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Abstract - The statistical error and computational efficiency of Monte Carlo reaction rate estimation depends
crucially on which Monte Carlo procedures are used. We present a systematic comparison of the variance and
computational cost of the most common estimation procedures and several others, and we show a non-trivial
dependence of the choice of the optimal estimator on the problem parameters. The comparison is based on an
invariant imbedding procedure, in which systems of ordinary differential equations (ODEs) are derived that
quantify the statistical error and computational cost of each estimator. We analyze in detail a scenario with
forward-backward scattering in a one-dimensional slab. For this test case, we perform a parametric study of
the expected statistical error and computational cost by numerically solving the ODEs.

I. INTRODUCTION

Plasma edge simulations are important in the analysis
and design of the heat and particle exhaust in nuclear fusion
divertor analysis and design [1]. These simulations have to
take into account the behavior of plasma and neutral particles.
The plasma is usually well described by Navier-Stokes-like
equations, the Braginskii equations, that can be simulated with
a finite volume (FV) code. The neutral particle distribution
requires modeling in a position-velocity phase space with
kinetic equations. The additional dimensions give a Monte
Carlo (MC) method the upper hand over FV.

Coupling both subsimulations is a challenge due to the
stochastic nature of the MC method. Plasma and neutral parti-
cles interact through (at least) absorption and scattering colli-
sions. These interactions cause the exchange of mass, momen-
tum and energy between the plasma and the neutral particles.
Hence, the stochasticity of the MC neutral simulation is trans-
ferred to the FV plasma simulation. The resulting statistical
noise can hamper the convergence of the simulation. To reduce
the impact of the noise, the statistical error of the MC simula-
tion has to be reduced. This can be done by either increasing
the number of particles, and consequently the computational
cost, or by reducing the variance on the simulation of a single
neutral particle.

A fundamental way of reducing the variance on the simu-
lation of a single MC particle is selecting an estimator, which
attains a lower statistical error on the quantities of interest
for the same computational cost [2]. Which estimation pro-
cedure is most efficient depends non-trivially on the problem
under study. To make a well-founded choice, a sound under-
standing of the estimators’ behavior for different problems
is required, as well as quantitative guesses of potential gains
in changing the estimating procedure. We assess the effect
of different choices in the MC estimators by conducting a
parametric study for a coherent and relevant set of estima-
tors. To this end, we construct ODEs that provide the variance
of the different estimators in a one-dimensional slab setting.
These are then numerically simulated for different values of
the scattering and absorption rates, as well as the anisotropy,
i.e., direction-preference of the post-collision velocity.

In [3], MacMillan derives ODE:s for the statistical error of
a small set of reaction rate estimation procedures in a forward
scattering scenario. Indira [4] similarly studied the statistical
error of several for leakage estimation procedures, but included
forward-backward scattering.

Both the setting in [3] and [4] allowed for significant
simplifications in the ODEs for the statistical error, which
have a comprehensive analytical solution. In contrast, the
model problem with forward-backward scattering we consider
for reaction rate estimation is much more relevant to realistic
plasma edge simulations. This results in much larger systems
of ODEs, which need to be solved numerically.

Other analytical studies with a similar aim of analytically
determining the variance of the most-used estimation proce-
dures, are most notable by Lux. He determined approximate
formulas for the variance of different estimators [5], and suffi-
cient conditions for one estimator to outperform another [6].
We also refer to [7—11] which use analytical calculations of the
variance for variance reduction through importance sampling
or similar techniques.

In section II we describe the model and the problem under
study. Subsequently, the estimation procedures are shortly dis-
cussed: in section III we introduce the most-used estimators
in reaction rate estimations and in section IV we explain how
the simulation itself can be adapted to reduce variance. In
section V we illustrate how the systems of ODEs are derived
via an invariant imbedding procedure. Section VI contains
a comparison of the performance of the different estimation
procedures throughout the parameter space. The potential ap-
plication of these results are discussed in section VII. Finally,
a short summary and future prospects are given in section VIIIL.

