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Abstract - An algorithm to compute differential entropy of the fission source distribution in Monte Carlo
k-eigenvalue calculations was developed and implemented into a research version of MCNP6 R©. Calculating the
differential entropy involves finding the distance between each fission source location and its nearest neighbor.
For a batch size of N, a simplistic algorithm would require O(N2) evaluations, which is computationally
prohibitive. The efficiency is significantly improved using a search grid and near linear scaling is observed
for test problems. The differential entropy and the Shannon entropy, which is a commonly used statistic for
diagnosing fission source convergence, show similar convergence behavior if the user-selected mesh for the
Shannon entropy is appropriate. Because of this, the differential entropy may be used in place of the Shannon
entropy for fission source convergence with the added benefit of not requiring a user-specified mesh..

I. INTRODUCTION

The Shannon entropy is one common approach to di-
agnose convergence of the fission source in Monte Carlo k-
eigenvalue calculations [1] and is employed by codes including
MCNP, Serpent, OpenMC, and KENO. The Shannon entropy
requires the use of a mesh discretization superimposed upon
the geometry. Obtaining a reliable estimate of the convergence
of the fission source with the Shannon entropy requires that the
selected mesh be reasonable. A mesh that is too coarse will not
capture the changes in the fission source between iterations,
leading to a poor estimate of source convergence. Conversely,
a mesh that is too fine requires a very large number of particles
per iteration to adequately sample the mesh; otherwise the
presence of stochastic noise in the Shannon entropy makes
detecting convergence difficult. Furthermore, some problems
involving distributed regions of fissionable material may not
be conducive to a regular mesh.

The differential entropy is the continuous analog of the
Shannon entropy. It may be estimated without the requirement
of discretization by finding the distances between the source
points and their corresponding nearest neighbors. This work
introduces the nearest-neighbor estimate of the differential
entropy applied to fission source convergence. The method
is implemented in a research version of MCNP6 R©1 [2]. The
results show that the differential entropy has very similar con-
vergence behavior of the Shannon entropy with a good mesh
and can be computed efficiently with near linear scaling on
the batch size if a search grid is employed (if a simplistic
approach is used, the scaling is quadratic, which is computa-
tionally prohibitive). The differential entropy, therefore, may
be used in place of the Shannon entropy, thereby removing the
requirement for a superimposed mesh.

II. THEORY

The Shannon entropy is defined by discretizing the prob-
lem space into M regions. In each region j, the fraction of

1MCNP R© and Monte Carlo N-Particle R© are registered trademarks owned
by Los Alamos National Security, LLC, manager and operator of Los Alamos
National Laboratory.

fission source neutrons in that region, p j, is determined, and
the Shannon entropy is estimated by

H = −

M∑
j=1

p j ln p j. (1)

Here the natural logarithm is used throughout the paper, but
the base of the logarithm is arbitrary. To assess convergence,
the Shannon entropy is computed each iteration, and the con-
vergence of the Shannon entropy is used as a surrogate for the
convergence of the fission source.

The differential entropy is defined by the volume integral
over the entire problem domain

h = −

∫
V

p(x) ln p(x) dV, (2)

where p(x) is the normalized (and non-dimensionalized) con-
tinuous fission neutron source density. Note that the differ-
ential entropy is not the infinitesimal limit of the Shannon
entropy, which leads it to be unbounded and not a measure
of uncertainty about a distribution. The two however, can
be related in the the limit of a fine, uniform mesh for the
Shannon entropy, where the difference between the Shannon
and differential entropy is the logarithm of the mesh volume
(see Sec. 8.3 in Ref. [3]). Therefore, the differential entropy
should exhibit a similar convergence trend, albeit to a different
value, to the Shannon entropy with an sufficiently fine mesh
discretization.

It has been shown by authors in the statistical literature
[4] that the differential entropy in D-dimensional space may be
estimated by a nearest-neighbor estimate using a finite number
of random sample points:

ĥ =
D
N

N∑
i=1

ln ρi + ln N + ln

 πD/2

Γ
(
1 + D

2

)  + γ. (3)

Here N denotes the number of source neutrons in the current
iteration, ρi is the distance between the ith neutron and its
nearest neighbor (excluding ones at the same location because
of the fission process), Γ(x) is the gamma function, and γ is
the Euler constant ≈ 0.5772. The third term is the logarithm
of the volume of a D-dimensional unit sphere.
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III. IMPLEMENTATION

A Fortran module computing the differential entropy was
written and inserted into MCNP6.1.1, and is optionally called
in place of the existing Shannon entropy calculation. Other
minor modifications were made to the input parsing routines
and common blocks for handling of restart files. The modifi-
cations to the source code were designed to be non-obtrusive
so that they could be ported to other Monte Carlo software
packages.

