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Abstract - Nowadays, Monte-Carlo criticality analysis is performed utilizing the power iteration that calculates
the fundamental eigenpair of the steady-state/k-eigenvalue form of the neutron transport equation. Whereas
this method guarantees the convergence to the fundamental eigenmode, very often the convergence is slow.
Consequently, it is of high interest to improve the convergence of the power iteration in order not only to increase
the accuracy but also to reduce the computational cost. In this work an alternative version of the traditional
Monte-Carlo power iterative algorithm is formulated, developed and analysed aiming to numerically accelerate
the Monte-Carlo criticality analysis. More specifically, a Newton-based, matrix-free numerical method for
solving non-linear systems, the Jacobian-Free Newton Krylov methodology, is adopted in the Monte-Carlo
k-eigenvalue context attempting to accelerate the convergence. However, the computationally burdensome
nature of a Monte-Carlo algorithm makes a straight forward implementation of this methodology rather
impossible. The problem is overcome by suitably utilising a deterministic diffusion-based power iteration
within the developed algorithm. Since the Monte-Carlo calculated quantities required by the introduced
methodology are associated with statistical noise, a fact that creates questions about the performance of this
new concept, the method is initially evaluated in simplified test-cases.

I. INTRODUCTION

Nowadays, Monte-Carlo criticality (or k-eigenvalue) anal-
ysis is performed utilizing the power iteration that calculates
the k-eigenvalue and the eigenvector of the eigenvalue form
of the steady-state neutron transport equation. This method
guarantees the convergence to the fundamental eigenmode but
very often the convergence is slow; when the dominance ratio
is near one. In practical problems this situation is often met.
For this reason the improvement of the convergence of the
Monte-Carlo k-eigenvalue iterative process is listed among the
most important and challenging problems in computational
neutron transport analysis as stated in [1] and [2] .

The convergence of the neutron source is a crucial point
because it affects the accuracy of the results. This is the reason
why the convergence of the source should be confirmed in
order to avoid the contribution to the statistics, of cycles (or
batches) that do not correspond to the converged region. The
Shannon entropy, a concept from information theory, has been
shown to be an effective diagnostic measure for characterizing
the convergence of the neutron source ([3]-[5]). In practice, in
every Monte-Carlo criticality calculation a problem-dependent
number of cycles is skipped before tallying starts [6]. Another
matter that is strongly bonded with the convergence of the
source is the computational cost that generally imposes a con-
straint, especially when the problem requires a large number
of cycles. As a consequence, it is of high interest to improve
the convergence of the Power Iteration (PI) in order not only
to increase the accuracy but also to reduce the computational
cost.

One methodology that has been used for this purpose is

the Coarse Mesh Finite Difference (CMFD) accelerated Monte
Carlo proposed in [7]. According to this methodology, the
multigroup diffusion equation in an eigenvalue form is solved
per Monte-Carlo PI iterative step in order to find a better esti-
mation of the current source distribution and to communicate
it back to the next Monte-Carlo PI. Initially, CMFD methods
were aiming to accelerate the neutron source convergence dur-
ing the inactive cycles of a Monte-Carlo calculation. However
the use of CMFD feedback in the active cycles is also investi-
gated and applied. In [8] it is mentioned that the fission source
that is affected by the CMFD parameters that are determined
by the accumulated tallies of the previous cycles, suffers less
from the inter-cycle correlation effect and can be an effective
way to improve the global calculation.

In this work the first steps towards an alternative,
numerically-accelerated, Monte-Carlo k-eigenvalue Power it-
erative algorithm is presented. More specifically, a Newton-
based, matrix-free numerical method for solving non-linear
systems, the Jacobian-Free Newton Krylov (JFNK) method-
ology [9] is adapted to a Monte-Carlo k-eigenvalue context
aiming to accelerate the convergence of the calculated eigen-
pair. It should be mentioned that the JFNK has been imple-
mented in the deterministic solution of the neutron transport
equation [10]. However the stochastic and the computationally
burdensome nature of a Monte-Carlo algorithm complicate
significantly the problem and make a straight-forward imple-
mentation of JFNK rather impossible. As described below,
JFNK requires the execution of some inner linear iterations
per outer iteration that would increase the computational cost
significantly in a Monte-Carlo simulation context. In order to
overcome this problem, CMFD-based power iterations will be
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utilized instead of Monte-Carlo ones within each inner linear
iteration. Another important question is how the Monte-Carlo
calculated quantities required by JFNK affect the global be-
haviour of the introduced algorithm. In this work, an initial
step-by-step evaluation of the introduced methodology, devel-
oped on the OpenMC Monte-Carlo code [11], on simplified
test-cases is performed.