II. MODEL SETUP AND ANALOG MC SIMULATION

In a practical plasma edge simulation, the simulated neu-
tral particles move in a 3D/3D (position r/velocity v) space.
The particles originate at the target by recombination of the
plasma, indicated by a source term S(r,v), which is only
nonzero at the target. As they move, neutral particles un-
dergo two types of collisions: charge-exchange collisions,
during which a neutral particle collides with a plasma ion and
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they exchange charge, and ionization, during which a neutral
particle gets absorbed by the plasma. Since plasma particles
are not modelled explicitly, charge-exchange is simulated by a
scattering event, in which a neutral particle is removed from
the simulation and replaced by a new neutral particle with ve-
locity drawn from the distribution f; postcol,-(¥), Which depends
on the plasma. The rates at which each of these collision types
occur are given by the cross-sections X(r, v) and X,(r, v). The
resulting stationary kinetic equation for the neutral particle
density distribution function ¢,(r,v) is

S(r,v)
N———
source from the plasma
= Zs(r, V)| (r,v) — Za(r, V) V|, (r, v)

sink due to scattering
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Studying the variance of source term estimators in this general
3D/3D setting quickly becomes intractable due to the large
dimension of the parameter space that needs to be considered.
Here, we therefore restrict to a one-dimensional domain of
length L. Additionally, the cross-sections for absorption (ion-
ization) X, and scattering (charge-exchange) X are taken to be
constant in this domain. Finally, we consider the velocity to
always be 1. All particles enter the one-dimensional domain
from the left. Then, the only additional parameter that remains
is the probability P, that the particle has a post-collision veloc-
ity of +1. In that sense, the deviation of P, from 0.5 represents
the anisotropy of scattering collisions.

To simulate a particle, we give it an initial position at the
left boundary (x = 0) and an initial velocity 1. A distance to
the next collision is then sampled from the exponential distri-
bution p oc &) with Xy = X, + Z. If, after this distance, the
particle would be outside of the domain, no collision occurs
and the particle is taken out of the simulation. If not, there is a
probability of Z,/Z, the particle gets absorbed and disappears
from the simulation. With probability X,/%, the particle un-
dergoes a scattering event and a new velocity is sampled from
{—1, 1} with corresponding probabilities {1 — P,, P,}. New
collision positions are sampled until the particle disappears
from the simulation. Such a simulation tries to simulate the
particle as if it is a physical particle. These simulations are
called analog, and we denote them by a.

This very simple model does maintain a strong connection
to actual neutral particle simulations. It can be viewed as the
simulation of one passage of a particle through a grid cell of
the piecewise constant discretization of the plasma variables,
albeit with reduced dimensionality.

III. ESTIMATORS

In our study, we will focus on Monte Carlo simulations of
which the goal is to estimate the expected number of collisions
of a certain type a neutral particle undergoes when entering
the 1D slab (or the grid cell) from the left. If, for instance, the
expected exchange of mass with the plasma were to be the

goal of the simulation, this number should be multiplied with
the average amount of exchanged mass per collision.

The most commonly used reaction rate estimators are
collision estimators, track-length estimators and next-event
estimators (also called expectation estimators) [12]. These es-
timators will be introduced briefly, but first we discuss analog
estimators, which are more fundamental.

Analog Estimator. The basic way to estimate a source
term from a Monte Carlo simulation is by simply counting
what happens, as it happens in the physically based simulation.
To estimate the expected number of absorption collisions, for
instance, one scores 1 every time an absorption occurs. This
analog estimator for absorption will be denoted by a_abs.
When counting scattering events, we denote the analog esti-
mator by a_sc.

Collision Estimator. The collision estimator, as well
as the subsequent estimators, cease counting what physically
happens, while remaining unbiased. The idea of the collision
estimator is to count the probability the collision turns out
to be of the type to be estimated, at every collision. To es-
timate the amount of absorption events, one scores X, /% at
every collision, irrespective of whether it is an absorption or a
scattering collision. If one estimates the expected number of
scattering collisions, X /%, is scored at every collision. Similar
as for the analog estimators, we denote the two kinds of colli-
sion estimators by c_abs, respectively c_sc. For the collision
estimator, nor for the next-event and track-length estimators,
which are explained in the subsequent paragraphs, it is neces-
sary to distinguish between the type of event of interest. For
these three, this would only amount to a scaling of the scores,
which has no impact on our performance measures that look
at the relative statistical error. In the remainder of this text
we will denote by X the cross-section of the collision type of
interest.

