on 
average larger than the estimates without taking into 
account correlation. However, the OWSTS estimates appear 
to be fluctuating about 16% (0.000013/0.000079=0.16). It is 
strongly desired to clarify whether or not this relatively 
large fluctuation is due to insufficient convergence in terms 
of CID. 
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Fig. 1 Standard deviation estimates of effective 
multiplication factor of UO2-concrete debris; * for standard 
deviation of OWSTS estimator for one realization of RWF 
replica (v(r)) ; 4000 generations and 20000 particles per 
generation with 1000 skip generations for one realization 
 
 

In Fig. 1, the largest estimate of standard deviation is 
displayed for realization 12. In order to see if the keff tally in 
this realization has converged or not in distribution, the 
power spectrum of ISTS was computed by Eq (11) and is 
shown in Fig. 2. It is seen that the power spectrum behaves 
like 1/f 

2 for 10f1000. Fig. 3 shows the slope of power 
spectrum for each of 100 realizations of BM(t) on 0t1. 
Here, each realization of BM(t) was computed as follows. 
First, the covariance matrix of BM(t), denoted as ,( ),j kCC  

was introduced as11  
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n n
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Second, taking into account that covariance matrices are 
symmetric and non-negative definite, the matrix C was 
factorized into the product of a lower triangular matrix L 
and its transpose LT using Cholesky factorization: 
 

 T
,( )i jC C LL . (24) 

 
Let 1 2( , , , )nV V VV   be a vector of independent random 

variables under the standard normal distribution; E[Vj]=0, 
E[(Vj)2]=1 and E[VjVk]= for jk where the subscripts of Vj 
and Vk corresponds to tj and tk. It then follows that the 
covariance matrix of LV becomes equal to T T[ ]E LVV L  

T . LL C  Finally, by sampling 1 2( , , , ) ,nV V V  ( )MB t  on 

(0,1] was obtained as  
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The number of samples n corresponds to the number of 
generations and was taken to be 5000. Power spectrum was 
then computed by 
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and its slope was estimated by the least square fitting of 

ˆ(log ,log ( ))
MB

f S f  for each of 100 realizations of Eq (25). 

As displayed in Fig. 3, the slope obtained is 1.99. 
This means that the uncertainty of the slope of power 
spectrum is  in one-sigma under CID and thus the 
result in Fig. 2 indicates CID. 
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Fig. 2 Largest estimate (replica 12) in Fig. 1 - Power 
spectrum of interpolated standardized time series of keff 
tallies  



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, 
Jeju, Korea, April 16-20, 2017, on USB (2017) 

 
 

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

slope = 1.99±0.13*

realization number 

sl
o
p
e

 
Fig. 3 Slope of power spectrum of Brownian motion on 
0t1; sampling width = 1/5000; * for standard deviation 
for one realization.  
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Fig. 4 Almost average estimate (replica 3) in Fig. 1 - Power 
spectrum of interpolated standardized time series of keff 
tallies 
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Fig. 5 Smallest estimate (replica 76) in Fig. 1 - Power 
spectrum of interpolated standardized time series of keff 
tallies 
 

Other realizations were also examined and turned out to 
indicate CID. For example, power spectrum is shown in 
Figure 4 for realization 3 in Fig. 1 yielding an almost 
average estimate of standard deviation and the slope 
obtained is 2.10. Power spectrum is shown in Figure 5 for 
realization 76 in Fig. 1 yielding the smallest estimate of 
standard deviation and the slope obtained is 2.06. Both of 
these slopes agreed with the theoretical value of 2 in one-
sigma.  Therefore, the fluctuation observed in Fig. 1 can be 
attributed to the differing characteristics of autocovariances 
AC(j) over realizations of the RWF replicas. 
 
V. CONCLUSION AND REMARKS 
 

In this work, the review of CLT and OWSTS led to the 
proposal of the spectral analysis of ISTS for assessing CID. 
It was demonstrated that via the Fourier transform of ISTS 
one could compute power spectrum which was to be 
compared with the inverse-square dependence on frequency 
as a consequence of the convergence of ISTS toward 
Brownian bridge. The criterion therein was universal, i.e., 
problem-independent. This aspect of development is the 
strength of the proposed methodology. 

There are two avenues for future research. First, the 
reexamination of numerical results in the previous work4 on 
a whole PWR core model will be the next step test since the 
UO2-concrete model in this work is rather a specialized 
example problem. Second, technical tools in stochastic 
differential equations may be pursued in order to transform 
ISTS to other statistic which will be asymptotically under 
the law of Brownian motion. Such a pursuit will surely 
enable one to exploit a range of statistics in Brownian 
motion. For example, Brownian motion has independent 
increments, which is amenable to some general and robust 
estimation and tests. 
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