1. Nearest-Neighbor Search

The computation of the differential entropy requires a
nearest-neighbor search, which is the most time consuming
portion of the method. An exhaustive approach of calculating
the distance between each source point and all other points
and taking the minimum requires O(N2) function evaluations,
which is unacceptable for recommended batch sizes of 100k
or more found in production calculations. It is therefore nec-
essary to develop a more efficient algorithm that scales accept-
ably. A simple approach to improve the efficiency that was
adopted employs a structured, regular search grid. The user
may specify the search grid, otherwise it is determined auto-
matically. Note that, unlike the Shannon entropy, the search
grid does not affect the result of the differential entropy, merely
the efficiency of calculating it.

A. Automated search grid

The automatic determination of the search grid begins
by determining the minimum and maximum coordinates in
each cardinal (x, y, z) direction. This information is used to
emplace an axis-aligned bounding box, which serves as the
extents of the search grid. The extents are 10% larger than the
most distant points in each cardinal direction to allow room for
growth in subsequent iterations. Additionally, if any source
points lie outside the user-specified bounds of the search grid,
then the extents of the grid are expanded to encompass all
fission source points.

Once the bounding box has been determined, a uniform
mesh spacing in each cardinal direction is determined based
upon the batch size. An appropriate guess for the number of
elements in each cardinal direction is made based on empirical
studies, and is 0.25 times the batch size to the 1/3 power in
each dimension, which is motivated by the fact that in 3D,
the product of the number of mesh elements scales linearly
with the batch size. To ensure the search grid is neither too
coarse nor too fine, which limits performance of the search
algorithm, the automatic mesh must have at least 5 or at most
100 elements in each cardinal direction.

The percentage of the CPU time required for the differen-
tial entropy routines is estimated during the calculation, and
if its moving average over the last few cycles (currently 5)
exceeds 5%, the search grid is refined along all valid direc-
tions. This is currently done by increasing the number of mesh
spacing by 2 elements in 3D, 16 elements in 2D, and 256
elements in 1D; this was shown to be effective using empirical
studies. The moving average is then reset so that refinement is
not done too frequently. The algorithm will continue to refine

based on the entropy CPU time percentage moving average
as needed to be below 5% or until either the search grid size
exceeds a specified limit (currently 106) or further refinement
does not lead to any improvement. Further improvements or
changes in the future are anticipated.

B. Search algorithm

At the end of the iteration, the algorithm first determines
the search grid element of each fission point, building a data
structure that lists the fission source points within each grid
elements. As stated before, if any point lies outside the search
grid, the entire grid is reconstructed and the process restarts
with the new grid. When duplicate fission source points at the
same location are encountered, a new entry is not added to the
data structure. Rather, a counter is incremented that indicates
the number of fission source sites at this location, and the
contribution of that fission source point to the calculation of
the differential entropy is multiplied by the number of points
indicated. The reason for doing this simplifies the algorithm
to automatically exclude fission source points at the same
location from the nearest-neighbor distance calculation.

Additionally, to ensure the algorithm remains efficient,
there is a maximum number of points allowed within each
search grid element, currently 5000. If this number is ex-
ceeded, the mesh will be refined as discussed previously on
the next iteration. While this limit does bias the differential
entropy and can therefore, in principle, interfere with the con-
vergence diagnosis, this limit rarely comes into play in practice
except for the first few iterations when the initial source guess
is a point source with a large batch size; it is for this situation
that this limit was instituted, as without it, the time required
to compute the differential entropy requires approximately N2

calculations and is computationally prohibitive. In the prob-
lems tested, this situation rectifies itself after a few iterations
as the source distribution spreads out toward its stationary
distribution.

After the search grid data structure is built, the distance
between each fission source point and its nearest neighbor is
computed. For each fission point, the distance to every other
point in its grid element is computed. Once the minimum
distance is known, a check is made in each cardinal direction
if it is possible for a point in each adjacent element to have
a smaller distance. If so, then the search is expanded along
those cardinal directions to encompass valid neighboring grid
elements. This search continues to expand until it is impossible
for any neighboring element to contain a point that has a
smaller distance, and the nearest-neighbor distance is accepted
and scored.

To improve the efficiency, the nearest-neighbor search is
implemented to take advantage of OpenMP threading. (The
neutron transport routines in MCNP6 already take advantage
of threading, so the infrastructure for implementing this is
already in place.)