Next-Event Estimator. As the name indicates, the esti-
mator looks as far as the next collision. It counts the probabil-
ity that a next collision of the type of interest occurs within
the domain. Since the collision events are exponentially dis-
tributed, the probability for a new collision before the end of

the domain is
D
f Zte_z‘[dﬁ =1-—¢™P,
0

with D the distance from the current collision point to the
end of the domain, given that the particles continues in its
post-collision velocity. The probability of that next collision
being of the type of interest is £/Z;. So at every collision, this
estimator counts
D
z T =de = z (1-e™P). (1)
2 Jo %

We denote the next-event estimators by ne_abs and ne_sc.
Track-Length Estimator. The track-length estimator
can be derived by partial integration of Eq. (III):
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The two terms between the brackets equal the expected dis-
tance the particle will travel in the domain without colliding.
There is a probability of e~* that it will not collide, with D
the distance travelled in that case. The second term between
brackets is the integral over the product of a distance £ times
the probability of colliding for the first time at that distance
¢. This means another unbiased estimator for the amount of
collisions of the type of interest scores X times the distance
travelled in the domain. This is the track-length estimator and
the two versions denoted by t1_abs, respectively t1_sc.

IV. NON-ANALOG MC SIMULATION

In contrast to the estimator type, which only changes
what is scored during the simulation, survival biasing (also
called implicit capture) impacts the simulation itself. The
particles no longer behave as physical particles; hence the
name non-analog. The aim is to let particles penetrate deeper
into the domain, so less frequented areas are still sampled
sufficiently [12]. In concreto, survival biasing entails that
absorption is not executed by letting the particle disappear,
but by reducing its weight with the probability of absorption.
This way, particles are much more likely to traverse regions
with a high absorption probability, a ‘survival bias’ that is
compensated by a decrease of the particle weight. We investi-
gate the effects of two options to assign the absorption events:
to the collision events or along the path, these form the two
limiting cases as described by [13, 14]. Except for the analog
estimators, the described estimators can be used in an analog
simulation and both of these non-analog simulations. Sev-
eral source term estimation procedures have been conceived
based on non-analog MC simulation. We briefly review the
two most common ones, for which we introduce a name that
allows treating them in a unified way with the estimators of
section III. To allow for a systematic comparison and discus-
sion we introduce a terminology that connects the estimator
types to the simulation types.

Non-Analog Collision Type Simulation. In the analog
situation, there is a probability of Z,/%; to be absorbed at
a collision (which means the particle is removed from the
simulation) and a probability of Z,/%; to be scattered. One
can always simulate a scattering event at a collision, while
simultaneously multiplying the weight by X/ to account for
the probability that the event was an absorption. Due to its
focus on the collision events this type of simulation will be
called the non-analog collision type simulation and is denoted
by nac.

Non-Analog Track-Length Type Simulation. The sec-
ond option is to have the absorption events be carried out along
the path. When the particle undergoes a scattering event after
a certain distance d, one can change its weight with the ex-
pected fraction of particles that were to be absorbed before the
scattering location was reached. This means only the collision
density of scattering events is sampled, so this should be taken
into account while scoring. This non-analog track-length type
simulation will be denoted by natl.

There are several ways to understand these methods. The
simplest interpretation is probably by considering each simu-
lated particle as to represent an infinite number of ‘real’ parti-

cles that move coherently and collide simultaneously. During
this collision (for nac) or along their trajectory (for natl), a
fraction of these particles get absorbed, whereas the remaining
fraction continues to move coherently with the newly selected
velocity.

V. INVARIANT IMBEDDING PROCEDURE

The previously discussed estimators (c_abs, c_sc,
tl_abs, tl_sc, ne_abs and ne_sc), combined with the dif-
ferent simulation types (a, nac, natl), give 18 estimation
procedures, which we supplement with the basic estimators
a_abs and a_sc for the analog simulation. We study their
performance under different values for the parameters of the
simplified problem discussed in section II (Z,, Zs, P,). Their
performance is measured in both the relative statistical error
and the computational cost, given a certain statistical error.

To make a quantitative comparison of these performance
measures in the entire three-dimensional parameter space, MC
experiments are not a feasible option. Estimating variance suf-
ficiently accurately would be too computationally expensive
for a three-dimensional set of parameter values. Instead, an
invariant imbedding procedure is used to derive ODEs that can
be used to calculate the statistical error on the computed num-
ber of collisions, as well as the computational cost associated
with a fixed statistical error.

The invariant imbedding procedure [15, 16] for the vari-
ance consists of writing the first and second moment of the
score in a slab of length x + Ax with fixed parameters (Z, Z,,
P,) in terms of the scores for a slab of length x. By taking the
limit of Ax — 0, an ODE is formed with the domain length as
an integration variable. For the other quantities that pop up,
a similar procedure can be followed until the set of ODEs is
closed.

As an example, we will elaborate an invariant imbed-
ding procedure for the second moment of a non-analog colli-
sion type track-length estimation procedure (nac_t1_abs or
nac_t1_sc) under the condition that the particle leaves the do-
main, the same way as it entered. For the detailed derivations
and the other scenarios, we refer to [17].