II. METHODOLOGY

The k-eigenvalue form of the neutron transport steady-
state equation is given by the following relation:

Ω∇ψ(r,Ω, E) + Σt(r, E)ψ(r,Ω, E) ="
Σs(r, E

′

,Ω
′

→ E,Ω)ψ(r, E
′

,Ω
′
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′
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′

+
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,Ω
′

)dΩ
′

dE
′

(1)

where r represents a point in R3, Ω is a unit vector in R3

showing the direction of the neutron motion, E is the neutron
energy, ψ is the angular flux that is connected with the the
total flux φ by the relation φ =

∫
4π ψdΩ, and keff is the effective

multiplication factor. Σt,Σs and Σ f are the total, scattering
and fission macroscopic cross-sections, ν is the mean number
of neutrons produced per fission and χ is the fission energy
distribution function. In operator form, that simplifies the
notation, the equation can be written in the following relation:

(L + T)Φ = SΦ +
1

keff

MΦ (2)

where L is the leakage operator, T is the collision operator, S
is the scatter-in operator and M is the fission multiplication
operator andΦ is the vector containing the scalar fluxes. After
rearrangement of the involved terms it takes the following
form:

(L + T − S)Φ =
1

keff

MΦ (3)

and finally:

Φ =
1

keff

FΦ (4)

Numerically this problem is traditionally solved by the Power
Iteration:

Φk+1 =
1

kk
eff

FΦk (5)

where:

kk+1
eff = kk

eff

∫
MΦk+1dr∫
MΦkdr

(6)

and k denotes the kth iterative step.
From this point on, the following idea is implemented.

The PI, from a numerical point of view, can be seen as a fixed
point iteration of the form:

uk+1 = f (uk) (7)

where u is the vector of the solution that contains also the
eigenvalue as a component of the solution:

u =

[
Φ

λ

]
(8)

where λ =
1

keff

. f denotes the fixed point iteration as follow-

ing:

f (u) =

[
λ FΦ

λ(u)

]
(9)

where λ(u) represents the updating procedure for λ. Instead of
following the traditional PI methodology, a non-linear system
is defined by setting:

r(u) = u − f (u) (10)

where r is the vector of the nonlinear residual. A linearised
form of Eq. 10 could be solved by setting, after a multivariate
Taylor expansion about a current point uk, the delta/Newton
form of the non-linear system:

Jδuk = −r(uk) (11)

uk+1 = uk + δuk, for k = 0, 1... (12)

where u is the vector of the unknowns, u0 is the initial guess,
r(uk) is the vector of the non-linear residuals, J = ∂r

∂u is its
associated Jacobian matrix, and δu is the Newton correction
vector. Because the construction of the Jacobian matrix is very
expensive it can be avoided by using a linear solver that allows
the solution of the linear system without the construction of
the Jacobian matrix. Such a family of linear solvers constitute
the Krylov solvers that require only the construction of matrix-
vector products of the form Jv where v denotes a Krylov
vector. These products can be approximated by the following
relation:

Jν =
r(u + εν) − r(u)

ε
(13)

where ε is a small perturbation parameter. The scheme de-
scribed by the Eqs 11-13 constitutes a JFNK scheme.

However, in a Monte-Carlo context, the implementation
of this methodology would require the execution of some
Krylov iterations per each Newton iteration that would be pos-
sibly proven computationally very expensive (consider that
each Krylov iteration = one perturbed Monte-Carlo power it-
eration). In order to avoid the execution of some Monte-Carlo
PIs per Newton iteration, the following idea is applied. Within
each Newton iteration the performance of a perturbed Monte-
Carlo power iteration for the calculation of the matrix-vector
products will be replaced by PIs of a mutligroup diffusion-
based method with transport-equivalent physics. Such a diffu-
sion model methodology has been utilized in [12] within the
context of CMFD acceleration. In operator form, this diffusion
model can be written as following:

QΦk+1 =
1

kk
eff

PΦk (14)
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where Q is the neutron loss matrix operator, P is the neutron
production matrix operator, Φ is the multigroup flux vector.
These two operators are constructed by tallying the desired
quantities within each Monte-Carlo cycle. As a consequence
a diffusion PI, with physics constructed equivalently to the
current Monte-carlo PI, is solved in a deterministic way using
some linear solver.