IV. RESULTS

Results are shown for three cases: a 1-D uniform slab; the
“K-Effective of the World” problem [5]; and the OECD/NEA
source convergence benchmark 1 [6], a checkerboard of stor-
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age assemblies that herein is referred to as the fuel storage
pool source convergence benchmark. Simulations were run
on a Mac OS X computer with a 2.5 GHz Intel Core i7 pro-
cessor having 16 GB RAM while using four OpenMP threads
compiled with gfortran. The 1-D slab has an analytic diffu-
sion theory solution for the differential entropy and shows the
differential entropy is being computed correctly. All cases
compare the differential entropy with the Shannon entropy on
a well-chosen discrete mesh and show that the two entropies
show similar source convergence behavior. Computation per-
formance results are also presented, and they show that the
differential entropy calculation scales favorably for large batch
sizes and takes a few to several percent of the total computa-
tional time.

1. 1-D Uniform Slab

To ensure the modified version of MCNP6 is calculating
the correct differential entropy, a simple test case of a 1-D
uniform slab with width L mean-free paths centered about the
origin is run. Fictitious nuclear data is used: Σ f = 0.2 cm−1,
Σc = 0.3 cm−1, Σs = 0.5 cm−1, Σt = 1.0 cm−1, ν = 2.5. If
diffusion theory and zero-flux boundary conditions are valid
(the slab is not too strongly absorbing and is optically thick),
then the fission neutron probability density is approximately

p(x) ≈
π

2L
cos

(
πx
L

)
, −L/2 < x < L/2. (4)

The differential entropy is

h = −

∫ L/2

−L/2

π

2L
cos

(
πx
L

)
ln

[
π

2L
cos

(
πx
L

)]
dx

= 1 − ln
(
π

L

)
. (5)

For a slab of width L = 100, h ≈ 4.46. Two source guesses
are used: (i) a point source at the origin and (ii) a uniform
source. The corresponding differential entropies of these are
distributions are h = −∞ and h = ln L ≈ 4.61 respectively.

The problem was run for 2000 iterations each having
20000 particles on average. Figure 1 shows the differential
entropy as a function of iteration for the point and uniform
source guesses. Both converge to around the expected result.
The average differential entropy of the last 1000 iterations
is 4.43 for the point source guess and 4.45 for the uniform
source guess, which compare favorably with the reference
result of 4.46.

The differential entropy is compared with the Shannon
entropy on a discretized mesh with 20 spatial zones, such that
each element is 5 mean-free paths thick. Figure 2 compares
the differential and Shannon entropies. The Shannon entropy
is scaled by an additive constant to put the curve on the same
scale. Since both estimates used the same histories, the two
curves show very similar trends, predicting convergence at
around 500 iterations and having a Pearson correlation co-
efficient of 0.94 in the last 1000 iterations. The differential
entropy does has a higher variance, but this is a consequence
of the coarse mesh spacing possible in this simple problem.
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Fig. 1. Convergence of the differential entropy for the 1-D
slab to the reference result.
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Fig. 2. Convergence of the differential and Shannon entropy
for the 1-D slab.

2. K-Effective of the World

A variant of the K-Effective of the World problem was
tested. This problem was specifically designed by Whitesides
in 1971 to stress Monte Carlo criticality calculations with the
computational capabilities at the time and still remains a good
test problem because of its convergence behavior. The problem
is a 30-cm pitch, 9 × 9 × 9 array of subcritical Pu-239 spheres
(r = 4 cm) in vacuum with the exception of the center sphere,
which is supercritical (r = 5 cm). The array is surrounded
by a neutronically infinite region of water. The source guess
consists of uniformly selected point sources at the centers of
each sphere. The true fission distribution, however, is peaked
around the central, more reactive sphere. This problem was
difficult because it is possible, with the small batch sizes of
hundreds that were typical at the time, for the neutrons to
entirely miss the central, most reactive sphere and therefore
significantly underestimate the k eigenvalue.

The problem was run for 2000 iterations each having
20000 particles on average. This batch size ensures that con-
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Fig. 3. Convergence of the differential and Shannon entropy
for the K-Effective of the World problem.

vergence from the near uniform source guess to the true fission
distribution peaked around the central sphere is reliable.

Figure 3 shows the Shannon entropy (scaled by an addi-
tive offset) and the differential entropy. The Shannon entropy
mesh is a uniform 9 × 9 × 9 grid that covers the array of
spheres. The two measures show similar trends, having a Pear-
son correlation of 0.91 in the last 1000 iterations. Both of
them predict convergence at about 100-150 iterations.