Invariant imbedding example

To recapitulate, a non-analog collision type simulation
(nac) executes every collision as a scattering event, keeping it
unbiased by reweighing the particle by a factor X, /% at every
collision. A track-length estimator (t1_abs or t1_sc) counts
¢, with € the distance travelled and X the cross-section of the
scored event, which can be either X, or .

Let T denote an arbitrary nac_t1l_abs or nac_tl_sc
estimation. We will add a subscript to indicate if a particle
enters the domain from the left (/) or from the right (r), and
similarly for exiting the domain. For instance, Tj; denotes
an arbitrary nac_t1_abs or nac_t1_sc estimation with the
condition that the particle leaves and enters the domain from
the left. Its expected value is denoted by #; and its second
moment ]E[TIZI] by 1. We can group all the possible particle
paths that enter and leave from the left side in a domain of
length x + Ax based on the behavior inside the leftmost part
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of length Ax. We neglect paths that collide more than once
in the Ax part of the domain, since these would occur with a
probability of order O(Ax?), Ax — 0. There are five options
left, which are shown in Fig. 1. The behavior of the particle in
the rightmost part of the domain with length x is arbitrary, as
long as the particle enters that part of the domain from the left,
and leaves it to the left again. So the amount and location of
collisions inside that part of the domain is irrelevant, besides
that condition. The symbol e in the part of length Ax identi-
fies that a collision took place there. After the collision, the
particle goes right with a probability of P,, and goes left with
a probability of 1 — P,.

Ax X

Fig. 1: The possible paths in a domain of length x + Ax that
start and end on the left side in a non-analogous simulation
and have a probability of order at most 1 in Ax.

For each of these five situations, we can write its prob-
ability of occurring and the expected second moment given
that it occurs in terms of quantities for a domain of length x.
For instance, the first situation occurs with a probability of
Pu(x)(1 — e¥2%)? with Pj(x) the probability of a particle that
enters from the left in a domain of length x to also leave at
the left side and (1 — ¢™*¥) is the probability of a particle not
reacting during a movement through a slab of length Ax. Only
retaining first order terms, this probability can be rewritten
as Py(x)(1 — 2X,Ax). The expected second moment of such a
path equals

E[(Tu(x) + ZAx + WyEAX)?] = (%)
+ 23 Axt;(x) + 2ZAx0; + O(AX*), Ax — 0.

In this equation Wj; stands for the weight reduction of a par-
ticle after a passage through a domain of length x to which
it entered and returned from the left and 6; = E[W;T}]. The
product of both the probability and its expected second mo-
ment constitutes the contribution of the paths with such a
behavior to 7;(x). For the first situation of Fig. 1 this equals
Py(x)(ty(x) — 2ZAxty(x) + 2ZAxt;(x) + 2ZAx6;(x)), up to
order 1 in Ax.

For the other four cases of Fig. 1 one can work similarily,
taking into account that at collisions the particle is reweighed
by a factor Z,/%. In this process one final new variable arises,
namely wy = E[Wfl]. The result for each of the five cases
separately amounts to

1. Py(x)(tp(x) — 2ZAxty(x) + 2EAxt;(x) + 2XAx0;(x))

2. P, 5 AxPy(x0)y(x)

4. Py(x)ZAx(1 = P)ry(x)

5. P(0)AXP(ETu(x) + 2Zs1(x)0(x) + %wll(x)"' 1(x)) .

Adding these terms together gives an expression for
Pyu(x + Ax)ty(x + Ax), which, by taking the limit Ax — 0,
can be transformed into an ordinary differential equation for
Pjty. For each of the other variables in this equations (P,
Puty, Pywy, Pyfy), this process can be repeated. Only one
extra variable pops up in this process, namely Pj;w;, with
wy = E[W)]. Again, this process can be followed and finally
a closed set of differential equations can be found, for which
the initial value is a zero-vector, because the probability of
entering and leaving from the left in a slab of length zero is
zero and Py features in each of the variables. The full details
will be included in [17].