Because the execution of deterministic diffusion Power
iterations is considerably cheaper than the Monte-Carlo ones in
terms of computational time, one could utilize a considerably
large number of Krylov inner iterations per Newton outer
iteration, in order to improve the convergence.

1. Krylov iteration

The main feature of Krylov methods which makes them
suitable for use in the JFNK methods is that they need only
matrix-vector products and so the creation of the expensive
Jacobian matrix can be avoided. The general idea behind
Krylov methodology is that it generates a chain of orthonormal
vectors that are used as a basis of the subspace K j:

K j = span(rlinear
0 , Arlinear

0 , A2rlinear
0 , ..., A j−1rlinear

0 ) (15)

This basis is used for the construction of the solution of a linear
system Ax = b where rlinear

0 = b − Ax0 is the linear residual.
The solution of the linear system is constructed iteratively as a
linear combination of the Krylov vectors (Eq. 15) and can be
written as:

δx j = δx0 +

j−1∑
i=0

βi(J)irlinear
0 (16)

where j is the Krylov iteration index and the scalars βi are cal-
culated to minimize the residual. The matrix-vector products
required by Krylov methods can be approximated by Eq. 13
which is actually a first-order Taylor series expansion approxi-
mation to the Jacobian times a vector [9]. Although more than
one Krylov methods exist, GMRES [13] is probably the most
popular.

2. Setting a Monte-Carlo JFNK algorithm

The JFNK algorithm is suitable for a relatively simple im-
plementation in an existing Monte-Carlo PI scheme. Actually
only the difference between two successive PIs is needed in
order to evaluate the vector of the non-linear residuals r(u).
Consequently, all the details that concern the normalization
and the update of the involved quantities will not be modified
in this new context. It could be said that the new scheme
acts as an acceleration of the traditional Monte-Carlo power
iteration. As linear Krylov solver, GMRES method has been
chosen. The implementation of the Krylov solver was done
using Petsc library [14].

In order to apply the proposed methodology, a spa-
tial/energetic mesh is required. In this work the CMFD coarse
spatial mesh of OpenMC is used. Over that spatial mesh
and the predifined energy groups, the neutron source, the
non-linear residuals, the matrix-vector products as well as the
JFNK-correction of the PI are evaluated. In addition a way for

the communication between the Monte-Carlo particle distribu-
tion and the vector form of the information that is required by
JFNK should be defined. In order to pass from a Monte-Carlo
particle distribution to a cell-based vector form, the particle-
weight per mesh cell is counted. In order now to communicate
the JFNK correction back to Monte-Carlo, the expected num-
ber of neutrons to be born in a given cell and energy group
calculated by JFNK is compared to the PI-calculated source
distribution. This results to the generation of suitable weight
adjusted factors ( f g

l,m,n) of the following form:

f g
l,m,n =

JNFK∑
s

ws

PI∑
s

ws

; s ∈ (g, l,m, n) (17)

where ws is the neutron’s weight in a given cell (l,m, n) and
energy group (g). Therefore the correction is communicated to
the current neutron source by modifying the neutron weights
per spatial cell and energetic group as following:

w′s = ws × f g
l,m,n; s ∈ (g, l,m, n) (18)

It should be noted that each particle’s local coordinates and
energy remain constant throughout this procedure. The algo-
rithm developed in this work is summarised in Algorithm 1.

Algorithm 1 The introduced algorithm
do k = 1, Number of Power iterations

Run the kth Monte-Carlo cycle
-Calculate u′ = f (uk−1)
-Tally the CMFD-required quantities

Construct the residual: rk = uk−1 − u′

Solve the linear system: Jδuk = −rk (Krylov solver)
-do j = 1, Number of Krylov iterations (Krylov solver)

...
Perturb the solution (source and keff) : uper = uk−1 +εv
Run the diffusion based PI
Calculate: r(u + εν) = uk−1 − uper

Calculate the matrix-vector product: Jν =
r(u+εν)−r(u)

