
M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, 

Jeju, Korea, April 16-20, 2017, on USB (2017) 

Estimation of the Effective Multiplication Factor by Monte-Carlo Method Using the Importance Function 

 

M.I. Gurevich, M.A. Kalugin, D.S. Oleynik, D.A. Shkarovsky 

 

National Research Center Kurchatov Institute, 1, Akademika Kurchatova pl., Moscow, Russia, 123182, mcu@mcuproject.ru 

 

Abstract – The work describes the MCU code based realization of a method that allows leveling of 

effective multiplication factor bias in criticality calculations without any changes in simulation and 

receiving reliable evaluations of its statistical uncertainty. The method is based on the calculation of a 

discrete adjoint function of a matrix transport equation and its use for the evaluation. The effectivity of the 

method is demonstrated in calculation of the «Whiteside problem» weakly coupled system. 

 

I. INTRODUCTION 

 

There are three problems in Monte-Carlo calculations 

of keff of large systems in which geometric dimensions are 

much bigger than a neutron path length. They are related to 

the usage of the generation method with a fixed number of 

neutrons NTOT in a generation. The problems are: 

1. the choice of initial neutron distribution or the choice 

of number of the first skipped generations NSKIP; 

2. the estimation of bias К – systematic miscalculation 

of keff; 

3. the estimation of a statistical error corr taking into 

account correlations between generations (0 denotes the 

estimation of the standard deviation excluding the 

correlations). 

These problems can be solved with the usage of the 

autocorrelation function of the contribution of generations to 

keff estimation [1–4]. 

Let’s denote Ck as the covariance function of 

contribution of the current and the current plus k-th 

generations to keff when steady-state condition is reached. 

For a stationary random process 
1 2{ , ,..., ,..., }n Nk k k k , where 

kn is the evaluation of keff at generation number n, the Ck 

evaluation may be defined using finite sample of N elements 
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where <∙> denote the evaluation. 

Correlation function сk=Ck/C0 normalized to dispersion 

is called the autocorrelation function of a random process.  

Let’s denote L as their lag. Then 

0σ σ 1 2 ,corr LS   where 
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Usually when calculating by MCU code [7] the 

following shall be satisfied 

1. NSKIP ≥ L; 

2. NTOT is such a large number that [1] 
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is inessential (as it is shown in [2], 
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3. statistical error is calculated for the so-called series, 

each of which includes a user-defined number of 

generations NBAT.  NBAT is such a large number that SL is 

minimal.  

It’s important to note [1–6] that К1/NTOT and  

   Δ~ 1 , ;n TOT L eff К nD k N S k D k const   that’s 

why the bias doesn’t depend on N and P (number of 

processors), and depends on NTOT value. 

It is known that the use of importance function (adjoint 

function) essentially minimizes the correlation between 

generations and get the keff estimation with K=0 and K=0. 

Work [2] suggests a method to decrease the bias of keff 

evaluation and correlation between the kn evaluations using 

spatial transformation of transport equation. This work 

suggests a different approach without an integral operator 

modification. Instead, it is associated with the adjustment of 

contributions into the evaluation at the stage of tallying 

using the adjoint function. 

The approach is realized in the MCU code [7] and 

numerical results of keff evaluation for the «Whiteside 

problem» weakly coupled system [8] are obtained using 

normalization on the importance function at which K0 

and K0. 

 

II. DESCRIPTION OF METHOD 

 

The description of the method of unbiased keff 

evaluation using the importance function is the development 

of the work [1]. In this study, more attention is paid to a 

precise description of the changes in the algorithms used in 

the transport equation modeling. 

 

1. Basic concepts 

 

Let’s assume that the state S of Monte Carlo simulation 

of a neutron transport in a criticality task is the set of M 

neutrons each of which is characterized by its weight wi and 

a point in phase space рi (i = 1,2,…,M). Here M is the 

maximum number of particles in the state (M ≥ NTOT). Thus 

the state may be represented as a matrix S=[w,р], where w is 

a non-negative vector-column of M components and р is a 

column with points of the phase space.  
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The generation rate refers to a non-negative density in 

the phase space. 

Three deterministic representations are correct for the 

states: 

 total weight W(S)=w1+…+wM; 

 multiplication by a positive scalar  

λ[w,р] = [λw,р]; 

 reduction to density (v(S))(p) = w1δ(p–p1)+ 

+…+wMδ(p–pM), where p is an arbitrary point 

in phase space and δ is Dirac delta distribution. 

It is obvious that v(λS)=λv(S) and λW(S)=W(λS). 

Let’s define two narrow sets at the variety of states. 

1. Generation F=[w,p] is such a state that 

w1=…=wNTOT>0, and wNTOT+1=…= wM=0. 