One last remark to be made is regarding the integration
variable. We explained the method with the domain length as
an integration variable, for fixed X, £, and P,. This would
mean we need to integrate one set of ODEs up to L for each
point in the parameter space we want to evaluate. Instead, we
use the fact that for a fixed Xs/Z, P, and XL, a change in L
does not change the simulation, nor the score. This means we
can see XL as the integration variable and we only need to
integrate the ODEs as many times as we want different values
of X,/%; and P,. Each point in the integration of the ODEs
from O to a maximal value of XL serves then as a value of
%L

VI. RESULTS

For each of the estimation procedures, a system of ODEs
has been derived and these are numerically simulated to evalu-
ate both the statistical error and the computational cost. For the
collision estimators (c_abs, c_sc), track-length estimators
(tl_abs, t1_sc) and next-event estimators (ne_abs, ne_sc),
both measures of performance are independent of the specific
type of collision that is scored. The reason has been put for-
ward in section III: changing the type of collision to tally only
amounts to a scaling of the score. Hence, we can look at the
_abs and _sc variants jointly. So in this section we denote
the collision estimators by c, the track-length estimators by
t1 and the next-event estimators by ne.

In part 1 of this section, we show and discuss the perfor-
mance of the estimation procedures in terms of their relative
statistical error. We focus on the dependence on the param-
eters of the problem and discuss the effects at play. Part 2
does the same for computational cost, which is a slightly more
complex performance measure. Finally, in part 3, we make
explicit which estimator forms the best choice in each part of
the parameter space and show the potential loss of sticking
to a single estimator only. We will discuss how these results
generalise to higher dimensions in the discussion section.
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1. Relative standard deviation

We first compare the different estimation procedures
based on the relative standard deviation. If the number of
particles entering the domain is given, the relative standard
deviation is a measure for the relative statistical error.

A. Trivial scattering, P, = 1

If P, = 1, the scattering is trivial: the particles never
change velocity since the post-scattering velocity is always
1, which is also the velocity at which the particles enter the
simulation. This will enable a clear explanation of part of the
mechanisms at hand. Still, even in this simple situation, it
is nontrivial which of the mechanisms dominates for which
parameter set, and what the quantitative results are.

This simple situation often has easily obtainable analytic
solutions for the ODE:s, as has been done by [3] for a_a_abs,
a_c, a_tl and a_ne, as well as some combinations. Most of
the results in this section are thus not new, but form a stepping
stone towards the rest of our results which, to the best of our
knowledge, are new.

Fig. 2 shows the results of this part. The axes are the
non-dimensional scattering and absorption cross-sections of
which combinations are taken up to XL = 10. For larger
values of XL, the contour lines become invariant to L, so they
become straight lines. This is due to the fact that with large
collision probabilities, the probability of a particle reaching
the end of the domain is very small, so their contribution
becomes negligible. Since particles reaching the end constitute
a negligible part, making the domain larger has no effect.
In the discussion below, the different estimation procedures
are indicated by pictograms that refer to the ordering of the
combinations in the figure.

The analog absorption estimator (a_a_abs, &) is one
of the most trivial estimators, both in how it works and in
the resulting graph. The statistical error is independent of
the scattering rate since the scattering events do not impact
the particle, neither on its weight, nor on its trajectory. If
¥, L increases, the statistical error decreases, since it steadily
becomes almost certain that the particle will be absorbed.

The analog track-length estimator (a_t1, &) is similar
to a_a_abs in its independence to ;L. Now the relative
statistical error increases with rising X,L. When there are
hardly any absorptions, the path length, which scales with
what is scored, is nearly always L, giving low variability. If
>, L increases, absorptions occur more often, which randomly
cut the path short, increasing the statistical error due to the
increased stochasticity of the path length.

The stochasticity due to a path getting cut short prema-
turely when Z,L increases is also visible in the analog scat-
tering estimator (a_a_sc, BE). When cut short early in the
domain, a lot fewer contributing scattering collisions occur
and vice versa for paths that are cut short much later than on
average. Similarly increasing XL, lowers the relative statisti-
cal error due to the increased amount of scored events. These
aspects also show themselves in the non-analog collision type
track-length estimator (nac_t1, B£). A higher absorption rate
now does not mean the particle disappears from the simulation,
but its weight gets lowered. With low survival probabilities

(Zs/%y) this is nearly the same as being actually absorbed.
With ZL = 0 the results are the same as a_t1, but increasing
3L = 0 now has a positive effect as it also had with the analog
scattering estimator (£2). It namely increases the number of
times the weight gets adapted, and as such lowers the variance
on the path-averaged weight.

The analog collision estimator (a_c, #5) combines traits
of the analog scattering estimator (555) and the analog absorp-
tion estimator (£35). It scores the same at both scattering and
absorption events, so increasing either XL or X, L, increases
the amount of scored events. In some instances it decreases
the variance and in others it increases. If scattering collisions
are dominant, absorption has an adverse effect because it can
make the amount of scattering collisions more variable. If
absorption collisions are the dominant contributor to the score,
increasing this further gives a near-certain absorption and as
such a low variance. Similarily, if there is nearly certainly an
absorption event going to happen, scattering events introduce
variance on the number of events that was not yet there.