ε

...
end do
Update the global/Newton solution: uk = uk−1 + δuk

Communicate the new solution to the source bank
end do

III. TESTING THE DEVELOPED ALGORITHM -
NUMERICAL EXPERIMENTS

As mentioned above, main aim of this work is to initially
evaluate the performance of the introduced methodology (PI-
JFNK) in the analysis of some simplified models. As a first
step only the JFNK-corrected neutron fission source is com-
municated back to Monte-Carlo as an improved guess for the
next Monte-Carlo cycle. JFNK-modified keff is tested only in
the last test-case. Initially, this work evaluates the effect of
PI-JFNK on the quality of the source. Afterwards, its effect
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in complete calculations will be examined. Finally, the per-
formance of the introduced algorithm is compared with those
of the classical PI as well as the OpenMC’s in-house CMFD
accelerated PI (PI-CMFD). In this point it should be stated
that the following test-cases are fictitious models with purpose
to scout the performance of the introduced methodology.

1. A bare U-235 1-D slab case

The first test case is a simple 1-D slab with length equal
200 cm composed by just U-235 (1-D slab-1). A spatial mesh
of 100 cells and 1 energy group have been utilized for this
preliminary case (Table I). At the beginning, the effect of
one PI-JFNK cycle on the neutron source is evaluated. More
specifically after 19 skipped PI cycles, with 50k neutrons per
cycle, the classical PI source of the 20th step is compared
with the source generated by PI-JFNK for the same cycle.
Observing Fig. 1 it is obvious that PI-JFNK improves the
neutron source distribution making the curve smoother and
more similar to the well-converged source (Fig. 2) comparing
with the classical PI. In this case the general shape of the
source converges very fast, even with the classical PI, so a
graph of Shannon entropy would not make any sense.

Now the impact of PI-JFNK on the convergence of the
average eigenvalue, i.e. keff, is evaluated comparing with PI
and PI-CMFD. These calculations are performed with 50k
neutrons per cycle and 20 inactive cycles. For the PI-JFNK
case a maximum number of 30 inner (linear) iterations are
performed per outer (Power/Newton) step. Additionally, the
converged eigenvalue of a PI with high statistics, that acts as
a reference calculation, has been used for comparison. Fig. 3
shows that PI-JFNK improves the convergence of the average
keff since it seems that this method generates a more stable,
around the reference value, sequence of estimations of the av-
erage k-eigenvalue than the other two methodologies. Table II
shows the final calculated k-eigenvalue; PI-JFNK gives the
closest eigenvalue to the reference value.

Fig. 4 illustrates the behaviour of the Krylov iterative lin-
ear solver within some specific cycles. It can be seen that the
magnitude of the linear residual converges to a continuously
lower value ensuring that the global problem gradually con-
verges. In addition it seems that a lower number of Krylov
iterations could be selected since the convergence of the lin-
ear residual is achieved between the 10th and the 15th linear
iteration with no significant improvement in the remaining
iterations.

The converged neutron source generated by PI-JFNK is
illustrated in Fig. 2; the very good quality of the calculated
neutron source is ensured.

2. A bare UO2 1-D slab case

In order to make the problem more difficult, the material
properties of the fuel of 1-D slab-1 were modified in order to
obtain a dominance ratio closer to unity. More specifically, the
slab now contains UO2; the atom densities and the material
density are listed in Table I. This modified case is called 1-D
slab-2.

Initially, three calculations are performed; one PI, one
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Fig. 1. Fission source of 1-D slab-1 for the 20th cycle.

PI-CMFD and one PI-JFNK, all of them with 100k neutrons
per cycle and 10 inactive cycles. Concerning PI-CMFD and
PI-JFNK, CMFD and JFNK corrections are activated after
10 inactive cycles. For the PI-JFNK case a maximum num-
ber of 40 inner (linear) iterations are performed per outer
(Power/Newton) step. Fig. 5 shows the evolution of the Shan-
non entropy for these three cases. It can be seen that PI needs
around 100 cycles in order to achieve convergence. However
even then it is characterised by a quite oscillatory behaviour
of the Shannon entropy. On the other hand, the sources that
correspond to PI-CMFD and PI-JFNK converge almost im-
mediatelly after their activation; PI-CMFD source seems that
converges somewhat faster than the one of PI-JFNK. As Fig. 5
suggests, an extra PI calculation is performed with 100, in-
stead of 10, inactive cycles. The evolution of the average
keff is depicted in Fig. 6. It can be seen that after 700 active
cycles PI (100 inactive), PI-CMFD and PI-JFNK (both with
10 inactive) have converged approximately to the same value.
However, it is illustrated that the PI-JFNK average keff con-
verges faster than both PI and PI-CMFD. All methods diverge
slightly (∼ 25-35 pcm) from the reference value (PI with high
statistics) but it is expected that after some extra cycles they
would converge to that value. In addition, selection of higher
Monte-Carlo statistics would improve the convergence of all
methods. Figs 7-9 show the calculated fission sources in some