2. Normal generation G=[w,p] is such a state that 

w1=…=wNTOT=1,and wNTOT+1=…= wM=0.  

It is obvious that W(G)=NTOT, G=(NTOT/W(F))F is a 

normal generation. 

 

2. The formalization of the modeling process 

 

Monte Carlo method to simulate the transport equation 

in the critical tasks can be conventionally represented as two 

processes, each of which are produced by random variables 

based on certain physical quantities. 

The first process is a simulation step. Using the normal 

generation G it builds a random state S|G (S under the 

condition G). Wherein the condition of bias absence at a 

single step simulation is satisfied, i.e. for any G  

 ( ( | )) ( ),v S G v GE H   (2) 

where H is the secondary neutrons generation operator, E is 

the mathematical expectation. 

The second process is normalization. Using the given 

condition of the set S=[wS,рS] it builds a random normal 

generation G|S=[wG,рG]. Wherein the following conditions 

are satisfied: 

 any point in рG components may be found in рS 

components of non-zero weights, i.e. any particle 

of normal generation is obtained from a particle of 

a state of S; 

 equivalence of weights, i.e. let ap be a sum of 

weights of particles of a state of the S set 

corresponding to some point р, and bp is the 

mathematical expectation of a similar amount for 

normal generation, than for any points р and q at 

bp>0 it is true that aq/ap  = bq/bp; 

 normalization is homogeneous with weight 0, i.e. 

for any λ>0 it is true that G|S = G|(λS). 

It is followed from the second condition that 

 ( ( | )) ( / () ).TOTG Nv S v S W SE   (3) 

In the beginning of the iteration process of simulation 

the initial normal generation G0 is chosen. Let’s assume that 

normal generation Gt is formed. Then the state of secondary 

neutrons is St+1=S|Gt according to the said above. The next 

normal generation is Gt+1=G|St. 

The contributions to the assessment of the effective 

multiplication factor are  

kt+1 = W(St+1)/W(Gt) = W(St+1)/NTOT. 

Instead, it is suggested to use the following 

contributions to the evaluation of keff 

 kh,t+1 = (h,v(St+1)) /(h,v(Gt)),  (4) 

where h is a non-negative function in the phase space, which 

is positive in all points with fuel; round brackets (∙,∙) denote 

integration of function and density product. 

It is obvious, that 
1 , 1,t е tk k  where е is the function 

identically equal to one. 

Sequence {St,Gt} uniquely defines the sequence of 

generations {Ft}. Namely, F0 = G0, further transition to the 

next point is carried out according to the following 

equations 

Gt = Ft / ct, where ct = W ( Ft ) / NTOT, 

1 | ,t tS S G    

1 1| ,t tG G S   

 1 1 1 1 1/ .t t t t TOT t t tF G cW S N G c k       

In other words, ct+1 = k1 k2 …. kt+1 [1]. 

At the same time due to (3) 

       1 1 1 1 1 1 .| |t t t t t t t tv F S c v G S k c v S      E E   
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      
       

1 1 1

1 1

| ( | |

| |

t t t t t

t t t t t t t t

v F F v F S F

c v S F c v S G c v G

  

 

 

  

E E E

E E H
 

due to (2). Thus 

    1 . |t t tv F F v F E H  

Iterating the last equation we get 

0 0( ( ) | )  .( )t

tv F F v FE H  

This formula in different notation may be found in 

other works, e.g. [1,2]. 

Instead of the kt evaluation one may use kh,t, where h is 

the main adjoint function of the operator H. It allows one to 

avoid bias in the keff evaluation, and zero out corresponding 

covariance at statistical uncertainty calculation. 

The first follows from

 E(kh,t+1 | Gt) = E((h,ν(St+1)) / (h,ν(Gt))|Gt) = 

= (h,Hν(Gt)) / (h,ν(Gt)) = (H
+
h, ν(Gt)) / (h,ν(Gt)) = keff. 

In particular, this equation implies that for any q≥0 

, 1 , 1( | ) ( ( | ) | ) .h t q t h t q t q t effk G k G kG     E E E  

Zero covariance between kh,t+q+1 and kh,t+1 follows from  

, 1 , 1 , 1 , 1 1( | ) ( ( | ) | ). h t q h t t h t q h t t tk k G k Gk G       E E E  

Based on the fact that kh,t+1 is constant at the condition 

of Gt+1. 
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 Thus, covariance is 
2 0.eff eff effk k k    
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3. Implementation 

 

Thus, if we know the adjoint function we may obtain 

non-biased estimation of keff and reliable estimate of 

statistical uncertainty. 

Implementation of the method of calculation of the 

adjoint function is based on the use of fission matrix [9,10]. 