In the non-analog collision type collision estimator
(nac_c, ££), increasing the absorption rate never has an ad-
verse effect. The only thing that is now stochastic, is the
amount of collisions, which all have the same effect. The pic-
ture is not symmetric however, due to the fact that the weight
is multiplied by the survival probability after every collision.
The lower the survival probability, the less significant the later
collisions are, and since there is more variability in the oc-
currence of these, an increase of X, L is more positive for the
variance than an increase of X L.

In the non-analog track-length type collision estimator
(natl_c, £5), the absorption events are no longer used as
scoring events, so only the negative effects are retained. In
some parts of the domain it does perform better than the analog
collision estimator (25) because the randomness due to the
sudden or very late path cut-off is gone.

The non-analog track-length type track-length estima-
tor (natl_t1, &&) stands out here, since it has zero variance
throughout the domain. It scores based on a certain total path
length, and since the path length is always L in non-analog sim-
ulations with only trivial scattering, this estimator performs
perfectly. A good comparison to be made here is with the
non-analog track-length type next-event estimator (natl_ne,
£%). As also stated by Lux [12], it is natural to — wrongly —
expect the next-event estimator to outperform all others like
the collision and the track-length estimators. Comparing &8
and &g shows this is indeed not true. Albeit the next-event
estimator can be written as scoring the expected contribution
of a track-length estimator for the next collision. In this simple
case it is easy to see why this happens. The total path is not
stochastic due to the fact that P, = 1, but the expected path
length until the next collision is.

Something non-trivial that pops up in each of the next-
event estimators (E8) is the perfect score when XL = 0. An
increase in XL = O first increases the relative standard de-
viation. Increasing X,L further then decreases the relative
standard deviation again. The reason is that without scattering
events a next-event estimator counts exactly once: at entry of
the domain. If scattering events do occur, the estimator also
scores at them with a variable score depending on where the
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scattering event occurred exactly. The initially stochasticity-
free scoring now has a variable aspect, hence the increase in
statistical error. For high enough XL, the relative standard
deviation decreases again due to the increase in scored events.
The analog next-event estimator shows an interesting feature:
it is the only one with a dual effect when increasing X, L. It first
increases the variance, but later decreases it. This decrease
cannot be explained by the increased amount of scoring or
reweighing events, which does not happen with this estimator.
Instead, cutting of the simulation prematurely is what is re-
sponsible for the decreased statistical error. As also explained
in the context of the non-analog track-length type next-event
estimator (55), there is no variance if no scattering occurs.
This tends also to be true if the survival probability is very low.
For intermediate values, this is no longer true and early and
late absorptions make up another important source of variance.

a_a_sc a_a_abs
10 == ==
S5 | 7.19e1
W 3.24el
0
a_c a_tl a_ne 1.46el
10 6.56€0
250 1 i 2.95€0
5 5. / .
o 1.33e0
10 nac_c nac_tl nac_ne 5.95e-1
< 5o 2.65e-1
o> ) / 1.17e-1
natl_c nat_tl natl_ne 4.98e-2
10 j— . . : 1.97e-2
:a 5.0 J 6.10e-3
0 ) 1.73e-18
0 5.0 10 0 5.0 10 0 5.0 10
N.L L N.L

Fig. 2: The relative standard deviation for the different
simulation-estimator combinations with P, = 1.

B. Non-trivial scattering

Most of the effects at play already surfaced in the situation
in which the scattering was trivial. There are a few new effects
however, when the particle can change direction upon scatter-
ing. We will introduce this in Fig. 3 where the probability of
going right after a scattering event equals 75%.

Again, the analog absorption estimator (2) provides a
good starting point. In contrast to the situation with delta scat-
tering, scattering collisions do influence the path of the particle
now. This is a new source of stochasticity and increases the
variance of the score. The negative effect of non-trivial scatter-
ing is visible in every subfigure, as can be seen by comparing
Fig. 3 with Fig. 2.

The new negative aspect of an increase in the scattering
rate combines with the already existing effects when there was
only trivial scattering and results in a more complex picture
for most estimators. Notably the collision estimators (§5), the
analog absorption estimator (£5) and the non-analog collision
type track-length estimator (E%€) have lost their monotonous
decrease of the relative standard deviation with an increase in
2sL. For each of these, there are values of X,L to be found
for which there is first a decrease of the variance and then an
increase. The reason lies in the ever-increasing complexity
of the path, which after a certain time dominates the initial

decrease in variance due to extra scoring moments.