TABLE I. Slab models
1-D slab-1 1-D slab-2

Length 200 cm 200 cm
# mesh cells 100 100

# energy groups 1 1
w235 1 0.21
w238 - 0.68
w16 - 0.11

Density 0.00155
atoms
b − cm

19 g/cc
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Fig. 2. Converged fission source of 1-D slab-1 with PI-JFNK.
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Fig. 3. Monte-Carlo calculated eigenvalue for 1-D slab-1.

specific cycles before and after JFNK correction within the
same cycle. For cycle 11 it can be noticed that the neutron
source has not converged at all. For both cycles 40 and 100 the
general shape has converged. Higher quality is observed for
cycle 100 as was expected. For both cases JFNK correction
achieves its goal; it improves the pure PI guess within the
same cycle.

Fig. 10 illustrates the behaviour of the Krylov iterative lin-
ear solver within some specific cycles. It can be seen that the
magnitude of the linear residual converges to a continuously
lower value ensuring again that the global problem gradually
converges. It should be mentioned that the fact that this prob-
lem is more difficult than the previous case is also reflected
to the fact that lower inner convergence levels (convergence
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Fig. 4. Convergence of linear solver within some specific
cycles for 1-D slab-1.

to higher values) are noticed in this case. Also in this case it
seems that a significantly lower number of Krylov iterations
could be selected since the convergence of the linear residual
is achieved at the quite the early iterations with no significant
improvement in the remaining iterations.

TABLE II. Calculated average eigenvalues (keff) for slab cases
1-D slab-1 1-D slab-2

PI (20 inact.) 0.99922 ± 18pcm -
PI (100 inact.) - 1.60431 ± 17pcm

PI-CMFD 0.99932 ± 17pcm 1.60427 ± 17pcm
PI-JFNK 0.99900 ± 17pcm 1.60424 ± 17pcm

Reference (PI) 0.99907 ± 03pcm 1.60398 ± 05pcm

3. A single multi-region fuel pin

The third test case concerns a single-pin model with an
axial variation of the fuel composition. The main features
can be seen in Table (III). The fuel pin is surrounded by
coolant-moderator. At the top and bottom there is a reflector.
In the radial direction, reflective boundary conditions have
been utilised whereas at the axial edges vacuum boundaries
have been implemented. The fuel/moderator temperature as
well as the moderator density profile have been calculated
by some iterations of a coupled neutronic/Thermal-Hyduralic
calculation [15] with 38 axial levels in the fuel region. The
resulting strong density gradient is considered as a factor that
complicates the solution of the Monte-Carlo k-eigenvalue cal-
culation. Fig. 11 shows the coolant density profile that is used
by this model.

In this case three calculations are performed; one PI, one
PI-CMFD and one PI-JFNK. One PI with high statistics that
acts as the reference calculation has also been performed. The
spatial mesh that is used in PI-CMFD and PI-JFNK consists
of 1×1×420 cells. In both PI-CMFD and PI-JFNK 10 inactive
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Fig. 5. Shannon entropy of the source of 1-D slab-2.
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Fig. 6. Monte-Carlo calculated eigenvalue of 1-D slab-2.

cycles are used and the acceleration feedback is activated in
the 10th cycle. The classical PI is performed with 150 inactive
cycles. In both cases the initial neutron source guess is a
spatially flat neutron distribution.