The set of points in phase space containing fuel is divided 

into a number of zones. Then the equation of criticality can 

be expressed as  

keffψ=Tψ, 

where ψ is a vector, i-th component of which corresponds to 

the neutron generation rate in zone i, and T is the matrix, 

where Tij is the average number of neutrons born in zone i at 

the condition that the fission was caused by the neutron born 

in zone j. 

In this case the adjoint equation is  

keffψ
+
=T

T
ψ

+
, 

here transposed matrix T has the meaning of the adjoint 

operator. Matrix elements are calculated by means of the 

Monte Carlo method during neutron transport simulation 

and the main adjoint function is calculated by means of any 

deterministic iteration method. 

The accuracy of the calculation of the adjoint function 

using this method depends on the detail of the partition, 

which can be infinitely increased, but it also means the 

increase in the load on the computing resources. 

After the importance function is calculated the second 

stage of calculation begins. Generations are produced by 

means standard for the MCU code. To evaluate the 

contribution into keff using the formula (4) ψ
+
 is used as the 

function h. 

In the process of the simulation of the generation 

number t the two sums are calculated. The first one includes 

values of ψ
+
 for neutrons of the generation in their initial 

points. The second sum includes values of ψ
+
 in the points 

of secondary neutrons generation multiplied by the 

corresponding weights. If there is no non-analog simulation 

and at generation in the points of absorption this gives the 

average amount of fission neutrons. The contribution into 

keff is the ratio of the second sum to the first one. 

Thus, the deviation from the standard calculation takes 

place not in the simulation, but in the tallying, which is 

provided in the MCU code. 

 

III. RESULTS 

 

The method is approved by calculation of weakly 

coupled system «Whiteside problem». 

 

1. Model description 

 

The system consists of 9×9×9=729 spheres with 

plutonium-239 (see Fig. 1), which are located in mesh 

points of the regular cubic lattice with the 60 cm pitch. The 

radius of central sphere is equal to 5.009 cm, the radius of 

the rest ones is equal to 3.976 cm. The lattice of spheres is 

located in the air and is encircled by the water reflector of 

100 cm thickness. The temperature of all materials is equal 

to 300 K. In this system keff = 1.0035. 

 

 
 

Fig. 1. Scheme «Whiteside problem» in OXY plane. 

 

2. Calculation of importance function 

 

All 729 spheres are grouped in 5 cubic layers, and the 

matrix dimension is 5×5. Enumeration of tally zones in 

OXY plane is shown on Fig. 1 (from inner layer (1-st zone) 

to outer one (5-th zone)). The scheme of enumeration in 

OXZ plane is the same.  

Estimations of the fission matrix, the eigenfunction and 

the importance function are given in Tables I,II. The values 

of eigenfunction are divided by unit volume of a sphere and 

normalized (ψnorm). The eigenvalue of the matrix keff is equal 

to 1.0035. 

It should be noted that in this task values of ψnorm and 

ψ
+
 are practically the same (see Table II). 

To investigate the effect of fission matrix detailing on 

calculation results a fission matrix of 729×729 (each sphere 

is a different tally) was evaluated. 

Calculations by the MCU code have been performed 

with the various number of neutrons in the generation 

NTOT=2000, 5000, 10000, 20000, and 50000. Calculation 

results of effective multiplication factor with the 

normalization using the importance function kadj (5 zones) 

and kadj729 (729 zones) are compared with the standard 

calculation of kstd (see Table III and Fig. 2). For 

convenience of comparing all calculations use the same 
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number of histories (≈5∙10
9
). Statistical uncertainty (a 

standard deviation) is equal to 0,004 %. 

 

Table I. Fission matrix T 

i\j 1 2 3 4 5 

1 1.0030 0.0014 0.0005 0.0004 0.0004 

2 0.0164 0.7774 0.0091 0.0067 0.0062 

3 0.0265 0.0330 0.7736 0.0271 0.0237 

4 0.0485 0.0535 0.0586 0.7932 0.0555 

5 0.0753 0.0856 0.0879 0.0950 0.8257 

 

Table II. The eigenfunction and the importance function 

No. ψnorm ψ
+
 

1 0.9740 0.9736 

2 0.0097 0.0101 

3 0.0061 0.0060 

4 0.0053 0.0053 

5 0.0049 0.0050 

Sum 1.0000 1.0000 

 

Table III. Effective multiplication factor estimations in 

dependence on NTOT 

NTOT Kstd kadj kadj729 

2000 1.00208 1.00332 1.00340 

5000 1.00296 1.00346 1.00352 

10000 1.00326 1.00350 1.00353 

20000 1.00340 1.00353 1.00354 

50000 1.00349 1.00354 1.00353 

 

The results with different division show that 

evaluations with higher detailing (729 tallies) have smaller 

bias. However, the difference is small and does not exceed 

0,01 %.  