Other values of P, than 1 or 0.75 do not show different
effects, but the specific trade-off between the different effects
at play changes. Different values are shown in Fig. 4, 5 and 6.
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Fig. 3: The relative standard deviation for the different
simulation-estimator combinations with P, = 0.75.
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Fig. 4: The relative standard deviation for the different
simulation-estimator combinations with P, = 0.5.
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Fig. 5: The relative standard deviation for the different
simulation-estimator combinations with P, = 0.25.
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Fig. 6: The relative standard deviation for the different
simulation-estimator combinations with P, = 0.

2. Computational cost

The time needed to perform a Monte Carlo simulation of
the neutral particle kinetic equation is typically proportional
to the product of the number of collisions and the number
of particles involved. Assuming the Central Limit Theorem
holds, the relative error in a statistical sense is proportional to

(o

Nk

with o the standard deviation of the contribution of a particle.
This means one can write the proportionality of the computa-
tional cost as

cost oc o [collisions per path] . 2)

In the same way as how ODEs for the variance were de-
rived, formulas for the expected number of collisions can
be found [17]. This is independent of the chosen estimator
(a_abs, a_sc, ¢, t1, ne), but depends on the simulation type
(a, nac, natl).

For the analog simulation (a), only the physical scatter-
ing collision, determined by the cross-section X have to be
simulated as such. The absorption collision cuts the path and
keeps the computational cost down this way. The non-analog
track-length type simulations (natl) execute scattering colli-
sions the same way as in analog simulations. Absorptions now
no longer cut-off the particle path, but are only visible in the
weight of the particle. In the non-analog collision type simula-
tion (nac) all collisions are simulated as if they are scattering
collisions. Hence, the number of scattering collisions that have
to be simulated is the lowest for the analog simulations and
the highest for the non-analog collision type simulations.

These new aspects complicate the figures even more and
the results are shown for P, € {1,0.5,0} in Fig. 7, 8 and 9.

Note that the ever increasing cost for the non-analog simu-
lations with increasing ;L can in practice be avoided by using
techniques like Russian roulette or weight cut-off [18].
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Fig. 7: A measure of computational cost for the different
simulation-estimator combinations with P, = 1.
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Fig. 8: A measure of computational cost for the different
simulation-estimator combinations with P, = 0.5.
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Fig. 9: A measure of computational cost for the different
simulation-estimator combinations with P, = 0.

3. Best estimator
An important question for practical use is which estimator

to use for a given problem. From the previous pictures it was
already possible to extract that there is not one estimator that
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outperforms all others throughout the parameter domain. In
this section we will make this more explicit, by splitting the
parameter space depending on which estimator performs best.
This will show that three estimators are competitive when
regarding the relative standard deviation and four when taking
the cost as defined in equation (2).

In the context of an actual simulation X /X, and P, can
be seen as constant for a grid cell, even in the general 3D/3D
simulation as discussed in section II. In contrast, XL does
depend on the particle. ;L is namely the inverse of the dimen-
sionless free path length, so it is proportional to 1/|v|, with v
the velocity of the particle. By choosing XL and X, /%, as axes
in our figures, we only have to look at one vertical line when
considering a single grid cell. Depending on the velocity of
the particle, the relevant point of that line can be determined.

Fig. 10 shows for each point in the parameter domain the
estimator with the lowest relative standard deviation, which
corresponds to the lowest statistical error given a number of
simulated particles. The pixels that are colored black, indicate
that the numerical error in the simulation of the ODEs was
larger than the difference between the computed variances.
The graph does not show the full parameter space, as XL
can be unbounded, but it shows all the competitive estima-
tion procedures and which parts of the domain they dominate.
Fig. 10 shows the prevalence of the next-event estimator ex-
cept for when there is a large amount of scattering. Then
the track-length simulation-estimator combination becomes
better. Towards P, = 1 the natl_t1 estimator becomes zero-
variance, hence at P, = 1, such a plot as in Fig. 10 would be
cyan throughout.
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Fig. 10: The estimator with the lowest statistical error for a
given number of simulated particles throughout the parameter
space.

Fig. 11 shows the same for the computational cost. Note
the connection with Fig. 10, of which the underlying value
is squared and multiplied by the expected number of colli-
sions, which only depends on the simulation type. The num-
ber of collisions is always lowest for a and highest for nac.