Fig. 12 shows that PI needs around 100 cycles to achieve
convergence of the source. However even then PI is char-
acterised by a somewhat oscillatory behaviour of the Shan-
non entropy. On the other hand the sources that correspond
to PI-CMFD and PI-JFNK converge almost immediately af-
ter their activation. More specifically, PI-JFNK converges
faster than PI-CMFD; PI-JFNK converges after ∼70 overall
cycles whereas PI-CMFD converges after ∼100 overall cycles.
Fig. 13 illustrates the evolution of the average keff. The con-
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Fig. 7. Fission source of 1-D slab-2 for the 11th cycle with
PI-JFNK.
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Fig. 8. Fission source of 1-D slab-2 for the 40th cycle.

verged eigenvalue calculated by the PI with high statistics is
used as a reference. It can be seen that PI-JFNK converges af-
ter less than 100 active cycles, whereas PI (with ∼150 inactive
cycles) converges after 700 active cycles. PI-CMFD con-
verges after ∼200 active cycles. In addition Table (IV) shows
that the PI-JFNK eigenvalue is the closest to the reference
value.

At the end the introduced methodology is tested having
activated the keff feedback additionally to the neutron source
one. Two calculations run with a spatial mesh of 105 cells;
one with only source feedback and one with both source and
keff feedbacks. Fig. 14 shows the evolution of the Shannon
entropy. It can be seen that in the case where the keff feedback
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Fig. 9. Fission source of of 1-D slab-2 for the 100th cycle.
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Fig. 10. Convergence of linear solver within some specific
cycles for 1-D slab-2.

is activated the Shannon entropy converges faster, i.e. in less
than 75 cycles, whereas the case without keff feedback needs
about 150 cycles in order to achieve convergence.

4. Inner vs outer convergence

In this point it should be mentioned that the convergence
of the outer Newton iteration can be linked to the one of the
inner Krylov iteration by the following relation

‖ Jk∆uk + r(uk) ‖2< γ ‖ r(uk) ‖2 (19)

where γ is a forcing term. Details about the role of this forcing
term can be found in [16]. Here it should be stated that a
proper trade-off should be found between the convergence

TABLE III. Single pin model
Single multi-region pin

Active length (cm) 380
Total length (cm) 420
Pellet radius (cm) 0.5225
Pin radius (cm) 0.6125

Fuel enrichment (%) 0.71/3.3/7.7

TABLE IV. Calculated average eigenvalues (keff) for single-pin

Single multi-region pin
PI (150 inact.) 1.25800 ± 17pcm

PI-CMFD 1.25804 ± 16pcm
PI-JFNK 1.25820 ± 17pcm

Reference (PI) 1.25815 ± 08pcm

level of the inner Krylov iteration and the one of the outer
Newton iteration. Improper balance between the convergence
of these two iterative procedures can result in the issue of
“over-solving”. Practically this means that a very low γ has
been used in quite early Newton steps implying that a very
accurate linear solution has been obtained to a quite inaccurate
Newton correction. This can affect negatively the convergence
of the outer Newton iteration. Discussion about this issue can
be found in [17] and [18]. The analysis of the connection
of these two norms was out of the scope of this work and
constitutes subject for future research.

IV. CONCLUSION

This work introduces a new methodology that aims to
accelerate the convergence of the classical Monte-Carlo Power
iteration. This new methodology is based on the Jacobian-
free Newton Krylov (JFNK) numerical technique. Because a

Fig. 11. Moderator density profile of the single-pin model
(bottom to top).
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Fig. 12. Shannon entropy of the source of the single-pin.

Fig. 13. Monte-Carlo calculated eigenvalue of the single-pin.

straight-forward implementation of JFNK in a Monte-Carlo
context is rather impossible due to the high computational
cost, the Coarsh Mesh Finite Difference (CMFD) diffusion
technique was combined as an approximation with JFNK in
order to alleviate this problem. Testing in simplified cases
shows that the introduced methodology improves the quality
of the neutronic solution update within each iteration com-
paring with the classical PI. This improved update in each
iteration results in the acceleration of the convergence of the
global problem. More specifically this methodology improves
significantly the convergence comparing to the classical Power
iteration. Furthermore, it seems that it behaves in a very sat-
isfying way even comparing with CMFD; however further
investigation is required.

Since JFNK involves a set of various numerical parame-

Fig. 14. Shannon entropy of the source of single-pin; PI-JFNK
without and with keff feedback.

ters, their optimal combination with the Monte-Carlo statistics
should be investigated. In addition, the performance of the
method in problems of larger scale should be examined and
evaluated. Finally, the computational cost of this method
should be investigated and compared with other methods.
These issues constitute subject for future research.
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