These data indicate that the importance function can be 

calculated with coarse approximation. That is why it is 

possible to use the importance function, which has been 

calculated for similar models. 

 

 
 

Fig. 2. Calculation keff of with normalization using the 

importance function (kadj, kadj729) and without that (kstd). 

 

It should be noted essential irregularity between 

neutron sources in different spheres. It is shown on Fig. 3 

where calculation of eigenfunction and importance function 

was obtained for 729 zones. The neutron source in central 

sphere is essentially more than others. It characterizes 

weakly coupled system. 

Also it should be noted that eigenfunction divided by 

unit volume is nearly equal to importance function for detail 

matrix too. 

 

 
 

Fig. 3. Values of eigenfunction are divided by unit volume 

of a sphere and importance function for central row by 

height which are obtained as a result of fission matrix 

solution with 729 zones. Both ψnorm and ψ
+
 are normalized 

so that sum of elements of each is equal to 729.  

 

3. Calculation of the keff evaluation bias and its statistical 

uncertainty 

 

The calculation of bias of keff is performed using the 

formula (1). The standard calculation with NTOT=2000 gives 

the bias K=0.15 % (see Table IV and Fig. 4), whereas the 

calculation with the normalization on the estimation of the 

importance function gives the bias of only K=0,02%. 

Hereafter the results are from calculations with importance 

function obtained using five tally division. 

 

Table IV. Standard deviation and bias calculation’s results 

 Standard calculation 

Calculation taking into 

account importance 

function 

NTOT 0, % 
corr, 

% 

K, 

% 
0, % 

corr, 

% 

K, 

% 

2000 0.0020 0.0040 0.147 0.0040 0.0042 0.023 

5000 0.0020 0.0040 0.059 0.0040 0.0042 0.009 

10000 0.0020 0.0040 0.029 0.0040 0.0042 0.005 

20000 0.0020 0.0040 0.015 0.0040 0.0042 0.002 

50000 0.0020 0.0040 0.006 0.0040 0.0042 0.001 
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Fig. 4. Bias calculated depending on NTOT. 

 

Figure 5 illustrates the behavior of keff in dependence on 

the number of simulated generations at NTOT=2000. One 

may see that the standard calculation gives bias while the 

calculation with the normalization using the importance 

function gives almost the correct answer. 

 

 
  

Fig. 5. Dependence of keff on the number of simulated 

generations. 

 

 In the standard calculation the sum of L=100 elements 

of autocorrelation function at NTOT=2000 is equal to (see 

Fig. 6) 

1

1.6,
L

L k

k

S c


    

what means that statistical uncertainty taking into account 

correlation between generations is 0/ σσ 1 2 2corr LS    

times higher than statistical uncertainty obtained using the 

standard formula for the variance of the random variable. 

Statistical uncertainty of keff excluding correlations between 

generations is 0=0.002%, and corr=0.004 % including 

them. In the calculation with the normalization using the 

importance function the statistical uncertainty of keff 

calculation obtained by the standard formula is 0=0.004%. 

Thus, normalization using the importance function does not 

decrease the statistical uncertainty, but it allows obtaining it 

using the standard formula for the variance of the random 

variable offsetting the impact of correlations between 

generations. 

 

 
Fig. 6. Sums of the first L elements of autocorrelation 

function. 

 

IV. CONCLUSION 

 

The paper describes a method that allows one to level 

the bias of the effective multiplication factor calculation 

without making any changes to the simulation process and 

receive reliable value of its statistical error. The proposed 

method is very simple to implement and practically does not 

increase the neutron history simulation time. Moreover, its 

use reduces the number of neutrons in the generation and, 

consequently, the total calculation time by order of 

magnitude.   

The effectiveness of the method is demonstrated by the 

example of the calculation of a weakly coupled system 

«Whiteside problem». 

As a result, the work allows concluding the following. 

1. The usage of the normalization using the estimation 

of the importance function reduces significantly the value of 

the maximum lag. Calculations of the autocorrelation 

function using the standard normalization gives the value of 

the lag L=100, in case of the normalization using the 

importance function, it is L=5. 

2. The usage of the normalization using the importance 

function reduces significantly the value of the bias of keff 

estimation. At rather small NTOT=2000 such normalization 

gives almost non-biased keff estimation. To obtain the similar 

result statistically it is necessary to use NTOT=20000. 

3. The normalization using the importance function 

doesn’t reduce the statistical error of the calculation but 

allows one to obtain it by the standard formula for the 

dispersion of a random value without taking into account 

correlations between generations because this correlation is 

almost equal to zero. 
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4. The solution of the matrix equation almost coincides 

with keff obtained by Monte-Carlo method with the 

normalization using the importance function. 
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