These effects can be seen when comparing of Fig. 11 and 10:
natl_tl and natl_ex take over parts of the domain that went
to nac_ex in Fig. 10. On top of that, there is a new estimation
procedure that comes to the fore: a_ex. For small values of the
survival fraction and not too low values of XL, non-analogous
particles can remain in the domain for long without having
a significant contribution to the estimation due to their low
weight. Those constitute a computational cost, but have nearly
no impact on the computed value. This is the reason analog
simulations can also be the best option.
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Fig. 11: The estimator with the lowest computational cost for
a given statistical error throughout the parameter space.

Another question is what the gain in terms of statistical
error and computational efficiency would be if you would not
stick to only one estimator, but leave it free. We look at this
for five values of P, separately (0, 0.25, 0.5, 0.75 and 1), but
for all values of X/%; and ZL. This is possible even though
XL can be any positive value because the standard deviation
tends to a constant value for large ;L. For the computational
cost this is not true for non-analogous simulations (nac and
natl), since the number of collisions becomes unbounded
for P, > 0.5, so then obviously only an analog estimation
procedure can have the lowest value. The exception here is
for P, = 1.0 since the variance of natl equals O throughout
the domain. Table I shows which estimation procedure has
the lowest factor with which one might improve the relative
statistical error or computational efficiency throughout the
parameter domain, together with this maximal value.

Based on the values in the table, it is clear that there is no
one-size-fits-all estimation procedure, even when looking at
the different values of P, separately. For the cases with trivial
scattering (P, = 1), there is no potential gain to be made, since
natl_t1 has zero statistical error throughout the domain.
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P, Statistical error Cost
. Maximal . Maximal
Estimator . Estimator .
gain gain

0 nac_ne 1.4 nac_ne 1.9
0.25 nac_ne 1.2 a_ne 1.5
0.5 nac_ne 1.4 a_ne 2.2
0.75 nac_ne 2.0 a_ne 4.7
1 natl_tl / natl_tl /

TABLE I: The single best estimation procedure choice for
given P, together with the corresponding maximal factor of
improvement if other estimation procedures would be allowed
as well.

VII. DISCUSSION

Our results apply to a 1D0D simulation with homoge-
neous values for %L, /% and P,. To apply to a 1DOD our
results of which estimation procedure performs best is not effi-
cient since this computation is more complex than computing
the result itself. Our results can however be used as a pre-
diction of which estimator performs best in similar situations.
This way the potentially large gain of table I of the previous
section might be benefited from.

The aim of future research is to extrapolate these results
to the MC subsimulation in B2-EIRENE simulations. Each of
the grid cells there has homogeneous values for the scattering
rate, survival probability and post-collision velocity distribu-
tion, and is as such quite similar to the situation here. The
difference with the studied problem in this research lies in the
higher dimensionality and the fact that the size of the velocity
can change within the grid cell. The idea would be to select
the estimation procedure depending on the parameters of a
specific grid cell, or even to optimize the estimation procedure
in this way by selecting an optimal linear combintation of
estimators. Formulas for the optimal weights — in a 1DOD
scenario — can be found via invariant imbedding procedures
as well. This should lead to more efficient calculations if there
is a large difference in parameter values for the different grid
cells, which is typically true in fusion simulations.

VIII. CONCLUSION AND FURTHER PERSPECTIVES

We combined four types of estimators and three types
of simulations into twenty estimation procedures for reac-
tion rate estimation. We compared them based on two per-
formance measures, for which eleven estimation procedures
behave uniquely. First, we looked at the relative standard
deviation which is proportional to the statistical error for a
given set of particles that enter the simulation. The second
performance measure is proportional to the computational cost
for a given statistical error.

We derived ODEs for these two performance measures
with an invariant imbedding method for a simplified 1D0OD
situation, that is nonetheless significantly more complex than
in the literature. The degrees of freedom that are retained
are the dimensionless total collision cross-section (X;L), the
survival probability (X5/Z;) and the anisotropy, expressed by

the probability of having a positive post-collision velocity
(Py).

We used numerical simulations of the systems of ODEs
to discuss which effects are responsible for increases and de-
creases in performance of the different estimation procedures.
These different effects make it highly non-trivial to select the
estimation procedure with the best performance measure. We
discuss how these results can be used to optimally select a
local source term estimation procedure, based on the local
values of the cross-sections and anisotropy. We also computed
the potential loss of performance when sticking to one global
estimation procedure. This loss is potentially very high.
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