3. Fuel Storage Pool Source Convergence Benchmark

The fuel storage pool source convergence benchmark was
designed to stress the convergence of the fission source, having
an extremely high dominance ratio that is nearly one. The
problem is geometrically large consisting of a checkerboard
of LEU fuel assemblies in water of fuel that are nearly neu-
tronically decoupled. The checkerboard is 24 × 3 with each
having a side length of 27 cm. The fuel height is 360 cm with
30 cm of water on top and bottom. Surrounding the checker-
board on the top, left, and right sides is 40 cm of concrete; the
bottom side is water. The top-left element is adjacent to the
concrete and has fuel that is reflected on both sides, whereas
the the top-right corner has no fuel. This leads to a large tilt in
the fission rate between the left and right sides that is several
orders of magnitude. The initial source guess is a uniform box
surrounding the active fuel region, which is a poor guess for
this problem and leads to a long convergence time on the order
of thousands of cycles.

The Shannon entropy mesh is 96 × 24 × 6, covering the
fuel-containing portion of the problem and ensures there is a
4 × 4 grid in each assembly zone, each having 6 axial zones.
The problem was run 4000 iterations each having 20000 par-
ticles on average. Figure 4 compares the Shannon entropy
(scaled by an additive offset) and the differential entropy. Both
curves show that the entropy of the source takes over 1500
iterations to converge. Note that the chosen batch size is too
small to sample the entire problem given the extreme tilt in
the fission density shape, but the point is to show that the
two measures give similar information. As before, the dif-
ferential entropy has more statistical noise than the Shannon
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Fig. 4. Convergence of the differential and Shannon entropy
for the fuel storage pool source convergence benchmark.

entropy from a well-chosen discrete mesh. The correlation
coefficient for the last 2000 iterations is about 0.80; while not
as high as the previous cases, the two entropy measures are
still significantly correlated.

4. Computational Performance

The nearest-neighbor search algorithm may take a signif-
icant amount of computational effort. The measure of com-
putational cost is the ratio of the computational time taken
to compute the differential entropy to the total computational
time. To help quantify this, a uniform, one-speed 20× 20× 20
mean-free path cube (same nuclear data as the 1-D slab) was
run for variable batch sizes with 100 inactive and 400 active
cycles with a source guess of a product of cosines in x, y, z.
No guess for the search mesh is provided, and the algorithm
must find one itself.

The results are given in Table I. There appears to be a
slight increase in the computational cost for large batch sizes
(∼106 or more), but the cost is still on the order of 5% (the
threshold used for refining the search grid), indicating it grows
much slower than O(N2), the brute-force nearest-neighbor
search complexity. Using one-speed data eliminates the com-
putational cost associated with interpolating cross sections,
which is often one of the most costly portions of a neutron
transport simulation, so these represent a case where the cost
should be proportionately similar or higher. Similar computa-
tional costs were obtained for continuous-energy cases (e.g.,
the fuel storage pool source convergence benchmark) that

Batch Size Cost (%) Grid Elements

103 4.6 203

104 5.8 373

105 4.8 383

106 6.0 833

107 7.0 1003

TABLE I. Computational cost (fraction of CPU time) of com-
puting the differential entropy for a one-speed cube.
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indicate costs of a few percent, confirming this assertion.
Note that hese results were obtained with the parameters

and methods described previously. Some amount of empirical
tuning was done to reach these results, and it is quite likely
that further optimization is possible.

V. SUMMARY & FUTURE WORK

The nearest-neighbor calculation of the differential en-
tropy of the fission source was implemented in a research
version of MCNP6.1.1. Testing shows that the method accu-
rately computes the differential entropy and that it produces
similar source convergence behavior observed with the Shan-
non entropy given a well-chosen mesh. This demonstrates that
the differential entropy may be used in place of the Shannon
entropy, and may be especially beneficial in problems where a
suitable mesh may be difficult or impossible to find and elimi-
nates a potential source of user error. The absence of a mesh
requirement may also facilitate the development of methods to
assess appropriate sampling or potentially calculations of the
mutual information, which gives information about the fission
source.

A significant disadvantage is that the nearest-neighbor
algorithm is significantly more resource intensive compared
with the straightforward Shannon entropy calculation; how-
ever, empirical results show that with the implemented accel-
erations, the scaling to large batch sizes is favorable with a
computational cost of a few to several percent. Further effi-
ciency improvements should be possible, and the requirement
that the search mesh be regular needs to be addressed. Addi-
tionally, the differential entropy has a higher variance than a
well-chosen coarse mesh for the Shannon entropy. A portion
of the variance is because of the large negative scores when
the distances ρi are small. A potential approach that can ad-
dress this is to base the differential entropy on the Kth nearest
neighbor, which limits these large negative contributions.
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